Physics of Polarized Protons/Electrons in Accelerators

Mei Bai

Forschungszentrum, Juelich

Collider Accelerator Dept.
Brookhaven National Laboratory
(J) JÜLICH

Outline

- Introduction
- What is polarized proton/electron beam?
- Why high energy polarized beams?
- Physics of polarized protons in accelerators
- Spin dynamics
- Challenges in accelerating polarized protons to high energy
- Brief history of high energy polarized proton beams development
- Brief introduction of polarized electrons in accelerators
- Summary

Polarized Proton/electron Beam

- Proton/electron, as spin half particle
- Spin vector

$$
S=<\psi|\sigma| \psi>; \quad \text { Here, } \psi \text { is spin state of the particle }
$$

\circ Intrinsic magnetic moment

$$
\vec{\mu}=\frac{g}{2} \frac{q}{m} S ; \quad \text { and } \frac{d S}{d t}=\vec{\mu} \times \vec{B} \text { in the particle's frame }
$$

- Polarized proton/electron beam
- Beam polarization, with $N_{ \pm}$is the number of particles in the state of $\psi+($ up state $)$ and ψ-(down state), respectively

$$
P=\frac{N_{+}-N_{-}}{N_{+}+N_{-}}
$$

Why Polarized Beams?

- Study proton spin structure

Spin contribution
from all the gluons

Orbital angular momentum of quarks and gluons

Why high energy polarized protons?

High energy proton proton collisions: gluon gluon collision and gluon quark collision

Why Polarized Beams?

- Search for Electric Dipole Moment

Describes the positive and negative charge distribution inside a particle

It aligns along the spin axis of the partic and violates both Parity and Time Reversal.

Hence, significant EDM measurement of fundamental particles is an effective probe of CP-violation, could be the key 1 explain the asymmetry between matter and antimatter
"Deuteron \& proton EDM Experiment", Yannis K. Semertzidis, BNL

Spin motion in a circular accelerator

Thomas BMT Equation: $(1927,1959)$

L. H. Thomas, Phil. Mag. 3, 1 (1927); V.

Bargmann, L. Michel, V. L. Telegdi, Phys, Rev. Lett. 2, 435 (1959)

$>\mathrm{G}$ is the anomoulous g - factor, for
$\stackrel{\mathrm{G} \text { is the }}{\text { proton, }}$

$$
G=1.7928474
$$

γ : Lorenz factor
Spin tune $Q_{\text {s: }}$ number of precessions in one orbital revolution:

$$
\mathbf{Q}_{\mathbf{s}}=\mathbf{G} \gamma
$$

Spinor

- Thomas-BMT equation

$$
\begin{aligned}
\frac{d S}{d s}=\vec{n} \times S & =\left[G \gamma \hat{y}+(1+G \gamma) \frac{B_{x}}{B \rho} \hat{x}+(1+G) \frac{B_{/ /}}{B \rho} \hat{s}\right] \times S ; \quad d s=\rho d \theta \\
\vec{S} & =<\psi|\sigma| \psi>; \text { with } \psi=\binom{u}{d}
\end{aligned}
$$

- Equation of motion of spinor

$$
\frac{d \psi}{d \theta}=-\frac{i}{2}\left(\overrightarrow{\sigma \cdot \vec{n}) \psi}=-\frac{i}{2} H \psi\right.
$$

- Spinor transfer matrix M

$$
\psi\left(\theta_{2}\right)=e^{-\frac{i}{2} H\left(\theta_{2}-\theta_{1}\right)} \psi\left(\theta_{1}\right)=M\left(\theta_{2}, \theta_{1}\right) \psi\left(\theta_{1}\right)
$$

Spinor Transfer Matrix

- A dipole

$$
n=G \gamma \hat{y} \quad M\left(\theta_{2}, \theta_{1}\right)=e^{-i G \gamma\left(\theta_{2}-\theta_{1}\right) \sigma_{3} / 2}
$$

- A thin quadrupole

$$
\vec{n}=(1+G \gamma)\left(\frac{\partial B_{x}}{\partial y} l / B \rho\right) y \hat{x}=(1+G \gamma) k l y \hat{x} \quad M=e^{-i(1+G \gamma) k l y \sigma_{1} / 2}
$$

