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Summary of the first part

What is a beam instability?
— A beam becomes unstable when a moment of its distribution exhibits an
exponential growth (e.g. mean positions <x>, <y>, <z>, standard deviations o,,
0,, 0,, etc.) - resulting into beam loss or emittance growth!
Instabilities are caused by the electro-magnetic fields trailing behind
charged particles moving at the speed of light
— Origin: discontinuities, lossy materials
— Described through wake functions and beam coupling impedances

Longitudinal plane
— Energy loss and potential well distortion

— Synchronous phase shift

— Bunch lengthening/shortening, synchrotron tune shift
— Instabilities

* Robinson instability (dipole mode)

¢ Coupled bunch instabilities

* Single bunch instabilities
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2. The transverse plane

AV Transverse wake function: definition

> Source, q;
@O  Witness, q,

— In an axisymmetric structure (or simply with a top-bottom and left-right symmetry) a
source particle traveling on axis cannot induce net transverse forces on a witness
particle also following on axis

— At the zero-th order, there is no transverse effect

— We need to introduce a breaking of the symmetry to drive transverse effect, but at
the first order there are two possibilities, i.e. offset the source or the witness
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@AV Transverse dipolar wake function:
definition

@@ Source, g,

@O  Witness, q,

J

L
/ F.(s,2)ds = —q1q2Wo(2) Az
0

L
/ Fy(s,z)ds = —q1q2Wy(2) Ay
0

AE x, !
% AEQm,y ) E20 ¥ — Axh, Ay

@ Transverse quadrupolar wake function:

definition
> Source, q;
@ @O  Witness, q,
Ax, (or Ay,)
'z‘b““'“““““““'“““““‘C‘)'<Z—'>@"$ """"" >

1

L
/ Fy(s,2)ds = —q1q2Wou(2) Axs
0

L
/ Fy(s,z)ds = —q1q2Woy(2) Ay
0

AE x, !
% AEQm,y ) E20 ¥ — Axh, Ay
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Transverse dipolar wake function

_ By Az

W, =
(2) q1q2 Az

— The value of the transverse dipolar wake functions in 0, W, (0), vanishes because
source and witness particles are traveling parallel and they'can only — mutually —
interact through space charge, which is not included in this framework

- W,W(lT')<0 since trailing particles are deflected toward the source particle (Ax, and
Ax’, have the same sign)

Z1

>0

@

Transverse dipolar wake function

_ By Az

W, =
(2) q1q2 Az

— The value of the transverse dipolar wake functions in 0, W, (0), vanishes because
source and witness particles are traveling parallel and they'can only — mutually —
interact through space charge, which is not included in this framework

W,W(lT')<0 since trailing particles are deflected toward the source particle (Ax, and
AXx’, have the same sign)

Wx'y(z) has a discontinuous derivative in z=0 and it vanishes for all z>0 because of the
ultra-relativistic approximation

"\

1 W, (2)
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AV Transverse quadrupolar wake function 2=

EO AIL'/Q 0
‘/‘/ = - —= z— [/[/ T O — O
Qx (’Z) 192 AxQ Q ( )

— The value of the transverse quadrupolar wake functions in 0, W,, (0), vanishes because
source and witness particles are traveling parallel and they can on’[y mutually —
interact through space charge, which is not included in this framework

W ,07) can be of either sign since trailing particles can be either attracted or
eflected even more off axis (depends on geometry and boundary conditions)

AV Transverse quadrupolar wake function 2=

EO AIL'/Q 0
‘/‘/ = - — z— [/[/ T O — O
Qx (’Z) Q192 AxQ Q ( )

— The value of the transverse quadrupolar wake functions in 0, W,, (0), vanishes because
source and witness particles are traveling parallel and they can on’[y mutually —
interact through space charge, which is not included in this framework

Wo,,,(07) can be of either sign since trailing particles can be either attracted or
?”I‘ected even more off axis (depends on geometry and boundary conditions)

- w, y(z) has a discontinuous derivative in z=0 and it vanishes for all z>0 because of the
ultfa-relativistic approximation

WQle(z)
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Transverse impedance

The transverse wake function of an accelerator component is basically its Green
function in time domain (i.e., its response to a pulse excitation)

= Very useful for macroparticle models and simulations, because it relates
source perturbations to the associated kicks on trailing particles!

