Open heavy-flavour production as a function of multiplicity in pp collisions at the LHC

Francesco Prino

INFN – Sezione di Torino

for the ALICE Collaboration

Outline

Physics motivation

- Heavy-flavour production mechanisms in pp collisions
- ⇒ Interplay between hard and soft processes of particle production

Data analysis

- □ D-meson reconstruction

Results

- ➡ Multiplicity dependence of open heavy-flavour production in pp collisions.
- Comparison between open charm, open beauty and charmonia

Comparison to model calculations

- ⇒ PYTHIA, EPOS event generators
- Calculations with the percolation model
- Comparison to results in p-Pb collisions
- Conclusions

Physics motivation

Heavy flavours in pp collisions

- Heavy quarks (charm and beauty) produced in partonic scattering processes with large Q²
- Production cross section can be calculated with perturbative QCD calculations based on the factorization approach

$$\sigma_{hh\to Hx} = PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \hat{\sigma}_{ab\to q\overline{q}} \otimes D_{q\to H}(z_q, Q^2)$$

- Mangano et al., Nucl. Phys. B373 (1992) 295
- Cacciari et al., JHEP 05 (1998) 007

- **EXECUTE:** Kniehl et al., PRD 71 (2005) 014018
- ☐ Jung et al., JHEP 1101 (2011) 085

Open charm in pp collisions

- Measurements at the LHC described by pQCD calculations within uncertainties
 - **⇒** FONLL
 - Cacciari et al., JHEP 1210 (2012) 137
 - **⇔** GM-VFNS
 - Kniehl et al., EPJ C72 (2012) 2082
 - **⇒** LO k_T-factorization
 - Maciula, Szczurek, PRD 87 (2013) 094022

- ALICE, JHEP 1201 (2012) 128
- ALICE,
 PLB 718 (2012) 279
- PLB 718 (2012) 279
 - Nucl.Phys. B871 (2013) 1

5

Open beauty in pp collisions

- Measurements at the LHC described by pQCD calculations within uncertainties
 - **⇒** FONLL
 - Cacciari et al., JHEP 1210 (2012) 137
 - **⇒** GM-VFNS
 - Kniehl et al., EPJ C72 (2012) 2082
 - **⇒** LO k_T-factorization
 - Maciula, Szczurek, PRD 87 (2013) 094022

- Cacciari et al., JHEP 1210 (2012) 137
- **CMS, PRL 106 (2011) 112001**
- **CMS, PRL 106 (2011) 252001**
- **ALICE, JHEP 1211 (2012) 065**
- **CMS, EPJ C71 (2011) 1575**
- **LHCb**, EPJ C71 (2011) 1645

Heavy-flavour cross section

- Total charm and beauty production cross section described by pQCD calculations within uncertainties
 - Charm on the upper edge of the theoretical uncertainty band at all collision energies

Hard scattering and underlying event

- Two component approach:
 - → Hard scattering process
 - ✓ Large Q², perturbative QCD
 - ✓ Dijet
 - ✓ Initial/Final state radiation
 - Underlying event (UE) = final state particles not associated to the hard scattering
 - √ (perturbative) (mini)jets produced in softer multi-parton interactions (MPI)
 - ✓ Soft hadronic processes
 - ✓ Fragmentation of beam remnants

More differential measurements

More differential measurements

 → deeper insight into charm
 production in pp collisions

D-hadron angular correlations

Charm quark fragmentation

⇒cc production mechanism

Charm and beauty hadron production as a function of the multiplicity of charged particles produced in the collision

Interplay between hard and soft processes

→ Multi-Parton Interactions

FOCUS OF TODAY'S
SEMINAR

ALICE, arXiv:1505.00664

Charm production vs. multiplicity

- NA27 and LEBC-EHS Collaboration

 - $\Rightarrow p_{\text{BEAM}} = 400 \text{ GeV}$
- Different multiplicity distributions for events with and without charm production
- "... It is natural to interpret these differences by the more central nature of collisions leading to charm production."

J/ψ production vs. multiplicity

ALICE, PLB 712 (2012) 165

- Per-event J/ψ yield increases approximately linearly with multiplicity
 - ⇒ Hadronic activity accompanying J/ψ production?

