

Transverse Beam Dynamics:

0.) Introduction and Basic Ideas

" ... in the end and after all it should be a kind of circular machine"

— need transverse deflecting force

Lorentz force

$$F = q(\vec{E} + \vec{v} \times \vec{B})$$

typical velocity in high energy machines:

$$v \approx c \approx 3*10^8 - \frac{m}{2}$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

But remember: magn. fields act allways perpendicular to the velocity of the particle \rightarrow only bending forces, \rightarrow no "beam acceleration"

The ideal circular orbit



circular coordinate system

condition for circular orbit:

Lorentz force

$$F_L = e v B$$

centrifugal force

$$\boldsymbol{F_{centr}} = \frac{\boldsymbol{\gamma} \, \boldsymbol{m}_0 \, \boldsymbol{v}^2}{\boldsymbol{\rho}}$$

$$\frac{\gamma m_0 v}{Q} = e v B$$

$$\frac{p}{e} = B \rho$$

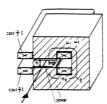
 $B \rho = "beam rigidity"$

1.) The Magnetic Guide Field

Dipole Magnets:

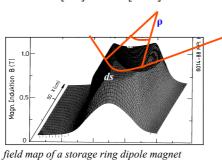
define the ideal orbit homogeneous field created by two flat pole shoes

$$B = \frac{\mu_0 \, n \, h}{h}$$



convenient units:

$$B = [T] = \left[\frac{Vs}{m^2}\right] \qquad p = \left[\frac{GeV}{c}\right]$$



Normalise magnetic field to momentum:

$$\frac{p}{e} = B \rho \qquad \longrightarrow \qquad \frac{1}{\rho} = \frac{e B}{p}$$

Example LHC:

$$B = 8.3T$$

$$p = 7000 \frac{GeV}{c}$$

The Magnetic Guide Field

$$\frac{1}{\rho} = e \frac{8.3 \frac{V s}{m^2}}{7000*10^9 eV/c} = \frac{8.3 s \ 3*10^8 \frac{m}{s}}{7000*10^9 m^2}$$

$$\frac{1}{\rho} = 0.3 \frac{8.3}{7000} \frac{1}{m}$$

$$\rho = 2.53 \text{ km} \longrightarrow 2\pi \rho = 17.6 \text{ km}$$
$$\approx 66\%$$

rule of thumb:

$$\frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[GeV/c]}$$

"normalised bending strength"

2.) Quadrupole Magnets:

focusing forces to keep trajectories in vicinity of the ideal orbit

linear increasing Lorentz force

linear increasing magnetic field

$$B_y = g x$$
 , $B_x = g y$

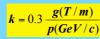
normalised quadrupole field:

gradient of a quadrupole magnet:

$$g = \frac{2\mu_0 nI}{r^2}$$

$$k = \frac{g}{p/e}$$

simple rule:



LHC main quadrupole magnet

$$g \approx 25 ... 220 \ T/m$$

what about the vertical plane: ... Maxwell

$$\vec{\nabla} \times \vec{B} = \vec{\nabla} + \frac{\partial \vec{E}}{\partial \lambda} = 0 \qquad \Rightarrow \qquad \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y}$$

$$\Rightarrow \frac{\partial \mathbf{B}_{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{B}_{x}}{\partial \mathbf{v}}$$

3.) The equation of motion:

Linear approximation:

* ideal particle

→ design orbit

* any other particle \rightarrow coordinates x, y small quantities

 $x,y \ll \rho$

 \rightarrow magnetic guide field: only linear terms in x & y of B have to be taken into account

Taylor Expansion of the B field:

$$B_{y}(x) = B_{y0} + \frac{dB_{y}}{dx}x + \frac{1}{2!}\frac{d^{2}B_{y}}{dx^{2}}x^{2} + \frac{1}{3!}\frac{eg''}{dx^{3}} + \dots$$
 normalise to momentum $p/e = B\rho$

$$\frac{\boldsymbol{B}(\boldsymbol{x})}{\boldsymbol{p}/\boldsymbol{e}} = \frac{\boldsymbol{B}_0}{\boldsymbol{B}_0 \boldsymbol{\rho}} + \frac{\boldsymbol{g}^* \boldsymbol{x}}{\boldsymbol{p}/\boldsymbol{e}} + \frac{1}{2!} \frac{\boldsymbol{e} \boldsymbol{g}'}{\boldsymbol{p}/\boldsymbol{e}} + \frac{1}{3!} \frac{\boldsymbol{e} \boldsymbol{g}''}{\boldsymbol{p}/\boldsymbol{e}} + \dots$$

The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + kx + \frac{1}{2!} nx^2 + \frac{1}{3!} nx^3 + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

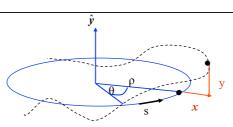
bending, focusing etc

Example: heavy ion storage ring TSR

man sieht nur dipole und quads → linear

Equation of Motion:

Consider local segment of a particle trajectory ... and remember the old days:
(Goldstein page 27)



radial acceleration:

$$a_r = \frac{d^2 \rho}{dt^2} - \rho \left(\frac{d\theta}{dt}\right)^2$$

Ideal orbit: $\rho = const$, $\frac{d\rho}{dt} = 0$

Force: $F = m\rho \left(\frac{d\theta}{dt}\right)^2 = m\rho\omega^2$

$$F = mv^2 / \rho$$

general trajectory: $\rho \rightarrow \rho + x$

$$F = m\frac{d^2}{dt^2}(x+\rho) - \frac{mv^2}{x+\rho} = e B_y v$$

develop for small x:

$$x \ll \rho$$

guide field in linear approx.