We can also describe it as a transfer function in frequency domain

This is the definition of transverse beam coupling impedance of the element
under study

[Q/m/s]

" linear terms retained, however coupling terms are neglected
** m1 refers then to a transverse offset and doEsalbY pEdRsyMmetric structures)
a normalization per unit length of the structure

9l

Transverse impedance: resonator

Ve

28w =i [ Wiew (—W) dz

C C

=20

— Shape of wake function can be similar to that in longitudinal plane, determined by
the oscillations of the trailing electromagnetic fields

— Contrary to longitudinal impedances, Re[Z, ] is an odd function of frequency,
while Im[Z, ]is an even function
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Transverse wake & impedance

Equations of the resonator

ZRes(w) — & Rs(:cyy)
vy w . w Wy
1+iQ| —— —
Wy W
Rs(x y)wf arz\ . wz .
_s\&y) T —t= ol BT 0
WEZS(;;): Qw exp( c )Sm<c> He<
0if 2z>0

Material  Ferrit
Type Normal
Epsilon 12

Disp. mue  1st order model (fit)

euny

Transverse impedance: kicker

— An example: magnetic kickers are
usually large contributors to the

X transverse impedance of a machine

~—— | — Itisabroad band contribution

— No trapped modes

, — Losses both in vacuum chamber

and ferrite (kicker heating and

outgassing)

1e-606 [S/n]

Vertical dipolar wake potential
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Ferritesas
Type Normal
Epsilon 12

1e-606 [S/n]

1st order model (Fit)

Transverse impedance: kicker

— An example: magnetic kickers are
usually large contributors to the
transverse impedance of a machine

It is a broad band contribution
— No trapped modes

and ferrite (kicker heating and

ﬁ“ | outgassing)

— Losses both in vacuum chamber

Vertical quackupolar wake potental

Vertical quadrupolar impedance

JARZE
Im [7 1

Wi(z) [V/p/C/m]

Impedance [Ohm/m]
3

&

-200 150 -100 50 0 0 01 02 03 04 05 06 07 08

zfeml Frequency [Griz]

Quadrupolar

Type
Monitor
Component vy
Plane at x 0

Maximum-2D
Sample

Time

Transverse impedance: kicker

— Evolution of the electromagnetic fields (E,)
in the kicker while and after the beam has
passed

e-field (t=0..end(8.1);x=8) [pb]

93414 U/m (= @ dB) at 8 / 8 / B8.615054
17 137
[}
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AV Transverse impedance: kicker q

— Evolution of the electromagnetic fields
(H,) in the kicker while and after the beam
has passed

Type

Monitor h-field (t=0..end(8.1);x=0) [pb] i
Component X

Plane at x ] z
Maximun-2D 247 .844 A/m (= O dB) at 8 / -08.15 / -5.85581

Sample 1/ 137

Time [}
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AV Transverse impedance: resistive wall

— The case of a conductive pipe with an arbitrary
number of layers with specified EM properties can
be solved semi-analytically
— Layers sometimes required for impedance, but also
for other reasons (e.g. coating against electron cIoud/
or for good vacuum) -




AV Transverse impedance: resistive wall

Source terms (displaced point charge traveling along s with speed v) in
cylindrical coordinates and frequency domain:

WS

~ _ s _R)
p(r,@,s,w)—rlvé(r rl)ép(G)exp( v>

q1
v

— 0o

j(r, 0,s,w) =

0o ] ws >
dk’ exp (—ik's) (k/ - _> 7;) (1 + mo)

(%

p(r,0,s,w)v

cosmd

AV Transverse impedance: resistive wall

Source terms (di i i ith speed v) in
cylindrical coor¢ Expansion in longitudinal modes

ﬁ(T,G,S,W) = T_(S(T _fl)(sp 0 eXp
1v

zws>

v.F=_7F V.-B=
6061(&))
V X B = pop (w)J + M,ul(w)el(w)ﬁ V x E = —iwB

cosmd

= q—l[/ dk’ exp (—ik's)
T"V|) -0

IZ 7'('(1 + 6mOJ§ 7’1)

J(r,0,s,w
Expansnon in azimuthal modes

20
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AV Transverse impedance: resistive wall

Maxwell’s equations combine into the wave equations:

= €1(w W) = 1 - s
V2E + wQ%E = EOT(W)V;) + iwpop (w)pu

We can seek solutions as expansions of longitudinal and
azimuthal modes (for both E and B)

E(r,@,s,w) =

— 00 m—0 1 + 5m0 m—1

00 o E(m,c) / .
/ dk’ exp (—ik's) <Z B kK w) cosmb + Z EM3) (r k' w) sin m9>

21
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Transverse impedance: resistive wall

It can be demonstrated that he components of the force
on the witness charge only depends on E;

10 0 102 9% w2
[;E (TE> + 2902 + 952 + C—Qel(w)ul(w)] E; =
1 op
T eer(w) s

+ iwpopir (w)pu

/

2E™S 1 dpime) m? w? e
@z 4 (7«2 TR - &Gl(w)ul(wo B =

< _Jqd(r —r)o(k = %) { k'

71 (1 + dmo) _6061(w

dr? r dr

dZE(mvs) 1 dE(mvS) 2 2
S - (m + k2 — wq(w)m(w)) E™®) =0
\ C

22

) + w,uoul(w)-
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AV Transverse impedance: resistive wall

The equations for the
coefficients of the azimuthal
modes of E, must be solved in
all the media and the
conservation of the tangential
components of the fields is
applied at the boundaries
between different layers

=> E.g. ImpedanceWake2D
code (N. Mounet) can
calculate impedances and
then wakes by inverse Fourier
transform. It can deal with
both round and flat structures

Cylinder 'z
(inside: @ , u@)

