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Abstract 
When a charged particle travels across the vacuum chamber of an 
accelerator, it induces electromagnetic fields, which are left mainly behind 
the generating particle. These electromagnetic fields act back on the beam 
and influence its motion. Such an interaction of the beam with its 
surroundings results in beam energy losses, alters the shape of the bunches, 
and shifts the betatron and synchrotron frequencies. At high beam current 
the fields can even lead to instabilities thus limiting the performance of the 
accelerator in terms of beam quality and current intensity.  
We discuss in this lecture the general features of the electromagnetic fields, 
introducing the concepts of wake fields and giving few simple examples of 
them in cylindrical geometry. We then show the effect of the wake fields on 
the dynamics of a beam in a LINAC, dealing in particular with the beam 
breakup instability and the way to cure it. 

1.  INTRODUCTION 

Self induced electromagnetic (e.m.) forces in an accelerator, are generated by a charged particle beam 
which interacts with all the components of the vacuum chamber. These components may have a 
complex geometry: kickers, bellows, r.f. cavities, diagnostics components, special devices, etc. The 
study of the fields generally requires of solving the Maxwell’s equations in a given structure taking 
the beam current as source of fields. This could result a quite complicated task, and therefore several 
dedicated computer codes, used to study and design accelerator devices, which solve the e.m. problem 
in the frequency or in the time domain, have been developed. These include, for example, CST Studio 
Suite [1], GDFIDL [2], ACE3P [3], ABCI [4], and others. 

In this lecture discuss some general features of the self induced e.m. forces and introduce the 
concepts of wake fields and coupling impedances [5-12], showing some simple examples in 
cylindrical geometry. Although the space charge forces have been studied separately [13], they can be 
seen as a particular case of wake fields.  

In the second part of the lecture we study the effects of the wake fields on the dynamics of a 
beam in a LINAC, such as energy loss and energy spread. We finally deal with the beam breakup 
(BBU) instability [14], and the way to cure it [15]. 

 

2.  WAKE FIELDS AND POTENTIALS 
2.1  Longitudinal and transverse wake fields 

The self induced e.m. fields acting on a particle inside a beam depend on the whole charge 
distribution. However, if we know the fields in a given structure created by a single charge (i.e. we 
obtain the Green function of the structure), by using the superposition principle, we can easily 
reconstruct the fields produced by any charge distribution.    

The e.m. fields created by a point charge act back on the charge itself and on any other charge 
of the beam. Referring to the coordinates’ system of Fig. 1 let us call q0(s0, r0) a charge, which we call 
source charge, traveling with constant longitudinal velocity v=c (ultra-relativistic limit) along a 



trajectory parallel to the axis of a given accelerator structure. Let us consider a test charge q, in a 
position (s=s0-z, r), which is moving with the same constant velocity on a parallel trajectory inside the 
structure. 
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Figure 1.1: Reference coordinates system.

Maxwell equations satisfying the proper boundary conditions depending on the
machine device under consideration.

The energy variation of the test charge q due to electromagnetic forces gen-
erated by q

1

is obtained by integrating the longitudinal forces along the whole
structure

U|| (r, r1;�z) = �
Z

Str

F|| (z, r, z1, r1; t) dz (1.1)

with t = (z
1

+�z) /c. The forces are calculated on the charge q, on the same
path of q

1

, but with a time delay �z/c. Analogously, the energy change of the
charge q

1

is

U|| (r1) = �
Z

Str

F|| (z1, r1; t) dz1 (1.2)

with t = z
1

/c. From the above definitions, the quantity U|| represents the
energy lost (> 0) or gained (< 0) by a charge in passing through the machine
device, due to electromagnetic forces parallel to the particle motion. We have
assumed that the relative energy change is small so that it does not produce
any appreciable variation of the relativistic factor �.

The longitudinal loss factor is defined as the energy lost by q
1

per square
unit charge

k|| (r1) =
U|| (r1)

q2
1

(1.3)

and the longitudinal wake function is the energy variation of the test charge q
per unit of charge q and q

1

w|| (r, r1;�z) =
U|| (r, r1;�z)
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Fig. 1: Reference coordinates’ system. 