- **LHCb**, PLB 707 (2012) 52
- **LHCb, JHEP 06 (2012) 141**

J/ψ production vs. multiplicity

- Per-event J/ ψ yield increases approximately linearly with multiplicity
 - \Rightarrow Hadronic activity accompanying J/ ψ production?

- **LHCb**, PLB 707 (2012) 52
- **LHCb, JHEP 06 (2012) 141**

Multi Parton Interactions

Naïve picture

- Several interactions at the partonic level occur in parallel
 - ✓ At LHC energies: cross section for 2-2 parton scatterings with $\sqrt{Q^2}$ ~ few GeV/c exceed the total hadronic cross section
 - ☐ Bartalini, Fano, arXiv:1003.4220
- Yield of particles from hard processes should increase with multiplicity

- - Frankfurt, Strikman, Weiss, PRD 83 (2011) 054012
 - Azarkin, Dremin, Strikman, PLB 735 (2014) 244
- Final state: color reconnections, saturation, string percolation
 - ☐ Ferreiro, Pajares, PRC 86 (2012) 034903
- Collectivity in pp for sufficiently high multiplicities?
 - ✓ Multiplicities in high multiplicity pp collisions at the LHC similar to peripheral Cu-Cu at RHIC

 Werner et al., PRC 83 (2011) 044915

How to gain more insight?

- Extend to open charm (D mesons)
 - Compare open/hidden charm production
 - Study yield of D mesons vs. multiplicity in p_T intervals
- Extend to open beauty production
 - ⇒ Via non-prompt J/ψ
- Extend to higher multiplicities
 - Clearer picture of the trend. Linear? Stronger than linear?

(Selection of) other studies as a function of multiplicity in pp collisions at the LHC

Bottomonia vs. multiplicity

- Yield of Y increases with multiplicity
 - ⇒ Similar in pp, p-Pb and Pb-Pb
 - □ In Pb-Pb (and p-Pb) number of nucleon-nucleon collisions increases with multiplicity

CMS, JHEP 1404 (2014) 103

- Y(nS) production ratios depend on multiplicity
 - \Rightarrow Ground state $\Upsilon(1S)$ systematically produced with more particles?
 - Excited states more easily dissociated by interactions with 16 other particles?

Jets and UE vs. multiplicity

High-multiplicity events:

- Larger number of (semi) hard parton interactions, (mini)jets
- Softer distribution of hadrons inside jets
- Multi-Parton Interaction (MPI)
 mechanism critical to reproduce
 the features of the data

CMS, EPJ C73 (2013) 2674

Mini jets in pp vs. multiplicity

- Mini jets: bundles of particles from semi-hard partonic scatterings
- How: from 2-particle correlations, associated yields in near and away sides
 ALICE, JHEP 09 (2013) 049

18

Mini-jets in pp vs. multiplicity

- Mini-jets: bundles of particles from semi-hard partonic scatterings
- How: from 2-particle correlations, associated yields in near and away sides
 ALICE, JHEP 09 (2013) 049
- Uncorrelated seeds = number of independent sources of particle production

$$< N_{\text{uncorrelated seeds}} > = \frac{< N_{\text{trigger}} >}{< 1 + N_{\text{assoc, near+away}} >}$$

- Linearly increasing with multiplicity at low multiplicity
- Levels off at high multiplicities

Angular correlations: pp collisions, high multiplicity

- Ridge in Pb-Pb collisions described by hydrodynamics
 ➡ Initial state geometrical anisotropy + collective expansion
- Also observed in high multiplicity p-Pb collisions at the LHC
 - CMS, PLB 718 (2013) 795
 - **ALICE, PLB 719 (2013) 29**

Heavy-flavour vs. multiplicity: Data analysis

ALICE at the LHC

Data sample

pp collisions at $\sqrt{s} = 7 \text{ TeV}$

- Minimum-bias trigger ⇒Signal in V0A or V0C or SPD
- N. events = $314 \cdot 10^6$
- $\int L dt = 5 \text{ nb}^{-1}$

- High-multiplicity trigger
 - Threshold on number of fired chips in SPD
- N. events = 6.10^6
- $\int L dt = 14 \text{ nb}^{-1}$