Vacuum

Pipe wall
inner surface

Cylindrical layers of
different materials

AV Transverse impedance: resistive wall

— Aninteresting example: a 1 m long Cu pipe with
radius b=2 cm and thickness t=4mm in vacuum

2
ZX,y (Q/m")
) Cu, 4'mm, RefZ]
108 } Cu, 4mm, Im[Z]
10%
10°
107
108
0-12
101 10°® 10° 10° 10" 10"
f (Hz)

24
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AV Transverse impedance: resistive wall

R

3 frequency regions of
interest:

1. Below 0.1 kHz,
impedance is
basically purely
imaginary, EM field is
shielded by image
charges - Indirect
space charge

[z @)

108 }

Cu, 4mm, RefZ]
Cu, 4mm, Im[Z] ————

10 }

10712

\\10‘10 107°

121/ 10° 10
f (Hz)

10 1015

25

AV Transverse impedance:

3 frequency regions of
interest:

2. Between 10 kHz and
1 THz, the EM field is
fully attenuated in
the Cu layer and the
impedance is like the
one calculated
assuming infinitely
thick wall

resistive wall

2 4 \
ZX!y (Q/m*)
) Cu| 4mm, RefZ] -
8 | Cd, 4mm, Im[Z] ———
10
104 [ \
10° }
10
108 |
1072 -10 -5 ' " 10 35
10 10 10 10 10 10
fHR ____J

26
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AV Transverse impedance: resistive wall

3 frequency regions of
interest:

2. Between 10 kHz and
1 THz, the EM field is
fully attenuated in
the Cu layer and the
impedance is like the
one calculated
assuming infinitely
thick wall

2 (
Zyy (Q/m")
T Cu| 4mm, Re[Z] } :
e | Cd, 4mm, Im[Z] |— 1
10
104 i /\ o
2000 Cu, 4mm, Re[Z] —— -
Cu, 4mm, Im[Z] ———
1500 1
‘;E: 1000
500
10 101

f (GHz)

0
o 10 20 30 40 50 60 70 80 90 100 |10

27

AV Transverse impedance:

3 frequency regions of
interest:

3. Above 1 THz, thereis
a resonance (100 THz
region). In this region
also ac conductivity
should be taken into
account

resistive wall

2 ( )
ZX!y (Q/m*)

) Cu, 4mm, RefZ] —

8 | Cu, 4mm, Im[Z] — |
10
10* | 1
o° | 1
-4 | i
10° | 1
1072 -10 5 ' 5 10 35

10 10 10 10 10 10

f (Hz) —_

28
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AV Transverse impedance: resistive wall

y Correspondingly, in time domain, the wake exhibits
different behaviours in short and long range

0] — 0.5
T
-0.02
0]
. N A WA
E oo E o5 \
2 =3
= 008 4
= o = | |
\ -1.5
0.12
Medium-long range Short range \/
0'14»1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 [0 -2-06 -0.5 -0.4 -0.3 -0.2 -0.1 [o]
z (ns) — z (ps)
In the range of tenths of ns up to fractions From behind the source to ~1ps
of ms (e.g. bunch length to several turns the wake has an oscillatory
for the SPS) monotonically decaying wake behaviour, associated to the high

frequency resonance

29

E@ Transverse impedance: resistive wall

(infinitely thick wall)

[ -\
WRW|| (Z) B C ZO valid only in the range
L Amd \| mol2? | by /3 < 2] < %
Wrw@y(2) ¢ Zo NV
L - b with X Zoo'b

\_ b3 wa]z\/

ZRwH(w) . 1 2ZO|UJ| .
L 4mb Vo oc [T+ sgn(w) -]

ZRW(x,y) (Ld) . 1 2Zc
L 27h3 \| o|w

1+ sgnw) -1

valid in the corresponding range of frequencies 20
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E@ Transverse impedance: resistive wall )

(infinitely thick wall)

- B

WEIII/VH (Z; a, b) _ Ylongitudinal (CL, b)WRW (Z; b)
WI%III/V:U(Z7 a, b) = deipOla’r’(a, b>WRW(Z7 b)
Wil a (25 0,B) = Yuadruvoler (o, b) Wy ()
Wg%/Vy(Z; a, b) = deipolar(a, b)WRW(Za b)
W%I/VQy(z; a,b) = qu“ad’"“p"l”(a, b)Wrw (z;b)

E@ Transverse impedance: resistive wall

)

(infinitely thick wall)

T
itudinal 1 i Y dipolar
Ylongitudinal ~ 1 : y
wel |
}e% ! Y dipolar
9 r X

o
o

a
Q
-
g o p—at
he - I Yy quadrupolar
Wel ! y
R |
c 0 |
Wl d” | s ;b)
RWG ! quua rupolar ;
—0.5 | i
W R E—e—
R) 0 0.2 0.4 0.6 0.8 1

ell o b)/(ath)
Wewqy(75a,0) = Y1 A, b)WRrw (23 0)
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@AV Single particle equations of the transverse
motion in presence of dipolar wake fields