Let E and B be the electric and magnetic fields generated by q0 inside the structure. Since the 
velocity of both charges is along z, the Lorentz force acting on q has the following components: 

 F = q Ezẑ + Ex − vBy( ) x̂ + Ey + vBx( ) ŷ"# $%≡ F// +F⊥                                 (1) 

From the above equation we see that there can be two effects on the test charge: a longitudinal 
force which changes its energy, and a transverse force, which deflects its trajectory. If we consider a 
device of length L, the energy change in joule of q due to this force is:  

U r, r0, z( ) = F//
0

L

∫ ds                                                                   (2) 

while the transverse deflecting kick, expressed in [Nm], is: 

M r, r0, z( ) = F⊥
0

L

∫ ds                                                                   (3) 

Note that the integration is performed over a given path of the trajectory. The quantities given 
by eqs. (2) and (3), normalised to the two charges q0 and q, are called respectively longitudinal and 
transverse wake fields. In many cases, we deal with structures having particular symmetric shapes, 
generally cylindrical. It is possible to demonstrate that with a multipole expansion of the wake fields, 
the dominant term in the longitudinal wake field depends only on the distance z between the two 
charges, while the dominant one in the transverse wake field is still function of the distance z, but it is 
also linear with the transverse position of the source charge r0. If we then divide the transverse wake 
field by r0 we obtain the transverse dipole wake field, that is the transverse wake per unit of transverse 
displacement, depending only on z: 

Longitudinal wake field 
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Transverse dipole wake field  
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                                                              (5) 



The minus sign in the definition of the longitudinal wake field means that the test charge loses 
energy when the wake is positive. Positive transverse wake means that the transverse force is 
defocusing. The wake fields are properties of the vacuum chamber and the beam environment, but 
they are independent of the beam parameters (bunch size, bunch length, …). 

In order to study the effect of wake fields on the beam dynamics, it is convenient to distinguish 
between the wake fields that are synchronous with the same bunch that produced them, and influence 
the particles within the bunch, called short range wake fields, and those that influence the multi-bunch 
(or multi-turn) beam dynamics, which are generally resonant modes trapped inside a structure and are 
called long range wake fields. 

As a first example of wake fields, let us consider the longitudinal wake field of “space charge”. 
Even if in the ultra-relativistic limit with γ ⟶ ∞, there is no space charge effect, we can still define a 
wake field by considering a moderately relativistic beam with γ>>1 but not infinite. It turns out that 
the space charge forces can fit into the definition of wake field, and when that is done, we find that the 
wake depends on beam properties such as the transverse beam radius a and the beam energy γ. In 
Appendix 1 we show an example of such an interpretation. Let us consider here a relativistic beam 
with cylindrical symmetry and uniform transverse distribution of radius a. The longitudinal force 
acting on a charge q of the beam travelling inside a cylindrical pipe of radius b is given by [13]: 

F// (r, z) =
−q

4πε0γ
2 1− r
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a2 + 2 ln b
a

"

#
$

%

&
'
∂  λ(z)
∂  z

                                          (6) 

with λ(z) the longitudinal distribution (z > 0 at the bunch head). Note that, since the space charge 
forces move together with the beam, they are constant along the accelerator if the beam pipe cross 
section remains constant. We can therefore define the longitudinal wake field per unit length (V/Cm). 
To get the longitudinal wake field of a piece of pipe, we just multiply by the pipe length. Assuming 
r→0 (particle on axis), and a charge line density given by λ(z) = q0δ(z)  we obtain: 

dw// (z)
ds
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2 1+ 2 ln b
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δ(z)                                             (7) 

which has the peculiarity of being also dependent on the beam size a. 

Another interesting case is the longitudinal wake potential of a resonant higher order mode 
(HOM) in an RF cavity, which is an example of long range wake field. When a charge crosses a 
resonant structure, as an RF cavity, it excites the fundamental mode and higher order modes. Each 
mode can be treated as an electric RLC circuit loaded by an impulsive current, as shown in Fig. 2. 

 
Fig. 2: RF cavity and the equivalent RLC parallel circuit model driven by a current generator. 

 

Just after the charge passage, the capacitor is charged with a voltage V(0)=q0/C, and the 
longitudinal electric field is Ez= V/l, with l the length of the cavity. The time evolution of the electric 
field is then governed by the same differential equation of the voltage, which can be written as 



!!V + 1
RC
!V + 1

LC
V =

1
C
!I                                                           (8) 

The passage of the impulsive current charges only the capacitor, which changes its potential by 
an amount Vc(0). This potential will oscillate and decay producing a current flow in the resistor and 
inductance. After the charge passage, for t > 0 the potential satisfies the following equation and 
boundary conditions: 

!!V + 1
RC
!V + 1

LC
V = 0

V (t = 0+ ) = q0
C
=V0

!V (t = 0+ ) = !q
C
= −

I(0+ )
C

= −
V0
RC

                                                 (9) 

which has the following solution: 

V (t) =V0e
−Γ  t cos(ωt)− Γ

ω
sin(ωt)
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where 

€ 

ωr
2 =

1
LC

 and 

€ 

Γ =
1

2RC
. For the HOM it is also convenient to define the quality factor 

Q =
ωr

2Γ
, from which we can write C =

Q
Rωr

. 