- A spin rotator which rotates spin vector by a precession of χ around an axis of $\hat{n}, \quad M=e^{-i \chi \hat{n} \cdot \hat{\sigma}}$
- One turn matrix of a ring with a localized spin rotation at θ

$$
\mathrm{OTM}=e^{-\frac{i}{2} 2 \pi Q_{s} \hat{n}_{c o} \vec{\sigma}}=e^{-\frac{i}{2} G \gamma(2 \pi-\theta) \sigma_{3}} e^{-\frac{i}{2} \chi \hat{n}_{e} \cdot \vec{\sigma}} e^{-\frac{i}{2} G \gamma \theta \sigma_{3}}
$$

Spin tune becomes,

$$
\cos \pi Q_{s}=\cos G \gamma \pi \cos \frac{\chi}{2}-\sin G \gamma \pi \sin \frac{\chi}{2}\left(\hat{n}_{e} \cdot \hat{y}\right)
$$

Depolarizing mechanism in a synchrotron

- horizontal field kicks the spin vector away from its vertical direction, and can lead to polarization loss
> dipole errors, misaligned qadrupoles, imperfect orbits
> betatron oscillations
> other multipole magnetic fields
> other sources

Initial

Depolarizing Resonance

O Imperfection resonance:

- Source: dipole errors, quadrupole misalignments
- Resonance location:

$$
\mathrm{G} \gamma=\mathrm{k}, \mathrm{k} \text { is an integer }
$$

- Resonance strength:
- Proportional to the size of the vertical closed orbit distortion
* For protons, imperfection spin resonances are spaced by 523 MeV
* Between RHIC injection and 250 GeV , a total of 432 imperfection resonances

Depolarizing Resonance

O Intrinsic resonance:

- Focusing field due to the intrinsic betatron oscillation
- Location:

$$
G \gamma=k P \pm Q_{v}
$$

P : super periodicity of the accelerator, Q_{y} : vertical betatron tune

- Resonance strength:
- Proportional to the size of the betatron oscillation
- When crossing an isolated intrinsic resonance, the larger the beam is, the more the polarization loss is. This is also known as the polarization profile

Stable Spin Direction

- an invariant direction that spin vector aligns to when the particle returns back to the same phase space, i.e.

$$
\hat{n}_{c o}\left(I_{z}, \phi_{z}, \theta\right)=\hat{n}_{c o}\left(I_{z}, \phi_{z}+2 \pi, \theta\right)
$$

Here, I_{z} and ϕ_{z} are the 6-D phase-space coordinates.

- For an ideal machine, i.e. the closed orbit is zero, the stable spin direction is along the direction of the guiding field
- The stable spin direction \hat{n}_{0} for a particle on the closed orbit is the eigenvector of its one turn spin transfer matrix

$$
M(\theta+2 \pi, \theta)=e^{-\frac{i}{2} 2 \pi Q_{5} \hat{n}_{0} \cdot \vec{\sigma}}
$$

Stable Spin Direction

- $\hat{n}_{c o}\left(I_{z}, \phi_{z}, \theta\right)$ is function of phase space
- For particles on closed orbit, stable spin direction can be computed through one-turn spin transfer matrix. $\hat{n}_{c o}$ is also know as \hat{n}_{0}
- For particles not on closed orbit, since in general the betatron tune is non-integer, the stable spin direction is no longer the eigen vector of one turn spin transfer matrix. Algorithms like SODOM[1,2], SLIM[3], SMILE[4] were developed to compute the stable spin direction
[1] K. Yokoya, Non-perturbative calcuation of equilibrium polarization of stored electron beams, KEK Report 92-6, 1992
[2] K. Yokoya, An Algorithm for Calculating the Spin Tune in Accelerators, DESY 99-006, 1999
[3] A. Chao, Nucl. Instr. Meth. 29 (1981) 180
[4] S. R. Mane, Phys. Rev. A36 (1987) 149

Stable Spin Direction

- $\hat{n}_{c 0}\left(I_{z}, \phi_{z}, \theta\right)$ is function of phase space
- It can also be calculated numerically with stroboscopic averaging, a technique developed by Heinemann, Hoffstaetter from DESY[1]
- One can also compute $\hat{n}_{c o}$ through numerical tracking with adiabatic anti-damping technique, i.e. populate particles on closed orbit first with their spin vectors aligned with \hat{n}_{0} The particles are then adiabatically excited to the phase space during which spin vector should follow the stable spin direction as long as it is far from a spin resonance
[1] K. Heinemann, G. H. Hoffstatter, Tracking Algorithm for the Stable Spin Polarization Field in Storage Rings using Stroboscopic Averaging, PRE, Vol. 54, Number 4