— The single particle in the witness slice
Mz)dz will feel the external focusing forces
and that associated to the wake in s,

— Space charge here neglected

— The wake contribution can extend to
several turns

x)(s0, 2" + kC)W,

d’x

€2 ) > N'/
A (' + kC)(
)= C

2y <. N
K v
ds? + Ky (s)y = <m002> Z ~C

Az)dz A2

2(80,2 — 2/ — kC)d2'

Bunch head

(2 + kC)(y) (s0, 2" + kC)YWy(s0,2 — 2" — kC)dz
1\ J
External Focusing Y
Wake fields
33
AV Beam deflection kick ! z
Off-axis traversal of ) R
symmetric j\hamber AI/(Z) _ 7€E:C0 /\(z/) [Wz(z - Z/) + WQ.T:(Z o z/)] ds
1y 0 /-2
J
- -> Ar)y = =70 [T 5 )2z Z d
; (80') = —5 e | R@PIIZ () + Zg. (@)
: or
1 , e? € ToWo
. (Ax) = “9rNE Z IA(pwo)|Tm[ Z,, (pwo) + Zgw(pwo)
Traversal of asymmetric =
chamber
(Ba') = =20 S |5 ) PIsn{Ze ()]
= — m
z 27N E, pwo Ccz\PWo
p=—00
34
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Off-axis traversal of
symmetric chamber

Beam deflection kick

621'0

Az'(2) =

ZA M) Wal(z — 2') + Woa(z — )] d2’

A
Ly

Eop

-z

The beam deflection kicks

= Are the transverse equivalent of the |+ Zg, (w)]dw
energy loss in the longitudinal plane

= Can be responsible for intensity

| dependent orbit variations

= Cause z-dependent orbits and can
determine tilted equilibrium bunch

chamber distributions for long bunches

o) + Zqa(pwo)

Traversal of asymmetric

€2w i N
(82)) = =5 e 2o Pwo)*Im{Zes (peo)]
P

=—00

35

)
AV The Rigid Bunch Instability =

— Toillustrate the rigid bunch instability we will use some simplifications:
= The bunch is point-like and feels an external linear force (i.e. it would
execute linear betatron oscillations in absence of the wake forces)
= Longitudinal motion is neglected

= Smooth approximation = constant focusing + distributed wake

— In a similar fashion as was done for the Robinson instability in the longitudinal
plane we want to

= Calculate the betatron tune shift due to the wake
= Derive possible conditions for the excitation of an unstable motion

36
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AV The Rigid Bunch Instability =

— Toillustrate the rigid bunch instability we will use some simplifications:
= The bunch is point-like and feels an external linear force (i.e. it would
execute linear betatron oscillations in absence of the wake forces)
= Longitudinal motion is neglected
= Smooth approximation = constant focusing + distributed wake

ds? c moc? ) vC et
Ne? &
_ 0% - = ec > exp (ikQTy) W, (kC)
o (—zQs) |:> movL T,
Y X exp
C
Ne? ad
:\_‘4 Z Q
ety 2o Do )

37

Comes from the definition of Z,

E@ (&
AV The Rigid Bunch Instability =

= We assume a small deviation from the betatron tune

= Re(Q - wg) = Betatron tune shift

= Im(Q - wy) > Growth/damping rate, if it is positive there is an
instability!

0 — wj ~ 2wg - (2 — wp)

1 elyIm(Z<T) 1
Re (2 — wpg) N'eQﬂ =
= Ay, ~|— Im [Z
wo " rmgyeC z_:oo m[Zy (pwo +ws)]
Ne“ =
Im (Q —wg) =7, _2m07092 Z Re [Zy(pwo + wg)]
p=—00

38
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The Rigid Bunch Instability

1. Ne2ﬂy

Im(Q-wg)=7," ~—— =5
2mo~yC' »

> RelZ,(pwo + wp)]

= We assume the impedance to be peaked at a frequency w, close to
hw, (e.g. RF cavity fundamental mode or HOM)

10F eh
08 Re[z,]

0.6

04

02— imfz

i

o, = hwg
00 —

&I

The Rigid Bunch Instability

1. Ne2ﬂy

Im(Q-wg)=7," =~ =5
2mo~yC' »

> RelZ,(pwo + wp)]

= We assume the impedance to be peaked at a frequency w, close to
hw, (e.g. RF cavity fundamental mode or HOM)

= Defining the tune v,=n, + A, with -0.5<Ag <0.5, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate

1 Nezﬂy

T e (Re [Zy (hwo + Apywo)] — Re [Zy (hwo — Agywo)])

40
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EAV The Rigid Bunch Instability

S Ne?B,
v 2m0’yC2

(a) wr < hwo

Zy(w)

(b) wyr > hwy

(Re [Zy (hwo + Apywo)] — Re [Zy (hwo — Agywo)])

Tune above integer
(Ag,>0)

Tune below integer
(A,<0)

unstable stable

stable unstable

41

EAV The Rigid Bunch Instability

1. N€2ﬂy

Im(Q—-wg) =7, =~ — 5
2moyC ,

> RelZ,(pwo + wp)]