Putting z=ct (z is positive behind the source charge) we obtain the longitudinal wake field 
shown in Fig 3: 

w// (z) =
V(z)
q0

=
Rωr

Q
e−Γ  z/c cos(ωz / c)− Γ

ω
sin(ωz / c)
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&
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                                 (11) 
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Fig. 3: Qualitative behavior of a resonant mode wake field. 



In an analogous way, it is possible to obtain the transverse wake field of a HOM 

w⊥(z) = R⊥ωr

Q
e−Γ  z/c sin(ωz / c)                                                  (12) 

with R⊥ expressed in (Ω/m). 

We conclude this section by giving the longitudinal and transverse short range wake fields of a 
rectangular cell, as that shown in Fig. 4, under the hypothesis that the bunch length is much smaller 
than the pipe radius b. Its expression can be useful to study the effects of the short range wake fields 
of an accelerating structure in a LINAC.  
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Fig. 4: Geometry of a single cell of a LINAC accelerating structure. 

 

The model supposes each cell as a pill box cavity. When a bunch reaches the edge of the cavity, 
the electromagnetic field it creates is just the one that would occur when a plane wave passes trough a 
hole; with this hypothesis it is possible to use the classical diffraction theory of optics to calculate the 
fields [7]. If the condition g < (d-b)2/(2σ) is satisfied, with g the cell gap, d the cell radius and σ the 
rms bunch length of a Gaussian bunch, then the longitudinal and transverse wake fields can be written 
respectively: 

w// (z) =
Z0c
2π 2b

g
z

w⊥(z) =
23/2Z0c
π 2b3

gz
                                                    (13) 

For a collection of cavities, eqs. (13) cannot be used because the wake fields, along the cells, do 
not sum in phase and the result would be an overestimation of the effects. An asymptotic wake field, 
for a periodic collection of cavities of period p, obtained numerically at SLAC [16] and then fitted to a 
simple function, is used instead. Such wake fields are thus valid after a certain number of cavities 
given by: 
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Under these assumptions, the wake fields of eqs. (13) are modified into 

w// (z) =
Z0cp
πb2

e− z/s1

w⊥(z) =
4Z0cps2
πb4
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with 

s1 = 0.41
b1.8g1.6

p2.4

s2 = 0.17
b1.79g0.38

p1.17

                                                    (16) 

 

2.2  Loss factor and beam loading theorem 

A useful quantity for the effects of longitudinal wake field on the beam dynamics is the loss factor, 
defined as the normalised energy lost by the source charge q0: 

k = −U(z = 0)
q0
2                                                               (17) 

For charges travelling with the light velocity, there is the problem that the longitudinal wake 
field is discontinuous at z=0, as shown in Fig. 5, giving an ambiguity for the evaluation of the loss 
factor. Indeed, when the source charge travels with the light velocity, it leaves the e.m. fields mainly 
on the back, reason why we call these fields “wake fields”. Any e.m. perturbation produced by the 
charge cannot overtake the charge itself. This means that the longitudinal wake field vanishes in the 
region z < 0.  This property is a consequence of the “causality principle”. It is the causality that 
requires that the longitudinal wake field of a charge travelling with the velocity of light is 
discontinuous at the origin. 
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Fig. 5: Examples of longitudinal wake fields: left β<1, right β =1. 

The exact relationship between k and w//(z→0) is, in this case, given by the beam loading 
theorem [17], which states that 

k =
w//(z→ 0)

2
                                                           (18) 

As example of verification of the beam loading theorem, let us consider the wake field of the 
resonant mode given by eq. (11). The energy lost by the charge q0 loading the capacitor is 

U =
CV0

2

2
=
q0
2

2C
 giving k = 1

2C
, to compare with:w// (z→ 0) = 1

C
. 



2.3 Relationship between transverse and longitudinal forces 

Another important feature worth mentioning here is the differential relationship existing between 
longitudinal and transverse forces and between the corresponding wake fields: the transverse gradient 
of the longitudinal force/wake is equal to the longitudinal gradient of the transverse force/wake, that is 

∇⊥F// =
∂
∂  z
F⊥

∇⊥w// =
∂
∂  z
w⊥

                                                         (19) 

The above relations are known as “Panofsky-Wenzel theorem” [18]. 