Multiplicity estimation

- Number of tracklets in the two innermost ITS layers
 - ⇒Silicon Pixel Detectors, pseudo-rapidity range: |η|<1.0
 - $\Rightarrow N_{\text{tracklets}} \propto dN_{\text{ch}}/d\eta$
 - $\Rightarrow \langle dN_{\rm ch}/d\eta \rangle = 6.01 \pm 0.01 ({\rm stat.})^{+0.20}_{-0.12} ({\rm syst.}) \text{ in } |\eta| < 1$
- Sum of amplitudes in the V0 scintillator arrays
 - $\Rightarrow N_{V0}$, pseudo-rapidity range -3.7< η <-1.7 and 2.8< η <5.1

N_{tracklets} intervals

Number of tracklets in the two innermost ITS layers

⇒Silicon Pixel Detectors, pseudo-rapidity range: |η|<1.0

$$\Rightarrow N_{\text{tracklets}} \propto dN_{\text{ch}}/d\eta$$

$$\Rightarrow \langle dN_{\rm ch}/d\eta \rangle = 6.01 \pm 0.01 ({\rm stat.})^{+0.20}_{-0.12} ({\rm syst.}) \text{ in } |\eta| < 1$$

_	$N_{\rm events}^{{ m J/\psi}}/10$	$N_{\rm events}^{\rm D^0}/10^6$	$(\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta)^{j}/\langle\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\rangle$	$(\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta)^{j}$	$N_{\rm tracklets}$
_ }	_	155.1	$0.45^{+0.03}_{-0.03}$	2.7	[1,8]
MB trigger	89.0	_	$0.63^{+0.04}_{-0.04}$	3.8	[4, 8]
	50.5	46.2	$1.18^{+0.07}_{-0.07}$	7.1	[9, 13]
	35.5	32.0	$1.78^{+0.10}_{-0.11}$	10.7	[14, 19]
	28.0	24.7	$2.63^{+0.15}_{-0.17}$	15.8	[20, 30]
J	9.5	7.9	$4.01^{+0.23}_{-0.25}$	24.1	[31,49]
ligh Mult	_	1.7	$6.11^{+0.35}_{-0.39}$	36.7	[50, 80]
trigger					

Open charm

D-meson reconstruction

- Analysis strategy
 - Invariant mass analysis of fully reconstructed decay topologies displaced from the primary vertex
 - ⇒ Background reduction via:
 - ✓ Geometrical selections on the decay vertex
 - ✓ Particle identification of the decay products
- Feed down from B (10-15 % after cuts) subtracted using pQCD (FONLL) predictions

D-meson reconstruction

Geometrical selections

- Track impact parameter (resolution $\approx 75 \mu m$ at p_T = 1 GeV/c)
- ⇒ Decay length
- → Pointing of the D-meson momentum to the primary vertex

D-meson reconstruction

- PID selection: 3σ cuts on

 - ➡ Time-of-flight from interaction point to TOF detector

D⁰, D⁺, D^{*+} invariant mass

Corrections and systematics

$$\frac{d^{2}N^{\mathrm{D}}/dydp_{\mathrm{T}}}{\left\langle d^{2}N^{\mathrm{D}}/dydp_{\mathrm{T}}\right\rangle} = \frac{N_{\mathrm{raw}\,\mathrm{D}}^{\mathrm{mult}}/(\varepsilon_{\mathrm{D}}^{\mathrm{mult}}\times N_{\mathrm{event}}^{\mathrm{mult}})}{N_{\mathrm{raw}\,\mathrm{D}}^{\mathrm{tot}}/(\varepsilon_{\mathrm{D}}^{\mathrm{tot}}\times N_{\mathrm{event}}^{\mathrm{tot}}/\varepsilon_{\mathrm{trigger}})}$$

D-meson yield / event in multiplicity intervals corrected for reconstruction efficiency

- Sources of systematics
 - Raw yield extraction
 - ✓ D-meson line shape
 - ✓ Background fit function
 - ✓ 3-15% depending on p_T , multiplicity, species
 - Primary vertex determination
 - √ With/without D-meson decay tracks
 - ✓ Negligible effect
 - Selection and PID efficiency
 - √ Same selection used in all multiplicity intervals
 - ✓ Negligible residual effect due to multiplicity dependence of efficiency
 - Fraction of prompt D mesons in the raw yield
 - ✓ Assumed to be the same in all multiplicity bins (cancels out in the ratio)
 - ✓ Uncertainty by varying the D←B contribution by a factor 1/2 (2) at low(high) multiplicity