= We assume the impedance to be of resistive wall type, i.e. strongly
peaked in the very low frequency range (= 0)

= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate

6

. Re [Zy

N—

" N

-4

-6

42
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[©] g y &)
< The Rigid Bunch Instability
= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate
| | | | | |
6, 71T 7 I | I |
0< Aﬁy < 0.5 P pwo + wg | Re [Zy] | |
4l I I I I I
r I I I I I
L | | J | |
. . A gy Wos .
2 i i Bywo—i i
[ | ! il |
P (0 Ao
[ | | | | |
“20 | Q?\ | | |
! I I I I I
Always stable : : : : :
£ | | | | | | ]
el [ | |
-6 | -4 -2 0 2 4 6
Ne2g
-1
Ty & —m (Re [Zy(Apywo)] — Re [Zy((1 — Apy)wo)]) <0 -

[©] g y &)
< The Rigid Bunch Instability
= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate
| | | | | |
6, I ) R 1 "]
—0.5<Agy, <0 | pwo + wg Il Re [Z+] | |,
4 1 I I I I
I I I I I I
L | | | | | ]
2r f i HNC(1+ Agy)wol §
| | | | 1
of I I X I M;: T ]
. l | | I
— ByWo ]
[ | | | | 1]
-2 } } ‘\b } } }
: : I [ I I 1
Always unstable | || IE— g
ﬁ i | | | | 1
el [ A ]
-6 4 -2 10 12 14 16
Ne2g
-1 Y
~———-(Re[Z,((1+ A —RelZ,(—A >0
gt (Re[Z,((1+ Agy o) — Re[Z,(~Agen)) >0
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AV The Rigid Bunch Instability =

= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate

S TP
—05 <Ay, <0 | pwo + wg Il Re [Z+] I H
4 Ll L] | | I
[ This is the reason why most of the running
2f machines are usually operated with a fractional
1 part of the tunes below 0.5!
of In practice, tunes above the half integer can be
used, if the resistive wall instability is Landau
2| damped (refer to W. Herr’s lectures!) or efficiently
- suppressed with a feedback system
’ Always unstable - - ;

|

I

-6 —4 -2 10 12 4 6
Ne2g
-1
g (Re(Z,((1+ Apy o))~ Re[Z,(~Baen))) > 0

@ The Strong Head Tail Instability

(aka Transverse Mode Coupling Instability)

— Toillustrate TMCI we will need to make use of some simplifications:

= The bunch is represented through two particles carrying half the total bunch charge and
placed in opposite phase in the longitudinal phase space

= They both feel external linear focusing in all three directions (i.e. linear betatron focusing +
linear synchrotron focusing).

Zero chromaticity (Q', ,=0)
Constant transverse wake left behind by the leading particle
Smooth approximation = constant focusing + distributed wake

[V’

— We will
= Calculate a stability condition (threshold) for the transverse motion
= Have a look at the excited oscillation modes of the centroid

46
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The Strong Head Tail Instability
(aka Transverse Mode Coupling Instability)

L

To illustrate TMCI we will need to make use of some simplifications:
= The bunch is represented through two particles carrying half the total bunch charge and

placed in opposite phase in the longitudinal phase space

= They both feel external linear focusing in all three directions (i.e. linear betatron focusing +

linear synchrotron focusing)

Zero chromaticity (Q',,=0)

Constant transverse wake left behind by the leading particle
Smooth approximation = constant focusing + distributed wake

/:\ dp/py O Particle 1 (+Ne/2)
i @© Particle 2 (+Ne/2)

47
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The Strong Head Tail Instability
(aka Transverse Mode Coupling Instability)

To illustrate TMCI we will need to make use of some simplifications:

= The bunch is represented through two particles carrying half the total bunch charge and
placed in opposite phase in the longitudinal phase space

= They both feel external linear focusing in all three directions (i.e. linear betatron focusing +

linear synchrotron focusing)

Zero chromaticity (Q', ,=0)

Constant transverse wake left behind by the leading particle

Smooth approximation = constant focusing + distributed wake

L

O Particle 1 (+Ne/2)

@© Particle 2 (+Ne/2)

48
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The Strong Head Tail Instability
(aka Transverse Mode Coupling Instability)

= During the first half of the synchrotron motion, particle 1 is leading
and executes free betatron oscillations, while particle 2 is trailing
and feels the defocusing wake of particle 1

d? wg\ 2
y21 + (—ﬁ) y1=0
ds ¢ 0<s< —
d?ys wg\ 2 e? NW,
ds? <7> v2 = (m 02) 27C h(s)

e

Ws

49

9l

The Strong Head Tail Instability
(aka Transverse Mode Coupling Instability)

= During the first half of the synchrotron motion, particle 1 is leading
and executes free betatron oscillations, while particle 2 is trailing
and feels the defocusing wake of particle 1

= During the second half of the synchrotron period, the situation is
reversed

d?y; wg\ 2 e? NW,

ds? + <7> = moc? ) 2yC ya(s) e
— <s <
W

d2y2

2mwe

Ws
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@ The Strong Head Tail Instability