2.4 Coupling impedance 

The wake fields are generally used to study the beam dynamics in the time domain. If we take the 
equations of motion in the frequency domain, we need the Fourier transform of the wake fields. Since 
these quantities have ohms units they are called coupling impedances: 

Longitudinal impedance [Ω]:                  Z // ω( ) = 1
v

w// z( )e
iωz
v dz

−∞

∞

∫                                                    (20) 

Transverse dipole impedance [Ω/m]:     Z⊥ ω( ) = − i
v
w⊥ z( )e

iωz
v dz

−∞

∞

∫                                                  (21) 

The longitudinal coupling impedance of the space charge wake given by eq. (7) in (Ω/m) is: 

∂  Z // ω( )
∂  s

=
1
v

∂  w// z( )
∂  s

e
iωz
v dz

−∞

∞

∫ =
1+ 2 ln b a( )
v4πε0γ

2
d
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δ(z)e

iωz
v dz

−∞
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∫                    (22) 

since
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δ' (z) f (z)dz
−∞

∞

∫ = f ' (0) , we get: 
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The longitudinal coupling impedance of a resonant HOM, corresponding to the Fourier 
transform of eq. (11) is given by: 

Z // ω( ) = R

1+ iQ ωr

ω
−
ω
ωr
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                                               (24) 

where R is also called the shunt impedance of the longitudinal HOM. Note that the loss factor can be 

written as  k = ωrR
2Q

. 

The transverse impedance obtained from eq. (12) is given by: 

Z
⊥
ω( ) = ω

ω
R⊥

1+ iQ ωr
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                                               (25) 



with R⊥  called the transverse shunt impedance. 

2.5 Wake potential and energy loss of a bunched distribution 

When we have a bunch with total charge q0 and longitudinal distribution λ(z), such that 

q0 = λ(z ')dz '
−∞

∞

∫ , we can obtain the amount of energy lost or gained by a single charge q in the beam 

by using the superposition principle. 

To this end we calculate the effect on the charge by the whole bunch, as shown in Fig. 6, with 
the superposition principle, which gives the convolution integral: 

U(z) = −q w// z '− z( )λ(z ')dz '
−∞

∞

∫                                              (26)  

z! z’!

λ(z)" dz’!

 

Fig. 6: Convolution integral for a charge distribution to obtain the energy loss of a particle due to the whole 
bunch. 

Eq. (26) permits to define the longitudinal wake potential of a distribution: 

W// (z) = −
U(z)
qqo

=
1
q0

w// z '− z( )λ(z ')dz '
−∞

∞

∫                                           (27) 

The total energy lost by the bunch is computed summing up the energy loss of all particles: 

Ubunch =
1
q

U !z( )
−∞

∞

∫ λ !z( )d !z = −q0 W// !z( )
−∞

∞

∫ λ !z( )d !z                               (28) 

3.  WAKE FIELDS EFFECTS IN LINEAR ACCELERATORS 
3.1 Energy spread 

The longitudinal wake forces change the energy of individual particles depending on their position in 
the beam, as given by eq. (26). As consequence the short range wake field can induce an energy 
spread in the beam.  

For example the energy spread induced by the space charge force in a Gaussian bunch is given 
by: 

dU(z)
ds

= −q
dw// z '− z( )

ds
λ(z ')dz ' =

−∞

∞

∫ qq0
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The bunch head gains energy (z > 0), while the tail loses energy. The total energy lost by the 
bunch Ubunch is zero. 

In a similar way one can show that the energy loss induced by a resonant HOM inside a 
rectangular uniform bunch of length l0 when Γ <<ω  is given by: 

U(z) = −qq0Rωr

2Q

sin ωr
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                                                 (30) 

and the total energy loss obtained with eq. (28) is 

Ubunch = −
2q0

2Rc2

ωrl0
2Q

sin2 ωrl0
2c
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3.2 Single bunch beam break-up: two-particle model 
A beam injected off-center in a LINAC, because for example of focusing quadrupoles misalignment, 
executes betatron oscillations. The bunch displacement produces a transverse wake field in all the 
devices crossed during the flight, which deflects the trailing charges (single bunch beam break-up), or 
other bunches following the first one in a multibunch regime (multibunch beam break-up). The first 
observation of the BBU was made at SLAC back in 1966 [19]. 

In order to understand the effect, we consider, as first example, a simple model with only two 
charges q1=q0/2 (leading = half bunch) and q2=q (trailing = single charge) travelling with β=1. 

