
EGEE-II INFSO-RI-031688

Enabling Grids for E-sciencE

www.eu-egee.org

EGEE and gLite are registered trademarks

Job Submission and Management
through Web Services: the Experience

with the CREAM Service

Luigi Zangrando – INFN Padova - ITALY

CHEP 2007 – Victoria, CANADA
2-9 September 2007

2

Enabling Grids for E-sciencE

CHEP '07

CREAM

• Modern GRID middlewares as gLite (EGEE project) are
composed of a set of components (services) providing basic
functionality, such as:

– data storage, authentication and security, job management, resource
monitoring and reservation, etc.

• Computing Resource Execution and Management (CREAM)
Service is a system for job management and access to
computational resources at Computing Element (CE) level
developed for gLite by INFN (Padova – ITALY)

– we consider a computing resource (defined as Computing Element, CE)
typically a cluster of PCs managed by a Local Resource Management System
(LRMS)
 LSF, PBS/Torque, Condor, …

3

Enabling Grids for E-sciencE

CHEP '07

CREAM requirements

• The main CREAM requirements are basically:
– provide a well defined and expressly minimal set of operations

(functionality)
– to be open to emerging standards
– provide a lightweight, flexible and expansible architecture
– to be robust (fault tolerant) and scalable
– guarantee performance and reliability
– security
– accounting

4

Enabling Grids for E-sciencE

CHEP '07

CREAM functionality

• Job submission
– Submission of jobs to a CREAM based CE
– Includes also support for direct staging of input sandbox files

 actually the operation is split in 2 operations (job register and job start)

– Job characteristics described via a:
 JDL (Job Description Language) expression

• CREAM JDL is basically the same JDL used by the EGEE gLite Workload
Management System (with CREAM-specific extensions)

 JSDL (Job Submission Description Language)
• OGF specification for describing the requirements of computational

jobs for submission to resources in Grid environments
• through the OGSA-BES interface

– Supported job types
 Simple, Sequential batch jobs
 MPI jobs
 Support of bulk jobs in progress

• DAG jobs, parametric jobs, job collections

5

Enabling Grids for E-sciencE

CHEP '07

CREAM functionality

• Proxy delegation
– Possibility to automatically delegate a proxy for each job

submission
– Possibility to use a previously delegated proxy for multiple job

submissions
 recommended approach wrt performance, since proxy delegation can

be “expensive”

• Job status
– To get status and other info (e.g. creation/submission/start

execution/job completion times, worker node, failure reason, e.g.)
of submitted jobs

– Also possible to apply filters on submission time and/or job status
• Job list

– To get the identifiers of all your jobs
• Job cancellation

– To cancel previously submitted jobs
• Job suspension and job resume

– To hold and then restart jobs

6

Enabling Grids for E-sciencE

CHEP '07

CREAM functionality

• Job purge
– To clear a terminated job from a CREAM based CE
– Can be explicitly called by the client, or can be called via a cron

job (e.g. to clean old jobs)

• Disabling of new job submissions
– Can be used only by CE admin e.g. if the CE has to be shutdown

for maintenance
– Other operations still allowed
– Also possible to define policies on waiting/pending/running jobs to

disable new job submissions
 e.g. disable new submissions if the number of active jobs is > 3000
 useful to avoid the CE overloading

• Job Lease
– mechanism for canceling all jobs for which the lease time is

expired

• Accounting
– For each job proper information is logged in a log file which is then

“managed” by the EGEE accounting service

7

Enabling Grids for E-sciencE

CHEP '07

Open Standards

• CREAM is open to emerging standards
• Open Standards adoption is fundamental for CREAM strategies

– they guarantee a high degree of interoperability
– Web Services and Grid Services related technologies

• CREAM exports a well defined Web-service interface (WS-I compliant)
• CREAM supports also OGSA-BES (Basic Execution Service) interface

– CREAM interface and BES interface coexist
– CREAM-BES developments done in collaboration with the OMII-EU project
– Shown at SC’06 (Tampa-FLORIDA) in the interoperability demo with other

computational services
– next interoperability demo will be at SC'07 (Reno - Nevada)

8

Enabling Grids for E-sciencE

CHEP '07

CREAM architecture

• CREAM adopts the SOA architectural
model

– interoperability and flexibility

The user sends a request
for a job operation

(submit/cancel/status/...)