Stable Spin Direction

- Particles on a $20 \pi \mathrm{~mm}$-mrad phase space
- Particles on a 40π mm-mrad phase space

D. P. Barber, M. Vogt, The Amplitude Dependent Spin Tune and The Invariant Spin Field in High Energy Proton Accelerators, Proceedings of EPAC98

Resonance Crossing

- In a planar ring, for a single isolated resonance at

$$
G \gamma=K
$$

- Frossiart-Stora formula[1]: 1960

$$
p_{f}=p_{i}\left(2 e^{-\pi\left|\varepsilon_{K}\right|^{2 / \alpha}}-1\right)^{\text {with }} \quad \alpha=d(G \gamma) / d \theta
$$

and resonance strength is

$$
\left.\varepsilon_{K}=\frac{1}{2 \pi} \int[1+G \gamma) \frac{\Delta B_{x}}{B \rho}+(1+G) \frac{\Delta B_{/ /}}{B \rho}\right] e^{i K \theta} d s
$$

[1] Froissart-Stora, Depolarisation d'un faisceau de protons polarises dans un synchrotron, NIM (1960)

Resonance Crossing

- For an imperfection

$$
\varepsilon_{K} \propto G \gamma \sqrt{<y_{c o}^{2}>}
$$

- No depolarization dependence on the betatron amplitude
- For an intrinsic resonance

$$
\varepsilon_{K} \propto G \gamma \sqrt{\varepsilon_{y, N} / \beta \gamma}
$$

- Source of polarization profile, i.e. polarization depends on the particle's betatron amplitude in a beam
- For a Gaussian beam,

$$
p_{f}=p_{i} \frac{1-\pi\left|\epsilon_{K, r m s}{ }^{2}\right| / \alpha}{1+\pi\left|\epsilon_{K, r m s}^{2}\right| / \alpha}
$$

RHIC Intrinsic Spin Depolarizing Resonance

© J נ̈̈Lich

Overcoming Depolarizing Resonance

O Harmonic orbit correction
Oto minimize the closed orbit distortion at all imperfection resonances
O Operationally difficult for high energy accelerators

- Tune Jump

- Operationally difficult because of the number of resonances
- Also induces emittance blowup
because of the non-adiabatic beam manipulation

Zero Gradient Synchrotron Tune Jump

Overcome Intrinsic Resonance w. RF Dipole

OAdiabatically induces a vertical coherent betatron oscillation - Drive all particles to large amplitude to enhance the resonance strength
O full spin flip with normal resonance crossing rate
O Easy to control and avoid emittance blowup
O Employed for the AGS polarized proton operation from 1998-2005

Without coherent oscillation

With coherent oscillation

O Can only be applied to strong intrinsic spin resonances

Overcome Intrinsic Resonance w. RF Dipole

Partial Siberian Snake

O rotates spin vector by an angle of $\psi<180^{\circ}$
O Keeps the spin tune away from integer

- Primarily for avoiding imperfection resonance
- Can be used to avoid intrinsic resonance as demonstrated at the AGS, BNL.

Dual partial snake configuration

- For two partial snakes apart from each other by an angle of ϑ, spin tune the becomes

$$
\cos \pi Q_{s}=\cos \mathrm{G} \gamma \pi \cos \frac{\psi_{1}}{2} \cos \frac{\psi_{2}}{2}-\cos (\mathrm{G} \gamma(\pi-\theta)) \sin \frac{\psi_{1}}{2} \sin \frac{\psi_{2}}{2}
$$

- Spin tune is no-longer integer, and stable spin direction is also tilted away from vertical
- The distance between spin tune and integer is modulated with $\operatorname{Int}[360 / \vartheta]$. For every integer of $\operatorname{Int}[360 / \vartheta]$ of $G \gamma$, the two partial snakes are effectively added. This provides a larger gap between spin tune and integer, which can be wide enough to have the vertical tune inside the gap to avoid both intrinsic and imperfection resonance
- Stable spin direction is also modulated

Spin tune with two partial snakes

$$
\cos \pi Q_{s}=\cos G \gamma \pi \cos \frac{\Psi_{\mathrm{w}}}{2} \cos \frac{\Psi_{\mathrm{c}}}{2}-\cos G \gamma \frac{\pi}{3} \sin \frac{\Psi_{\mathrm{w}}}{2} \sin \frac{\Psi_{\mathrm{c}}}{2}
$$