The leading charge executes free betatron oscillations of the kind: 

y1(s) = ŷ1 cos
ωy
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s
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%
&                                                      (32) 

The trailing charge, at a distance z behind, over a length Lw experiences an average deflecting 
force proportional to the displacement y1, and dependent on the distance z, which, from the definition 
of the transverse dipole wake field is: 

Fy (z, y1) =
qq0
2Lw

w⊥(z)y1(s)                                                (33) 

Notice that Lw is the length of the device for which the transverse wake has been computed. For 
example, in the case of a cavity cell Lw is the length of the cell. This force drives the motion of the 
trailing charge: 
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This is the typical equation of a resonator driven at the resonant frequency. 

The solution is given by the superposition of the “free” oscillations and “forced” ones, which, 
being driven at the resonant frequency, grow linearly with s, as shown in Fig. 7: 

y2 (s) = ŷ2 cos
ωy
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s
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y2
forced =

cqq0w⊥(z)s
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Fig. 7: HOMDYN [20] simulation of a typical BBU instability, 50 µm initial offset, no energy spread. 

At the end of the LINAC of length LL, the oscillation amplitude is grown by ( 1ŷ = 2ŷ ): 

Δŷ2
ŷ2
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=
cNew⊥(z)LL
4ωy (Eo / e)Lw

                                                (37) 

If the transverse wake is given per cell, the relative displacement of the tail with respect to the 
head of the bunch depends on the number of cells. It depends, of course, also on the focusing strength 
through the betatron frequency ωy.  

 
3.3 BNS damping 

The BBU instability is quite harmful and hard to take under control even at high energy with a strong 
focusing, and after a careful injection and steering. A simple method to cure it has been proposed 
observing that the strong oscillation amplitude of the bunch tail is mainly due to the “resonant” 
driving head. If the tail and the head move with a different frequency, this effect can be significantly 
removed [15]. 

Let us assume that the tail oscillates with a frequency ωy +Δωy , so that eq. (34) becomes: 
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the solution of which is: 

y2 (s) = ŷ2 cos
ωy +Δωy
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In this case we observe that the amplitude of the oscillation is limited and does not grow up 
linearly with s any more. Furthermore, by a suitable choice of Δωy, it is possible to fully depress the 
oscillations of the tail. Indeed, by setting: 
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Δωy =
c2Ne2w⊥ (z)
4ωyEoLw

                                                  (40) 

if ŷ2 = ŷ1 , from eq. (39) we get:  

y2 (s) = ŷ1 cos
ωy
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&                                                      (41) 

that is the tail oscillates with the same amplitude of the head and with the same betatron frequency. 
This method of curing the single bunch BBU instability is called BNS damping by the names of the 
authors Balakin, Novokhatsky, and Smirnov who proposed it [15]. 

In order to have the BNS damping, eq. (40) imposes an extra focusing at the tail, which must 
have a higher betatron frequency than the head. This extra focusing can be obtained by: 1) using a 
RFQ, where head and tail see a different focusing strength, 2) create a correlated energy spread across 
the bunch which, because of the chromaticity, induces a spread in the betatron frequency. An energy 
spread correlated with the position is attainable with the external accelerating voltage or with the wake 
fields. 

In Fig. 8 we show the betatron oscillation corresponding to Fig. 7 but with a 2% of energy 
spread.  
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Fig. 8: HOMDYN simulation of a typical BNS damping, 50 µm initial offset, 2% energy spread. 

3.4 Single bunch beam break-up: general distribution 
To extend the analysis we did in section 3.2 to a particle distribution, we write the transverse equation 
of motion of a single charge q with the inclusion of the transverse wake field effects as [14]: 

∂
∂s

γ (s)∂y(z, s)
∂s
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2 (s)γ (s)y(z, s) = q
m0c

2Lw
y(s, z ')w⊥(z '− z)λ(z ')dz '

z

∞

∫               (42) 

where )s(γ  is the relativistic parameter, which varies along the LINAC, and 1/ ky (s)  the betatron 
function. We remember that the integral of the longitudinal distribution function λ(z)  is the total 
charge of the bunch q0. 

The solution of the equation in the general case is unknown. We can however apply a 
perturbation method to obtain the solution at any order in the wake field intensity. Indeed we write: 
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y(z,s) = y(n )(z,s)
n
∑                                                      (43) 

with n representing the nth order solution. The first order solution is found without the wake field 
effect from the equation 
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2 (s)γ (s)y(0) (z, s) = 0                                (44) 

It is important to notice that the above equation does not depend on z any more. This means that 
the bunch distribution remains constant along the structure. 