Journal M. Lease M.

gridmap file

CREAM service

CREAM (WS)CREAM (WS) BES/JSDL

thread pool

LRMS
OthersBLAH

LRMS connector

authorization layer (VOMS)

authentication layer (SSL/TLS)

cmd cmd

cmd

job

cmd

job submit

command
queue

back end
(persistence)

9

Enabling Grids for E-sciencE

CHEP '07

CREAM architecture

• CREAM adopts the SOA architectural
model

– interoperability and flexibility

The user sends a request
for a job operation

(submit/cancel/status/...)

Journal M. Lease M.

gridmap file

CREAM service

CREAM (WS)CREAM (WS) BES/JSDL

thread pool

LRMS
OthersBLAH

LRMS connector

authorization layer (VOMS)

authentication layer (SSL/TLS)

command
queue

cmd cmd

cmd

back end
(persistence)

job

cmd

job submit

10

Enabling Grids for E-sciencE

CHEP '07

CREAM architecture

• To get access to the CREAM service it is
needed to cross the AuthN and AuthZ layers;
• The DN and VOMS attributes are extracted
from the user's proxy certificate;
• The AuthZ is based on VOMS attributes
and on the gridmap file;

• CREAM is fault tolerant (job info and user's requests are persistent)
• The Journal manager handles all user's asynchronous requests (cmd) and inserts
them on a FIFO queue.

Journal M. Lease M.

gridmap file

CREAM service

CREAM (WS)CREAM (WS) BES/JSDL

authorization layer (VOMS)

authentication layer (SSL/TLS)

job

job submit

11

Enabling Grids for E-sciencE

CHEP '07

CREAM architecture

• CREAM adopts the SOA architectural
model

– interoperability and flexibility

The user sends a request
for a job operation

(submit/cancel/status/...)

Journal M. Lease M.

gridmap file

CREAM service

CREAM (WS)CREAM (WS) BES/JSDL

thread pool

LRMS
OthersBLAH

LRMS connector

authorization layer (VOMS)

authentication layer (SSL/TLS)

command
queue

cmd cmd

cmd

back end
(persistence)

job

cmd

job submit

12

Enabling Grids for E-sciencE

CHEP '07

CREAM architecture

• All user commands are persistently
stored on the JM's back-end (queue);
• A pool of threads fetches the commands
from the queue and processes them (in
parallel);

• number of threads is configurable
•All threads act with the LRMS through an
abstract layer (LRMS connector);

•interface with underlying resource
management system

thread pool

LRMS connector

command
queue

cmd cmd

cmd

back end
(persistence)

cmd

Journal M.

13

Enabling Grids for E-sciencE

CHEP '07

CREAM architecture

• CREAM adopts the SOA architectural
model

– interoperability and flexibility

The user sends a request
for a job operation

(submit/cancel/status/...)

Journal M. Lease M.

gridmap file

CREAM service

CREAM (WS)CREAM (WS) BES/JSDL

thread pool

LRMS
OthersBLAH

LRMS connector

authorization layer (VOMS)

authentication layer (SSL/TLS)

command
queue

cmd cmd

cmd

back end
(persistence)

job

cmd

job submit

14

Enabling Grids for E-sciencE

CHEP '07

CREAM architecture

LRMS

OthersBLAH

LRMS connector

• The LRMS connector interface provides
an abstraction of the LRMS functionality;
• Ad-hoc connectors for new LRMS can be
implemented;
• The connectors are pluggable;
• CREAM provides the BLAH (Batch Local
Ascii Helper) connector

•Light component accepting commands
to manage jobs on different resource
management system
• Support for LSF and PBS/Torque
currently provided (support for Condor
is on-going)
• BLAH manages job management
operations on behalf of CREAM
• BLAH also notifies CREAM about job
status changes

•good performance and efficiency
because the job status changes are
detected promptly

15

Enabling Grids for E-sciencE

CHEP '07

Security in CREAM

• CREAM security architecture follows the guidelines of the
Global EGEE security architecture, relying on the official tools
provided by the EGEE security group