D-meson yield / event multiplicity integrated, corrected for reconstruction and trigger efficiencies

Corrections and systematics

+6%/-3% normalization unc. not shown \pm 6% unc. on (dN/dη) / (dN/dη) not shown

 $(dN_{ch}/d\eta) / \langle dN_{ch}/d\eta \rangle$

B fraction hypothesis: \times 1/2 (2) at low (high) multiplicity

ALICE

pp $\sqrt{s} = 7 \text{ TeV}, |y| < 0.5$

D⁰ meson, 4<p_T<8 GeV/c
 D⁺ meson, 4<p_T<8 GeV/c
 D*⁺ meson, 4<p_T<8 GeV/c

D-meson yield / event in multiplicity intervals corrected for reconstruction efficiency

D-meson yield / event multiplicity integrated, corrected for reconstruction and trigger efficiencies

Contribution of D from B decays:

- assumed independent of multiplicity
- uncertainty by varying the D←B contribution by a factor 1/2 (2) at low(high) multiplicity

ALICE, arXiv:1505.00664

B feed-down unc.

0.2

0

2

 $(d^2N/dydp_{_{\mathsf{T}}})\ /\ \langle d^2N/dydp_{_{\mathsf{T}}}$

25

15

10

D⁰, D⁺, D*+ yield vs. multiplicity

- D-meson per-event yields increase with charged-particle multiplicity
 - \Rightarrow Similar trend in different p_T intervals
 - Faster than linear increase
- D⁰, D⁺ and D*+ results compatible within uncertainties
 - Compute the average of the three meson species

D-meson yield vs. multiplicity p_T dependence?

• Trend of D-meson yield vs. multiplicity independent of p_T within uncertainties

Introducing an η gap

- Charged-particle multiplicity measured in the same η range as D mesons
- Multiplicity estimation includes:
 - → D-meson decay particles
 - → Particles produced in the charm-quark fragmentation
- Test effect of possible autocorrelations using the multiplicity measured in the V0 detector
 - Qualitatively similar increasing trend when an η gap is introduced between the regions in which D mesons and multiplicity are measured

J/ψ from beauty-hadron decays

J/ψ from beauty-hadron decays

Analysis strategy

- Electron identification based on energy loss in TPC
 - ✓ 3σ cut around expected e[±] dE/dx
 - ✓ 3.5 σ (3 σ) exclusion band around expected π (p) dE/dx

J/ψ from beauty-hadron decays

Analysis strategy

- Electron identification based on energy loss in TPC
- Reduction of background from γ conversions and π^0 Dalitz decays
 - ✓ Excluding e[±] that form e⁺e⁻
 pairs with invariant mass < 100
 MeV/c²

38

J/ψ from beauty-hadron decays

Analysis strategy

- Electron identification based on energy loss in TPC
- Reduction of background from γ conversions and π^0 Dalitz decays
- ⇒ J/ψ production vertex reconstruction
- Simultaneous fit to invariant mass and pseudo-proper decay length (x) distributions

Non-prompt J/ψ: fits

Fraction of non-prompt J/ψ from 2D un-binned log-likelihood fit to:

- ✓ Invariant mass M(e+e-)
- → Pseudoproper decay length x

$$x = L_{xy} \cdot \frac{M_{J/\psi} \cdot c}{p_{T}^{J/\psi}}$$

Corrections and systematics

- Fraction of reconstructed non-prompt J/ψ:
 - \Rightarrow Raw value f'_{B} extracted from 2D un-binned log-likelihood fits
 - Corrected for acceptance x efficiency

$$f'_{B} = \frac{N_{J/\psi \leftarrow B}^{raw}}{N_{J/\psi \text{ prompt}}^{raw} + N_{J/\psi \leftarrow B}^{raw}} \longrightarrow f_{B} = \left(1 + \frac{1 - f'_{B}}{f'_{B}} \cdot \frac{\langle A \times \varepsilon \rangle_{B}}{\langle A \times \varepsilon \rangle_{prompt}}\right)^{-1}$$

- ✓ 3% difference between $Ax\varepsilon$ of prompt and non-prompt J/ψ
- Extrapolation from $p_T>1.3 \text{ GeV/}c$ to $p_T>0$

$$\Rightarrow$$
 Extrapolation factor: $\alpha_{\text{extr}} = 0.99 \begin{array}{l} +0.01 \\ -0.03 \end{array}$