Horizontal Resonance

- Stable spin direction in the presence of two partial snakes is no long along vertical direction
- vertical fields due to horizontal betatron oscillation can drive a resonance at $\mathrm{G} \gamma=\mathrm{kP} \pm \mathrm{Qx}$
- Each is weak, and can be cured by tune jump

Overcome Horizontal Resonance

- AGS horizontal tune jump quadrupoles to overcome a total of 80 weak horizontal spin resonances during the acceleration

V. Schoefer et al, INCREASINGTHEAGSBEAMPOLARIZATIONWITH80TUNEJUMPS, Proceedings of IPAC2012, New Orleans, Louisiana, USA

Full Siberian Snake

- A magnetic device to rotate spin vector by 180°
- Invented by Derbenev and Kondratanko in 1970s [Polarization kinematics of particles in storage rings, Ya.S. Derbenev, A.M. Kondratenko (Novosibirsk, IYF) . Jun 1973. Published in Sov.Phys.JETP 37:968-973,1973, Zh.Eksp.Teor.Fiz 64:1918-1929]
- Keep the spin tune independent of energy

Snake Depolarization Resonance

- Condition
- S. Y. Lee, Tepikian, Phys. Rev. Lett. 56 (1986) 1635
- S. R. Mane, NIM in Phys. Res. A. 587 (2008) 188-

$$
m Q_{y}=Q_{s}+k^{212}
$$

- even order resonance
- Disappears in the two snake case if the closed orbit is perfect
- odd order resonance
- Driven by the intrinsic spin resonances

Snake resonance observed in RHIC

.Avoid polarization losses due to snake resonance

- Adequate number of snakes

$$
N_{\text {snk }}>4\left|\varepsilon_{k, \max }\right| \quad Q_{s}=\sum_{k=1}^{N_{\text {snk }}}(-1)^{k} \phi_{k}
$$

ϕ_{k} is the snake axis relative to the beam direction

- Minimize number of snake resonances to gain more tune spaces for operations

He-3 with dual snake

He-3 with six-snake

Avoid polarization losses due to snake resonance

- Adequate number of snakes

$$
N_{\text {snk }}>4\left|\varepsilon_{k, \max }\right| \quad Q_{s}=\sum_{k=1}^{N_{\text {snk }}}(-1)^{k} \phi_{k}
$$

$\phi_{k i s}$ the snake axis relative to the beam direction

- Keep spin tune as close to 0.5 as possible
- Source of spin tune deviation
- Snake configuration
- Local orbit at snakes as well as other spin rotators. For RHIC,

- Source of spin tune spread
- momentum dependence due to local orbit at snakes
- betatron amplitude dependence

History of High Energy Polarized Proton Beams

ZGS at Argonne National Lab

- 1969~1973:
- proton energy 1-12 GeV
- Polarization 71\%
- Beam intensity: 9x10^10
- Orbital harmonic correction together with fast tune jump was used to overcome the depolarizing resonances

History of High Energy Polarized Proton Beams

Brookhaven AGS : 1974~present

Alan Krisch and Larry Ratner in the AGS MCR.
~ 40\% polarization at 22 GeV, 7 weeks dedicated time for setup
5% snake + RF dipole
~ 2 weeks setup parasitic to RHIC Ion program
50% at 24 GeV

6\% warm helical snake $+10 \%$ cold helical snake
~2 weeks setup
$65 \%-70 \%$ at 24 GeV JÜLICH

History of High Energy Polarized Proton Beams

Cooler Ring at Indiana University Cyclotron Facility

1985-- 2002:

- Successfully accelerated polarized protons up to 200 MeV with a super-conducting solenoid snake. Best polarization of 77\% was achieved

History of High Energy Polarized Proton Beams

COSY (Cooler Synchrotron ring) at Julich, Germany

- 1985 -- present:
- proton energy: $3 \mathrm{GeV} / \mathrm{c}$
- Full spin flip at each imperfection resonance with vertical correctors
- Fast tune jump with an air-core quadrupole at each intrinsic spin resonance

Dual Snake Set-up

\square Use one or a group of snakes to make the spin tune to be at $1 / 2$

Break the coherent build-up of the perturbations on the spin vector

How to avoid a snake resonance?