If the s-dependence of 

€ 

γ(s) and 

€ 

ky
2 (s)γ(s)  is moderate, we can use the WKB approximation 

[5], and the solution of the above equation with the starting conditions y 0( ) = ŷ , y’(0) = 0 is 

y(0) (s) =
γ0ky0

γ (s)ky (s)
ŷcos ψ(s)[ ]                                          (45) 

where 

ψ(s) = ky (s ')ds
0

s

∫ '                                                       (46) 

Eq. (45) represents the unperturbed transverse motion of the bunch in a LINAC. 

The differential equation of the second order solution is obtained by substituting the first order 
solution (45) in the right side of eq. (42) thus giving 
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z

∞

∫             (47) 

We are interested in the forced solution of the above equation that can be written in the form 

y(1) (z, s) = ŷ q
m0c

2Lw

γ0ky0
γ (s)ky (s)

G(s) w⊥(z '− z)λ(z ')dz '
z

∞

∫                       (48) 

where  

G(s) = 1
γ (s ')ky (s ')

sin ψ(s)−ψ(s ')[ ]
0

s

∫ cos ψ(s ')[ ]ds ' =

=
1
2

sin ψ(s)− 2ψ(s ')[ ]
γ (s ')ky (s ')0

s

∫ ds '+ 1
2
sin ψ(s)[ ] 1

γ (s ')ky (s ')0

s

∫ ds '
                         (49) 

The first integral undergoes several oscillations with s and, if 

€ 

γ(s)  and 

€ 

ky (s)  do not vary 
much, it is negligible, so that we can finally write 

y(1) (z, s) = ŷ q
2m0c

2Lw

γ0ky0
γ (s)ky (s)

sin ψ(s)[ ] ds '
γ (s ')ky (s ')0

s

∫ w⊥(z '− z)λ(z ')dz '
z

∞

∫             (50) 



Note that the last integral in the above equation is proportional to the transverse wake potential 
produced by the whole bunch, defined in a similar way of eq. (27). This solution can then be 
substituted again in the right side of eq. (42) to obtain a third order solution and so on. If we consider 
constant 

€ 

γ(s) and 

€ 

ky (s) , eq. (50) gives the same result of the two-particle model of eq. (36) when we 
substitute 

€ 

λ(z) with q0/2 representing the leading half bunch affecting a trailing charge q. 

If the BBU effect is strong, it is necessary to include higher order terms in the perturbation 
expansion. Under the assumption of: 

• rectangular bunch distribution λ(z) = q0 / l0 , -l0 / 2 < z < l0 / 2, l0 bunch length; 

• monoenergetic beam; 

• constant acceleration gradient dE0 /ds = cost; 

• constant beta function; 

• linear wake function inside the bunch w⊥(z) = w⊥0z / l0 ; 

the sum of eq. (43) can be written in terms of powers of the adimensional parameter η  also called 
BBU strength 

η =
qq0

ky dE0 / ds( )
w⊥0

Lw
ln

γ f
γ i
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&
'                                               (51) 

with γ i  and γ f  respectively the initial and final relativistic parameter. 

By using the method of the steeping descents [8], it is possible to obtain the asymptotic 
expression of y(z,s) thus finding, at the end of the LINAC, 

y(LL ) = ym
γ i
6πγ f

η−1/6 exp 3 3
4
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                      (52) 

that, differently from the two-particle model and from the first order solution, gives a tail 
displacement growing exponential with η . 
 
3.5 Multi-bunch beam break-up 
We have seen in the previous sections that when a bunch passes off-axis (due, for example, to betatron 
oscillations) in an axis-symmetric accelerating structure, it excites transverse wake fields which may 
cause the tail of the bunch to oscillate with increasing amplitude as the bunch goes along the LINAC.  
In the same way, the whole bunch may excite deflecting trapped modes in the RF cavities of the 
LINAC that may cause trailing bunches to be deflected, whether they are on axis or not. These angular 
deflections are transformed into transverse displacements through the transfer matrices of the focusing 
system and the displaced bunches will themselves create similar wake fields in the downstream 
accelerating structures of a LINAC. The subsequent bunches will be further deflected leading to a 
beam blow-up. Due to the long range wake fields, there is a coupling in the motion of the bunches that 
are more and more deflected as they proceed along the LINAC in a process that is called multi-bunch 
BBU. Even if the bunches are not lost, the transverse beam emittance	
can be greatly increased, leading 
to a significant luminosity reduction. 