- ✓ Based on FONLL (non-prompt) and phenomenological (prompt) p_T shapes
- NOTE: $p_T > 1.3$ GeV/c selection needed because of the non-negligible amount of J/ ψ emitted with large opening angle with respect to the beauty-hadron direction at low p_T

Corrections and systematics

- Sources of systematic uncertainty
 - Primary vertex determination
 - ✓ With/without removing J/ψ decay tracks (resolution and bias)
 - ➤ Effect: 19% at low multiplicity → 3% at high multiplicity
 - Resolution of pseudo-proper decay length (x)
 - ✓ Due to imperfect description of x variable in the simulations
 - ➤ Effect: 8% at low multiplicity → 20% at high multiplicity
 - \Rightarrow Generated J/ ψ p_T distributions in MC
 - ✓ Effect on $Ax\varepsilon$ (~ 1%)
 - ✓ Effect on x resolution (within the estimated uncertainty)
 - → Modeling of J/ψ from beauty pseudo-proper decay-length distribution
 - ✓ Beauty-hadron decay kinematics and p_T spectra
 - > Effect: 3%, independent of multiplicity
 - **⇒** Background modeling in the fit
 - ✓ Use side-bands for x distributions
 - ✓ Use LS to check the invariant mass distribution
 - ➤ Effect: ~7% , independent of multiplicity
 - \Rightarrow Extrapolation to p_T =0
 - **➤ Effect: 3%**

Fraction of non-prompt J/ψ

Multiplicity integrated value $\langle f_{\rm B} \rangle$

- Fraction of non-prompt J/ψ
 - → Approximately flat as a function of multiplicity
- Non-prompt J/ψ yield relative to the multiplicity integrated one computed as:

$$\frac{\mathrm{d}N_{\mathrm{J/\psi}}^{\mathrm{non-prompt}}/\mathrm{d}y}{\left\langle \mathrm{d}N_{\mathrm{J/\psi}}^{\mathrm{non-prompt}}/\mathrm{d}y\right\rangle} = \frac{\mathrm{d}N_{\mathrm{J/\psi}}/\mathrm{d}y}{\left\langle \mathrm{d}N_{\mathrm{J/\psi}}/\mathrm{d}y\right\rangle} \cdot \frac{f_{\mathrm{B}}}{\left\langle f_{\mathrm{B}}\right\rangle}$$

Inclusive J/ψ result from:

ALICE, PLB 712 (2012) 165

Open charm, charmonia and open beauty

D mesons vs. inclusive J/ψ

- Similar increase with multiplicity of per-event yield of open and hidden charm
- Inclusive J/ψ measured at mid (e+e-) and forward (μ+μ-) rapidity
 - Forward rapidity J/ψ and charged multiplicity measured in different η regions

ALICE, arXiv:1505.00664 Inclusive J/ψ result from:

ALICE, PLB 712 (2012) 165

Open charm vs. open beauty

Similar increase with multiplicity of per-event yield of open charm and beauty production

□ ALICE, arXiv:1505.00664

Comparison to model calculations

Model calculations

Percolation model

- Elementary sources of particle production: colour ropes/strings formed in parton-parton collisions
 - ✓ Close to MPI scenario
- Colour strings have finite spatial extension and interact
 - ✓ At high densities: overlap among the sources -> reduction of their number
 - ✓ Affects more soft sources (larger transverse size) and charged multiplicity

Model calculations

EPOS 3.099

- ➡ Initial conditions
 - ✓ Gribov-Regge multiple-scattering formalism
 - ✓ Saturation scale to model non-linear effects
 - √ Hadronization via string fragmentation
 - ✓ Number of MPI directly related to multiplicity
- ⇔ Hydrodynamical evolution
 - ✓ Can be applied to the dense core of the collision
 - ✓ Results in a stronger than linear increase of D-meson yield with multiplicity

Model calculations

PYTHIA 8

- Soft-QCD tune
- Colour reconnections
- Multi-parton interactions
- ➡Initial and Final state radiation (ISR/FSR)
- - ✓ Trend depends on p_T