- Adequate number of snakes
- Keep spin tune as close to 0.5 as possible
- Precise control of the vertical closed orbit
- Precise optics control
- Choice of working point to avoid snake resonances
- near $3^{\text {rd }}$ order resonance. Current RHIC operating tune is chosen to be $\mathrm{Qy}=0.673$ for acceleration beyond 100 GeV
- near integer tune, much weaker snake resonances
- However, it requires very robust linear optics correction
- Minimize the linear coupling to avoid the resonance due to horizontal betatron oscillation

Precise Beam Control

- Tune/coupling feedback system: acceleration close to $2 / 3$ orbital resonance
- Orbit feedback system: rms orbit distortion less than 0.1 mm

Beam-beam Effect on Polarization

- Beam-Beam force on spin motion
- For a Gaussian round beam, particle from the other beam sees

Polarization Performance and Beam-beam

- Beam-Beam induces tune shift of

$$
\xi=\frac{N r_{0} \beta^{*}}{4 \pi \gamma \sigma^{2}}
$$

- It also induces an incoherent tune spread, which can populate particles on
- orbital resonances, and causes emittance growth
- snake resonances, and result in polarization loss during collision

A Typical BTF of RHIC Beam in Collision

Average Store Polarization vs. vertical tune

\square The closer the vertical tune towards 0.7 , the lower the beam polarization
\square The data also shows that the direct beam-beam contribution to polarization loss during store is weak

『ر ЈёLIch

RHIC Polarized Proton Performance

Polarization as measured by H Jet target, average of the entire beam distribution. For 250 (255) GeV, sharper polarization profile was observed and hence, effective polarization is ~ 20 \% higher

Polarized Electrons

- High energy polarized electrons, on the other hand, is quite different due to Sokolov-Ternov effect,
- Discovered by Sokolov-Ternov in 1964
- Emission of synchrotron radiation causes spontaneous spin flip

- The difference of probability between the two scenarios allows the radiative polarization build up $P(t)=P_{\max }\left(1-e^{-t / \tau_{\text {pol }}}\right)$, where $P_{S T}=8 / 5 \sqrt{3}$ and polarization build up time is

$$
\tau_{p o l}^{-1}=5 \frac{\sqrt{3}}{8} \frac{e^{2} \hbar \gamma^{5}}{m^{2} c^{2} \rho^{3}}=5 \frac{\sqrt{3}}{8} c \lambda_{e} r_{e} \frac{\gamma^{5}}{\rho^{3}}
$$

Polarized Electrons

- For electron, rule of thumb of polarization build up time

$$
\tau_{\text {pol }}^{-1}=3654 \frac{R / \rho}{B[T]^{3} E[\mathrm{GeV}]^{2}}
$$

S. Mane et al, Spin-polarized charged particle bams

	VEPP[10]	VEPP2-M[11] ACO[8,9]	BESSY[44]	SPEAR[45]	VEPP4[46]	
$E(\mathrm{GeV})$	0.640	0.625	0.536	0.800	3.70	5.0
$\tau_{p}(\mathrm{~min})$	50	70	160	150	15	40
$P(\%)$	52	90	90	>75	>70	80
	DORIS II[47]	CESR[48]	PETRA[49]	HERA[19]	TRISTAN[50]	LEP[51]
$E(\mathrm{GeV})$	5.0	4.7	16.5	26.7	29	46.5
$\tau_{p}(\min)$	4	300	18	40	2	300
$P(\%)$	80	30^{*}	$80^{* *}$	$70^{* *}$	$75^{* *}$	$57^{* *}$

- What's the polarization buildup time at RHIC@250GeV and LHC@1TeV?

In a planar circular accelerator

- where the magnetic field is distributed piece-wisely

$$
\begin{aligned}
& P_{\infty}=\frac{8}{5 \sqrt{3}} \frac{\langle | \rho^{-3}|\hat{n} \cdot \hat{b}\rangle}{\langle | \rho^{-3}\left|\left[1-\frac{2}{9}(\hat{\beta} \cdot \hat{n})^{2}\right]\right\rangle} \\
& \tau_{p}^{-1}=\frac{5 \sqrt{3}}{8} c \lambda_{c} r_{e} \gamma^{5}\langle | \rho^{-3}\left[1-\frac{2}{9}\left(\overrightarrow{\left.\left.\beta \cdot \vec{n})^{2}\right]\right\rangle}\right.\right.
\end{aligned}
$$