We summarize here the analytical study of multi-bunch BBU performed with the formalism 
used in [14]. All the bunches are considered to be rigid macro-particles, like delta-functions, separated 
by period T, and we assume all bunches injected with the same initial offset x0. We consider the 
transverse equation of motion of a bunch as a whole, ignoring internal structures; the beam is 



therefore made of a train of bunches with same charge (Qb) evenly spaced by period T, which is an 
integer number of the RF period of the accelerating mode. 

We also consider all the cells of the LINAC accelerating structure identical and with the same 
dipole trapped mode in each cell of length Lw. Rigorously the analytical approach requires that many 
betatron oscillations are performed in the LINAC and the BBU remains moderate within a betatron 
oscillation. Moreover, the theory is valid if the beam energy does not change too much in a betatron 
wavelength. This last hypothesis is also called adiabatic acceleration. 

The transverse wake field force experienced by the kth bunch, spaced kT from the first bunch, 
depends on the transverse wake field generated by the preceding bunches (and thus by their transverse 
displacement). The dipole long range wake field is produced by a high order deflecting mode, 
identical in all the cavities of the structure, and it is described in terms of its resonant frequency ωr, the 
quality factor Q and the dipole shunt resistance R⊥ (expressed in ohm/meter). 

The equations of motion are then written in terms of the Z-transform [21] since the 
displacement x(kT,s) of the kth bunch at the position s is a discrete function of time. The solution can 
be retrieved with a perturbation method, which considers its expansion into a series of the driving 
wake field force. 

The 0th order solution is given for a vanishing driving force, i.e. a pure betatron oscillation 
(unperturbed motion). It represents the motion of the first bunch, which is not affected by any wake 
field because of the causality principle (the wake field cannot travel ahead of the bunch itself). The nth 
order solution is driven by the wake field excited by the solution of the order n−1. Thus the 1st order 
solution is computed from the motion of the first bunch and it affects all the bunches, except the first 
one; it means that the nth order solution affects only bunches of index larger then n. Therefore the 
summation of the series can be stopped at the Mth order of a train of M bunches. The nth order solution 
in the Z-domain can be written as [14] 

xn z, s( ) =
γ0ky0

γ s( )ky s( )
x0e

iψ s( ) an (s)
inn!

Gn z( )                                       (52) 

where a(s) is the so called dimensionless BBU strength given, in case of constant ky(s), by 
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with G is the accelerating gradient (in V/m), and 

Gn z( ) = z
z −1
!w⊥
n z( )                                                      (54) 

with 
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and 

z1,2 = e
−
Tωr
2Q e±iωrT                                                        (56) 

The inverse Z-transform of xn(z,s), that is xn(kT,s), can then be summed to get the transverse 
displacement of the kth bunch as 



x kT, s( ) = xn kT, s( )
n=0

∞

∑                                                    (57) 

We remember that the sum can be stopped at the Mth term for a beam containing M bunches. 

For a(s)≪1 the series expansion can be stopped at the first order term, while, if the BBU 
strength parameter a is moderate, it is sufficient to keep only few terms of the summation. 

In the z-domain the nth order solution, given by equation (52), has been determined analytically, 
and the same is possible with its infinite sum, but its inverse z-transform (57) is, in general, not 
possible to write in a closed analytical form. It is however possible to compute the exact solution for 
the nth bunch as a sum of n terms if the BBU instability is moderate in a betatron period. Moreover, it 
is possible to use an asymptotic technique, valid when the blow-up is strong, to have an expression of 
the transverse displacement that puts in evidence the main parameters playing an important role in the 
instability.  

The asymptotic transverse displacement of the kth bunch, expressed in terms of the oscillation 
amplitude only, is [14] 
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where x∞(s) is the steady state solution that is reached when long (rigorously infinite) train of bunches 
are accelerated. 

In Fig. 9 we show a comparison between the analytical solution obtained by numerically 
solving eq. (57) and a simple tracking code that considers the bunches in the train as rigid macro-
particles, but which can also take into account the contribution of several resonant modes, and 
different initial offsets and displacements of the bunches. The parameters used for the calculations are 
given in table 1. They refer to a C-band LINAC with the BBU effect produced by a HOM. In the 
vertical axis the normalized transverse position, evaluated at the exit of the LINAC, is defined as: 
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Fig. 9: Normalized transverse position as a function of the bunch number: comparison between the analytical 

solution and a tracking code. 



 

Linac length 30 m 

Initial energy 80 MeV 

Energy gradient 30 MeV/m 

Betatron function 1/ky 1 m 

Bunch spacing T 15 ns 

Bunch charge 1 nC 

HOM resonant frequency fr 8.4 GHz 

HOM transverse impedance R⊥ 50 MΩ/m 

HOM quality factor 11000 

Cell length 17.5 cm 

 

Table1: Beam parameters used for comparing the analytical solution of multi-bunch BBU with the results of a 
tracking code. 