(aka Transverse Mode Coupling Instability)

= We solve with respect to the complex variables defined below during
the first half of synchrotron period

= y,(s) is a free betatron oscillation
= vy,(s) is the sum of a free betatron oscillation plus a driven oscillation

with y;(s) being its driving term

~ . C
J1,2(s) = y1,2(5) +i—y] o(s)
wp

-
\
4

<

Free oscillation term Driven oscillation term
51

@AV The Strong Head Tail Instability
Transfer map

i (g) = 11(0) exp (‘ZZM)

Z'Trw/;

Ne2W,
i | S =2 +gl(0>(”—c)exp<— )]
X Wy Ws

! dmoycCwg

= Second term in RHS equation for y,(s) negligible if w <<w;
= We can now transform these equations into linear mapping
across half synchrotron period

(0 ( inwg ) L0 (1
~ =€xXp | — : . : -
s=mc/ws Ws T 1 Y2 s=0

Y2
. 7TN62 W()
o AmoyCwgws 52




@AV The Strong Head Tail Instability
Transfer map

= In the second half of synchrotron period, particles 1 and 2
exchange their roles

= We can therefore find the transfer matrix over the full
synchrotron period for both particles

= We can analyze the eigenvalues of the two particle system

B TNe2W,
 4moyCwaws
(@1) (i2ww5>(1iT><1 0) <y1)
_ =exp | — . A A7
Y2 s=2mc/ws Ws 0 1 il Y2 s=0
4 A
U1 < i27rwg) 1-7_2 47 71
. =exp (- : , |
| Y2 s=2mc/ws Ws i 1 Y2 s=0
- J
53
@AV The Strong Head Tail Instability

Stability condition

= Since the product of the eigenvalues is 1, the only condition for
stability is that they both be purely imaginary exponentials

= From the second equation for the eigenvalues, it is clear that

this is true only when sin(¢/2)<1
= This translates into a condition on the beam/wake parameters

Al A =1 = )\1,2 = exp(ing)

MF+XA=2-7T2 = sin@):T

7TN€2W0 <9

B e
dmoyCwgws —
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The Strong Head Tail Instability S

9l

Stability condition

8 PoWs

e\ By

N S Nthreshold —

= Proportional to p, = bunches with higher energy tend
to be more stable

= Proportional to w, = the quicker is the longitudinal
motion within the bunch, the more stable is the bunch

= Inversely proportional to f, = the effect of the
impedance is enhanced if the kick is given at a location
with large beta function

= Inversely proportional to the wake per unit length
along the ring, W,/C - a large integrated wake
(impedance) lowers the instability threshold

55

The Strong Head Tail Instability S

Mode frequencies

The evolution of the eigenstates follows:

Vi . . 2mwg exp [—Qi arcsin (I) . n] 0 Vio
V. ) - op ( ! Ws n) ' ( 0 ’ exp [21’ arcsin (%) n] V.o

—-n

They shift with increasing

Eigenfrequencies: intensity

wg +lws = % arcsin 5

wg OOF =
“B t \ wp 1 . T
ws [ I —- — —arcsin |
—0.2 =) J Tr
04 Unstable region
06| /"
—""
_08 | =-1 == 1 ~ ]
- wp I . 1]
LT — 1+ —|arcsin —]
—LOLP”—‘—— Ws ™ 2;
0.0 0.5 1.0 1.5 2.0 25 T 3.0
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@m The Strong Head Tail Instability v
Mode frequencies

The evolution of the eigenstates follows:

V+n _ 2mwg exp [—21’ arcsin (I) . n] 0 Vio
V. ) - ( ' Ws n) . ( 0 ’ exp [21’ arcsin (%) n] Vo

. . w . They shift with increasin
Eigenfrequencies: wg + lws £ —2 arcsin — _nevs 8
T 92 intensity
00 F ™
ﬂ F \ w[ﬁ 1 . ’I‘ 1
ws [ I — — —|arcsin — |
021 =0 J, T )
0.4 Unstable region
—0.6 /"
f”
08| L1 == == wg 1 h— i
That’s the reason why this type of instability is called : mA po ArcsH 9]
Transverse Mode Coupling Instability! =5 25y 30

@m The Strong Head Tail Instability v

Why TMCI?

= For a real bunch, modes exhibit a more complicated shift pattern

= The shift of the modes can be calculated via Vlasov equation or
can be found through macroparticle simulations

2 B
Simplified calculation
for a short bunch

(Q - wp)/og

-2
. .. (k]
I, (mA)

Full calculation for a relatively long SPS bunch (red
lines) + macroparticle simulation (white traces) 58
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The Strong Head Tail Instability

Experimental observation

0.5
LY s
R PPN R S
0.4+ oo ; . TR
o o L] .* .= . .'. -
:‘:o ,.*'-'o.. ‘U o ®°
— 03} g~ CONSRLIR
(‘2] oS
> L]
2 H °
< 0.2r
0.1r
e Q26 - stable
¢ Q26 - unstable
O I I 1 1
0 1 2 3 4 5
Intensity (p/b) x 10"
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The Strong Head Tail Instability

Experimental observation

50

0 100 200 300 400 500 600 700
1000
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00 100 200 300 400 500 600 700 t (ms)
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The Head Tail Instability

To illustrate the head-tail instability we will need to make use of some simplifications:

= The bunch is represented through two particles carrying half the total bunch charge and
placed in opposite phase in the longitudinal phase space

= They both feel external linear focusing in all three directions (i.e. linear betatron focusing +
linear synchrotron focusing).