- Clearly, a single snake or other configurations which lays the stable spin direction in the horizontal plane, can cancel the S-T radiative polarization build-up

Now, let's add in spin diffusion

- An emission of a photon yields a sudden change of the particle's energy, as well as its spin phase

$$
\begin{gathered}
P_{\infty}=\frac{8}{5 \sqrt{3}} \frac{\langle | \rho^{-3}\left|\hat{b} \cdot\left[\hat{n}-\gamma \frac{\partial \hat{n}}{\partial \gamma}\right]\right\rangle}{\langle | \rho^{-3}\left|\left[1-\frac{2}{9}(\hat{\beta} \cdot \hat{n})^{2}+\frac{11}{18}\left|\gamma \frac{\partial \hat{n}}{\partial \gamma}\right|^{2}\right]\right\rangle} \\
\tau_{p}^{-1}=\frac{5 \sqrt{3}}{8} c \lambda_{c} r_{e} \gamma^{5}\langle | \rho^{-3}\left[1-\frac{2}{9}\left(\overrightarrow{\left.\left.\beta \cdot \vec{n})^{2}+\frac{11}{18}\left|\gamma \frac{\partial \hat{n}}{\partial \gamma}\right|^{2}\right]\right\rangle}\right.\right.
\end{gathered}
$$

Synchrotron Sideband

- Spin tune is modulated due to synchrotron oscillation

$$
\begin{aligned}
& \gamma=\gamma_{0}+\Delta \gamma \cos \psi \quad \text { with } \quad \psi=v_{s} \theta+\phi_{0} \\
& \nu=G \gamma=v_{0}+G \Delta \gamma \cos \psi \quad \text { with } \quad v_{0}=G \gamma_{0}
\end{aligned}
$$

- Hence, the spin-orbit coupling factor averaged over all synchrotron phase becomes

$$
\left.\left.\langle | \vec{\Gamma}\right|^{2}\right\rangle=\left|\gamma \frac{\partial \hat{n}}{\partial \gamma}\right|^{2}=v_{0}^{2} \varepsilon_{K}^{2} \sum_{m} \frac{J_{m}^{2}\left(\Delta v / v_{s}\right)}{\left[\left(\left(v_{0}-K\right)^{2}\right)-v_{s}^{2}\right]^{2}}
$$

C. Biscari, J. Buon, B. Montague, CERN/LEP-TH/83-8

Depolarizing Resonance @ SPERA

Fig. 1. Polarization measurements at SPEAR (from ref. [2]). The quantity $P_{\max }$ is $8 /(5 \sqrt{3})=92.4 \%$. The curve is a guide for the eye, not a theoretical calculation. Various resonances have been identified in the data. The orbital tunes are called $\nu_{x, y, s}$ instead of $Q_{x, y, s}$. The spin tune is $\boldsymbol{\nu}$. A single beam of positrons was circulated when making measurements. The graph is not a single experiment, but a
compilation of many runs.

What's Missing in this talk

The iceberg ()

Linear spin dynamics

- $1^{\text {st }}$ order depolarizing resonance
- Techniques for preserving polarization

Non-linear spin dynamics

- High order depolarizing resonance

Spin tracking

- Robustness and modern architect
- Optimization, spin matching

Spin manipulation

- Spin flipping
- Spin tune-meter

Polarimetry

To the great minds who pioneered

Achieved Performance and Projection

$\mathbf{p} \uparrow-\mathbf{p} \uparrow$				
operation	2009	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 5}$
Energy	GeV	$100 / 250$	$100 / 255$	100
No of collisions	\ldots	107	107	107
Bunch intensity	10^{11}	$1.3 / 1.1$	$1.3 / 1.8$	1.85
Beta*	m	0.7	$0.85 / 0.65$	0.65
Peak L	$10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	$\mathbf{5 0 / 8 5}$	$\mathbf{4 6 / 1 6 5}$	$\mathbf{1 1 5}$
Average L	$10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	$\mathbf{2 8 / 5 5}$	$\mathbf{3 3 / 1 0 5}$	$\mathbf{6 3}$
Polarization P	$\%$	$\mathbf{5 6 / 3 5}$	$\mathbf{5 9 / 5 2}$	$\mathbf{5 6 / 5 7 . 4}$

- Polarization quoted here is from Absolute Polarimeter using polarized H Jet