 

From equation (52) we see that one possible way to reduce the BBU instability is to act on the 
dimensionless BBU strength given by equation (53). For example we can reduce the bunch charge Qb 
or the betatron function, i.e. increase the focusing strength. A better approach is to remove the source 
of the instability by damping the transverse dipole mode, for example with an improved 
electromagnetic design of the accelerating cells.  

The other main approach to the BBU instability suppression is to detune the cell frequencies in 
order to introduce a spread in the resonance frequency of the dangerous mode so that it will no longer 
be excited coherently by the beam. Indeed by properly detuning each cell, a damping of the BBU 
instability is produced by a decoherence of the various cell wake fields. It has been demonstrated [22] 
that a Gaussian distribution of the cell frequencies, which provides a rapid drop in the wake field for a 
given total frequency spread, would be optimal. The analytical approach to determine the 
effectiveness of this detuning technique for the BBU multi-bunch instability can be found in ref [14], 
where it is also shown that the damping increases with the amplitude of the frequency spread. 
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APPENDIX 1 – POWER RADIATED BY A BUNCH PASSING THROUGH A TAPER 

In the case of uniform charge distribution, and γ→∞, the electric field lines of a beam passing inside a 
perfectly conducting circular pipe are perpendicular to the direction of motion and travel together with 
the charge [9], as shown in Fig. A1. In other words, the field map does not change during the charge 
flight, as long as the trajectory is parallel to the pipe axis. Under this condition the transverse fields 
intensity can be computed like in the static case, applying the Gauss’s and Ampere’s laws: 

ε0E ⋅ndS
S
∫ = ρ dV

V∫ ,               B ⋅d l!∫ = µo J ⋅ndS
S∫                               (A1) 

Let us consider a cylindrical beam of radius a and current I, with uniform charge density 

ρ =
I

πa2v
 and current density J = I

πa2
, propagating with relativistic speed v = βc  along the axis of a 

cylindrical perfectly conducting pipe of radius b, as shown in Fig. A1. 

 
Fig. A1: Cylindrical bunch of radius a propagating inside a cylindrical perfectly conducting pipe of radius b. 

By applying the relations (A1), one can obtain for the radial component of the electric field: 

Er =
I

2πε0a
2v
r     for   r ≤ a

Er =
I

2πε0v
1
r

     for   r > a
 

and the relation Bϑ =
β
c
Er  holds. 

The electrostatic potential satisfying the boundary condition ϕ b( ) = 0  is given by: 
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How can a perturbation of the boundary conditions affect the beam dynamics? Let us consider 
the following example: a smooth transition of length L (taper) from a beam pipe of radius b to a larger 
beam pipe of radius d is experienced by the beam [9]. To satisfy the boundary condition of a perfectly 
conducting pipe also in the tapered region the field lines are bent as shown in Fig. A2. Therefore there 
must be a longitudinal electric field Ez(r,z) in the transition region. 

A test particle moving outside the beam charge distribution will experience along the transition 
of length L a voltage difference given by [21]: 

V = − Ez
z

z+L

∫ r, #z( )d #z = − ϕ r, z+ L( )−ϕ r, z( )$% &'= −
I

2πε0v
ln d
b

 



that is decelerating if d > b. The power lost by the beam in order to sustain the induced voltage is 
given by: 

Plost =VI =
I 2

2πε0v
ln d
b

                                                    (A2) 

 
Fig. A2: Smooth transition of length L (Taper) from a beam pipe of radius b to a larger beam pipe of radius d. 

It means that for d > b the power is deposited into the energy of the fields: moving from left to 
right of the transition the beam induces the fields in the additional space around the bunch bunch (i.e. 
in the region b<r<d, 0<z<l0) at the expenses of the only available energy source that is the kinetic 
energy of the beam itself. 

 
Fig. A3: During the beam propagation in the taper additional e.m. power flow is required to fill up the new 

available space. 

To verify such interpretation let us now compute the electromagnetic power radiated by the 
beam to fill up the additional space available around the bunch as shown in Fig A3. Integrating the 
Poynting vector through the surface ΔS = π d 2 − b2( )  representing the additional power passing 
through the right part of the beam pipe, one obtains: 
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that is exactly the same expression of eq. (A2). Notice that if d<b the beam gains energy. If d->∞ the 
power goes to infinity. Such an unphysical result is nevertheless consistent with the original 
assumption of an infinite energy beam (γ->∞). 