Chromaticity is different from zero (Q’, ,#0)
Constant transverse wake left behind by the leading particle
Smooth approximation = constant focusing + distributed wake

[V’

We can
= Show that this system is intrinsically unstable
= Calculate the growth time of the excited oscillation modes

61

9

The Head Tail Instability

Equations of motion

= As for the TMCI, during the first half of the synchrotron motion,
particle 1 is leading and executes free betatron oscillations, while
particle 2 is trailing and feels the defocusing wake of particle 1

= During the second half of the synchrotron period, the situation is
reversed

=0

iy
O0<s< —
Ws

e? NWy (s)

Yyi(s

moc? ) 2yC
Difference! = now the frequency of free oscillation

is modulated by the momentum spread, d(s) 62
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The Head Tail Instability A
Oscillation modes

= Similarly to the solution for the Strong Head Tail Instability,
we obtain the transport map

Weak beam intensity:
|T| < 1 |:> + mode is “in-phase” mode - the two

ir o1 71 1-712 47 7
N 1 0 Y2 i 1 Y2

s=2mc/ws s=me/ws

) Complex number!

TNe2W (1 n Z_4fyw52
en

- 4myyCwpws

N

- At =~ exp(£iY) \

particles oscillate in phase (u)[})
= mode is “out-phase” mode = the two
particles oscillate in opposition of phase

U (ogx ) /
N\ /

/ 63

9l

The Head Tail Instability A
Growth/damping time

U

Inversely proportional to p, - bunches with higher energy

tend to be less affected by impedances

Proportional to N - the more intense is the bunch, the more

sensitive it is

Proportional to bunch length = this depends on the chosen

shape of the wake

= Proportional to §, - higher chromaticity enhances the head-
tail effect

= Inversely proportional to 1 = faster synchrotron motion

stabilizes (lowest rise times close to transition crossing!)

= Proportional to the wake per unit length along the ring, W,/C
- alarge integrated wake (impedance) gives a stronger effect

64
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&) The Head Tail Instability &

Growth/damping time

2 A
rom(er ) - 2 (%

0 2 pon C
Mode 0 (+)

_ Ey>0 Ey<0
Above transition (n>0) damped unstable
Below transition (n<0) unstable damped

Mode 1 (—)

_ Ey>0 Ey<0
Above transition (n>0) unstable damped
Below transition (n<0) damped unstable

65

&) The Head Tail Instability &

* The head-tail instability is unavoidable in the two-particle model
— Either mode 0 or mode 1 is unstable
— Growth/damping times are in all cases identical

* Fortunately, the situation is less dramatic in reality

— The number of modes increases with the number of particles we consider in
the model (and becomes infinite in the limit of a continuous bunch)

— The instability conditions for mode 0 remain unchanged, but all the other
modes become unstable with much longer rise times when mode O is stable

Mode 0

NI
Y —=0

Above transition (n>0) damped unstable = oo Tl

Below transition (1<0) unstable damped
All modes >0

Above transition (n>0) unstable damped
Below transition (n<0) damped unstable
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@AV The Head Tail Instability

* The head-tail instability is unavoidable in the two-particle model
— Either mode 0 or mode 1 is unstable
— Growth/damping times are in all cases identical

* Fortunately, the situation is less dramatic in reality
— The number of modes increases with the number of particles we consider in
the model (and becomes infinite in the limit of a continuous bunch)
— The instability conditions for mode 0 remain unchanged, but all the other
modes become unstable with much longer rise times when mode O is stable

— Therefore, the bunch can be in practice stabilized by using the settings that
make mode 0 stable (<0 below transition and £>0 above transition) and
relying on feedback or Landau damping (refer to W. Herr’s lectures) for the
other modes

* To be able to study these effects we would need to resort to a more
detailed description of the bunch

— Vlasov equation (kinetic model)
— Macroparticle simulations

67

@ A glance into the head-tail modes

» Different transverse head-tail modes correspond to different parts of the
bunch oscillating with relative phase differences. E.g.
— Mode 0is a rigid bunch mode
— Mode 1 has head and tail oscillating in counter-phase

— Mode 2 has head and tail oscillating in phase and the bunch center in
opposition

(b)

68
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@AV A glance into the head-tail modes

(as seen at a wide-band BPM)

Q’'#0

VO
R
0

4 "/I/ '/"’\'\’\‘\
éo"‘t:/’%"v’%\\'v\vvvvi'
A

€ =1 >

€ =2 >
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@AV A glance into the head-tail modes