• Authentication
– PKI based infrastructure
– X.509 certificates
– Authentication implemented via EGEE gLite trustmanager for the server side
– gSoap-plugin, gridsite libraries for the client side (for delegated-proxy

creation)
• Authorization

– Based on the EGEE gLite authorization framework (gJAF)
– Virtual Organization based AuthZ and/or possibility to enable/disable specific

Grid users
 VOMS attributes stored as AC into the proxy-certificate
 VOMS attributes into SAML assertion (next step)

– local authorization based on gridmap-file
– A user can manage (e.g. cancel, monitor) only her jobs

 but possibility to define CE admins, who can manage also jobs submitted by other
users

 implemented via an AdminPIP, plugged in the Authorization Framework

16

Enabling Grids for E-sciencE

CHEP '07

Security in CREAM

• Delegation
– Using the EGEE gLite port delegation stuff
– Delegation port embedded into CREAM

 Not a standalone service

• Credential mapping
– To map Grid credential on local accounts

 Implemented via glexec (another EGEE gLite product)
• glexec is a thin layer to change Unix credentials based on Grid identity and

attribute information
• glexec is based on lcas and lcmaps

 glexec used in BLAH
• The commands to interact with the underlying batch system (submit,

cancel,et.) are glexec-ed
 glexec used also in the CREAM service itself

• For specific operations that should be executed as the local user mapped to
the considered Grid user

17

Enabling Grids for E-sciencE

CHEP '07 Catania, January 10 2006 - NA4 generic application meeting

CREAM usage scenario

• CREAM should be invoked:
– By a generic client (e.g. an end-user willing to interact directly via

the Computing Element)
– Through the EGEE gLite Workload Management System (WMS)

WMS

Direct Job
submission

Submission
through the WMS

CREAM CREAM CREAM

18

Enabling Grids for E-sciencE

CHEP '07

gLite WMS – CREAM integration

JC + LM ICE

WMS RB

Condor CE

direct
access to
CREAM

access to CREAM
thought WMS

SOAP

The user can access to CREAM
directly or through the WMS

CEMon CREAM CE

notification
job status

• The CREAM integration with WMS is allowed
by ICE (Interface to CREAM Environment);
• ICE: is an intermediate layer (gSOAP/C++)
that must considered as a client of CREAM.
• ICE subscribes to the CEMon service in order
to asynchronously receive notifications about
the job status changes.
• In case some notifications are lost, ICE
performs synchronous status polling for jobs for
which it hasn't received status for some time.
• To maintain its subscriptions ICE periodically
checks them and renews the expiring ones.

CEMon[itor] is a general purpose notification framework working in synchronous and
asynchronous mode, that virtually supports any kind of monitoring thanks to its plug-in
architecture. CEMon gets informations about the job status from the CREAM data persistence
back end through JNDI APIs.

WMS

19

Enabling Grids for E-sciencE

CHEP '07

Performance/Reliability tests

• In July and August 2007 CREAM passed the acceptance tests
defined by the EGEE project

– performance and reliability tests

• Test criteria:
– performance test:

 5000 simultaneous jobs per CE node (scheduled + running)
 job submission rate of 10000 jobs/day
 50 different users submitting jobs to a single CREAM-CE node

– reliability test:
 job failure rates in normal operations due to the CE <0.5%
 job failure due to restart of CE services or reboot <0.5%
 5 day unattended running with performance on day 5 equal to that on day 1

• test results:
– > 8 days long
– > 86000 jobs submitted via gLite WMS
– no error due to CREAM
– no performance degradation

20

Enabling Grids for E-sciencE

CHEP '07

Future plan for CREAM

• The EGEE TCG recently decided to increase the effort on CREAM to
make it production ready on SL4 with VDT 1.6.

• next steps:
– complete and verify the packaging and the accessory functionalities

(accounting, monitoring, etc...) needed by the EGEE infrastructure
– consolidate CREAM: further stronger tests

 e.g. unlimited number of submitting users
 Job failure rates due to the CE < 0.1%
 1 month unattended running without significant performance

degradation
 Self-limiting behaviour when the CE load reaches its maximum (e.g.

5000 running jobs)
 …

– integration with Condor-G
– participation to next interoperability demo at SC'07