PUB-92985 CIT 50

Non-prompt J/ψ vs. PYTHIA8

PYTHIA 8

- Soft-QCD tune
- Colour reconnections
- interactions
- ➡ Initial and Final state radiation (ISR/FSR)
- → Almost linear increase of beautyhadron yield with multiplicity
- **ALICE**, arXiv:1505.00664

Going deeper into PYTHIA8

Split by process:

- First hard = hardest process
 - √ ~ flat D-meson yield with multiplicity
- → MPI = subsequent hard processes
 - ✓ Increasing D-meson yield with multiplicity
- ⇒ Splitting of a gluon from a hard process
 - ✓ Increasing D-meson yield with multiplicity
- ➡ Initial and Final state radiation (ISR/FSR)
 - ✓ Increasing D-meson yield with multiplicity

Back to PYTHIA 6 predictions

- PYTHIA 6.4, Perugia 2011 tune
 - ⇒Direct J/ψ production only
 - → MPI without charm production in subsequent interactions
 - Fails to reproduce the measured trend
- Improvement of MPI scenario in PYTHIA 8
 - Charm produced also in subsequent MPIs

J/w results vs. percolation model

☐ Ferreiro, Pajares, PRC 86 (2012) 034903

Percolation model

- - ✓ Close to MPI scenario
- Colour strings have finite spatial extension and interact
 - ✓ At high densities: overlap among the sources -> reduction of their number
 - ✓ Affects more soft sources (larger transverse size) and charged multiplicity
- → More than linear increase of J/ψ yield with multiplicity

Comparison to results in p-Pb collisions

D mesons: pp vs. p-Pb

- Similar trend in pp and p-Pb collisions
- Caveat:
 - \Rightarrow dN/d η ~4<dN/d η > in **pp** from many **MPIs** + high number of fragments per parton

D mesons and J/ψ in p-Pb

- Similar increasing trend of D and J/ψ yields with multiplicity in p-Pb collisions at low multiplicities
- Deviation at high multiplicities

NOTE:

- \Rightarrow Different p_T and y ranges for D's and J/ψ
- Different probed values of Bjorken x

D mesons: pp vs. p-Pb vs. Pb-Pb

Comparison to Pb-Pb

NOTE: in-medium parton energy loss + radial flow modify the p_T distribution of D mesons in a centrality/multiplicity dependent way in Pb-Pb

Conclusions

- Heavy-flavour (charm and beauty) hadron yield in pp collisions increases with the multiplicity of charged particles produced in the collision
 - Similar trend for open charm, charmonium and open beauty
 - ✓ Small effect due to hadronization? Trend dictated by charm and beauty quark production mechanism
 - Faster than linearly for high multiplicities
 - \Rightarrow No dependence on p_T observed for D mesons within current uncertainties
- Models including MPI can reproduce the observed trend
- Future directions (Run II):
 - ⇒ Higher multiplicities and higher √s
 - \Rightarrow D mesons in finer p_T intervals

Backup

Uncorrelated seeds: pp vs. p-Pb

- Number of uncorrelated seeds grows linearly with multiplicity in p-Pb
- Levelling off in pp

Mean p_T in pp, p-Pb and Pb-Pb

Three different √s for pp, p-Pb and Pb-Pb ⇒ but √s dependence

expected to be weak

- Much stronger increase of <p_T> in p-Pb than in Pb-Pb
 - p-Pb follows pp up to $N_{ch} \sim 14-15$
- N_{ch}>14 corresponds to
 - ~10% of pp x-section:
 - ✓ pp already highly biased
 - ⇒50% of p-Pb x-section
 - √ only centrality bias

PYTHIA8 – process breakdown

Relative amount of contributions to HF production in PYTHIA8

Origin of c and b quark content		D mesons		B mesons	
First hard process		12%		37%	
	gluon fusion		3%		15%
	c/b sea		9%		22%
Hard process in MPI		22%		23%	
Gluon splitting from hard process		6%		included in ISR/FSR	
ISR/FSR		60%		40%	
Remnant		< 0.3%		< 0.5%	

D-mesons, other p_T bins

J/ψ and D mesons, p-Pb vs. pp

- No modification of D-meson production in p-Pb compared to pp at mid y at all multiplicities
 - \Rightarrow R_{pPb} and Q_{pPb} ~ 1
- Multiplicity/centrality dependent modification of J/ψ at forward and backward y
 - Cold nuclear matter effects