(experimental observations)

Observation in the CERN PSB in ~1974
(J. Gareyte and F. Sacherer) Observation in the CERN PS in 1999

* The mode that gets first excited in the machine depends on
— The spectrum of the exciting impedance
— The chromaticity setting
* Head-tail instabilities are a good diagnostics tool to identify and quantify the main
impedance sources in a machine

70
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& =
AV Macroparticle simulation

* We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

* We have used parameters at injection (below transition!) and three
different chromaticity values: §, = +0.15, -0.3

—

PS ring:
Transverse = 1-turn map M
with chromaticity

Longitudinal = kick from
sinusoidal voltage

Im[zZ, ] S R

00 05 10 L5 20 25 30

71

AV Macroparticle simulation

* We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring
* We have used parameters at injection (below transition!) a chromaticity
values: §,,=0.15
Signal: - Number of Protons: 1.60e+12
le12 Horizontal offset signal le16  Vertical offset signal
1.0
0.5
0.5
E E
E E
L o0 4 o0
v N
A P4
£ E
-0.5
—0.5
-1.0
0 20 40 60 80 100120140160180 0 20 40 60 80 100120140160180
dz [ns] dz [ns]
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* We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

* We have used parameters at injection (below transition!) a chromaticity
values: §,,=-0.15

Macroparticle simulation

Signal: - Chromaticities: -1.00e+00

leg  Horizontal offset signal 1el0  Vertical offset signal

1.0

0.5
0.5

0.0

NPR*<x> [mm]
o
o
NPR*<y> [mm]

-
. < -0.5
—-0.5 -

s -1.0

0 20 40 60 80 100120140160180
dz [ns]

0 20 40 60 80 100120140160180 73
dz [ns]

Macroparticle simulation

* We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

* We have used parameters at injection (below transition!) a chromaticity
values: §,,=-0.3

Signal: - Chromaticities: -2.00e+00

leg  Horizontal offset signal 1e10  Vertical offset signal

0.5

0.0

NPR*<x> [mm]
o
NPR*<y> [mm]

0 20 40 60 80 100120140160180

0 20 40 60 80 100120140160180
dz [ns]

dz [ns]
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@

Conclusions

* A particle beam can be driven unstable by its interaction
with its own induced EM fields
— Longitudinal, transverse
— Multi-bunch, single bunch

* Simplified models within the wake/impedance framework
can be adopted to explain the mechanism of the instability
— Stability criteria involving beam/machine parameters
— Growth/damping times

* More sophisticated tools are necessary to describe in
deeper detail the beam instabilities (kinetic theory,
macroparticle simulations)

75

@

Fortunately ....

= In real life beam stability is eased by some mechanisms so
far not included in our simplified linearized models
— Spreads and nonlinearities stabilize (Landau damping, refer to
W. Herr’s lecture)
— Longitudinal: momentum spread, synchrotron frequency spread

— Transverse: chromaticity, betatron tune spreads (e.g from machine
nonlinearities, enhanced with purposely higher order fields)

— Active feedback systems are routinely employed to control/
suppress instabilities

* Coherent motion is detected (pick-up) and damped (kicker) before it
can degrade the beam

* Sometimes bandwidth/power requirements can be very stringent
— Impedance localization and reduction techniques are applied to

old accelerators as well as for the design of new accelerators to
extend their performance reach!
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@

Thank you for your attention

Many thanks to H. Bartosik, G. ladarola, K. Li, N. Mounet,
B. Salvant, R. Tomas, C. Zannini
for material, discussions, suggestions, inspiration, review, help
& support and to A. Chao for his book!

@ The Head Tail Instability
Equations of motion

= Let’s first write the solution without wake field assuming a linear
synchrotron motion and particles in opposite phase (z,=-z,)

= It is already clear that head and tail of the bunch exhibit a phase
difference given by the chromatic term

71(0) exp —iwf;f + i 5 in <wss>
c
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The Head Tail Instability
Equations of motion

synchrotron period

time varying coefficient

= For y,(s) we assume a si

= The free oscillation is the correct solution for y,(s) in the first half

imilar type of solution, allowing for a slowly

= Substituting into the equation of motion this yields

71(0) exp |—

7o (s) exp | —

w4~ (=

.S .QyW WsS
zwﬁ—-l-zgy b >
c

N——

ésin<
cn c /|

s w WeS
iwgz—kigyc—nﬁésin( Z )

NW, _ £
) m@h(o) exp [2@

9l

The Head Tail Instability

Transfer map

= For small head-tail shifts, we can expand the exponential in Taylor
series and find an expression for y,(s)

= We can write a transfer map over the first half of synchrotron period
in the same form as was done for the study of the TMCI

= This time Y is a complex parameter!

(o) =m0+ (=)

) s=mc/ws

%
Y2

NWy

4vCuwg o
0
Y2

1 0

T 1
o 7TN€2W0 1
N dmoyCwaws

pe s
i 2uws? (1 -

nws
) s=0

s+

.4§yw52
=P
men
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