$$B_z = B_0 + x \frac{\partial B_z}{\partial x}$$

independent variable: $t \rightarrow s$

$$\frac{dx}{dt} = \frac{dx}{ds} * \frac{ds}{dt}$$

$$x' = \frac{dx}{ds}$$

$$m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = eB_z v$$

$$m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = ev\left\{B_0 + x\frac{\partial B_z}{\partial x}\right\}$$

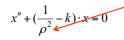
$$x'' - \frac{1}{\rho}(1 - \frac{x}{\rho}) = \frac{eB_0}{mv} + \frac{exg}{mv}$$

$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = -\frac{1}{\rho} + kx$$

$$x'' + x(\frac{1}{\rho^2} - k) = 0$$

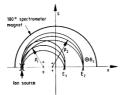
Remarks:

* The Weak Focusing Term



... there seems to be a focusing even without a quadrupole gradient ... but it is WEAK!

"weak focusing of dipole magnets"



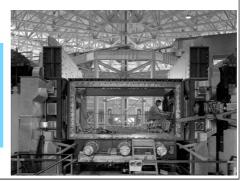
Mass spectrometer: particles are separated according to their energy and focused due to the 1/p

effect of the dipole

Don Edwards: ... This circumstance is illustrated in Fig. 4, in which an engineer is sitting at a desk within the vacuum chamber. The problem was a result of the weak focusing provided by the magnet systems.

The higher the energy, the larger ρ and the weaker the dipole focusing

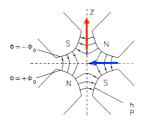
Bevatron, Berkeley



* * * vertical plane

Equation for the vertical motion:

$$z'' + k \cdot z = 0$$



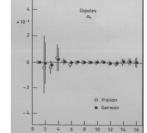
* * * keep it linear

Taylor Expansion of the B field:

$$B_y(x) = B_{y0} + \frac{dB_y}{dx}x + \frac{1}{2!}\frac{d^2B_y}{dx^2}x^2 + \frac{1}{3!}\frac{d^3B_y}{dx^3}x^3 + \dots$$

divide by the main field to get the relative error contribution

→ definition of multipole coefficients.



Multipole contributions to the HERA s.c. dipole field

4.) Solution of Trajectory Equations

Define ... hor. plane:
$$K = 1/\rho^2 - k$$

... vert. Plane: $K = k$

$$x'' + K x = 0$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz:
$$x(s) = a_1 \cdot \cos(\omega s) + a_2 \cdot \sin(\omega s)$$

general solution: linear combination of two independent solutions

$$x'(s) = -a_1 \omega \sin(\omega s) + a_2 \omega \cos(\omega s)$$

$$x''(s) = -a_1\omega^2\cos(\omega s) - a_2\omega^2\sin(\omega s) = -\omega^2 x(s)$$
 $\omega = \sqrt{K}$

general solution:

$$x(s) = a_1 \cos(\sqrt{K}s) + a_2 \sin(\sqrt{K}s)$$

determine a_1 , a_2 by boundary conditions:

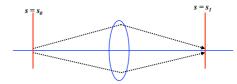
$$s = 0 \qquad \qquad \begin{cases} x(0) = x_0 &, \quad a_1 = x_0 \\ x'(0) = x'_0 &, \quad a_2 = \frac{x'_0}{\sqrt{K}} \end{cases}$$

Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x_0' \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$

$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x_0' \cdot \cos(\sqrt{|K|}s)$$

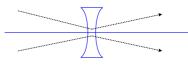
For convenience expressed in matrix formalism:



$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}s) \\ -\sqrt{|K|}\sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}$$

hor. defocusing quadrupole: K < 0

$$M_{defoc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}}\sinh \sqrt{|K|}l \\ \sqrt{|K|}\sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$



drift space: K = 0

$$M_{drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

- ! with the assumptions made, the motion in the horizontal and vertical planes are independent "... the particle motion in x & z is uncoupled"
- !! for all magnet matrices the condition det (M) =1 is fulfilled which means we are dealing with a conservative system

Thin Lens Approximation:

$$\textit{matrix of a quadrupole lens} \quad M = \begin{pmatrix} \cos \sqrt{|k|}l & \frac{1}{\sqrt{|k|}}\sin \sqrt{|k|}l \\ -\sqrt{|k|}\sin \sqrt{|k|}l & \cos \sqrt{|k|}l \end{pmatrix}$$

in many practical cases we have the situation:

$$f = \frac{1}{kl_q} >> l_q$$
 ... focal length of the lens is much bigger than the length of the magnet

limes: $l_q \rightarrow 0$ while keeping $k l_q = const$

$$M_x = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}$$

$$M_z = \begin{pmatrix} 1 & 0 \\ \frac{-1}{f} & 1 \end{pmatrix}$$

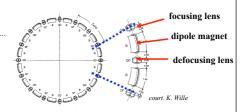
... useful for fast (and in large machines still quite accurate) "back on the envelope calculations"... and for the guided studies!

Transformation through a system of lattice elements

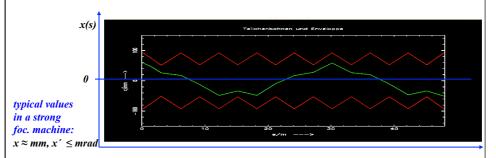
combine the single element solutions by multiplication of the matrices

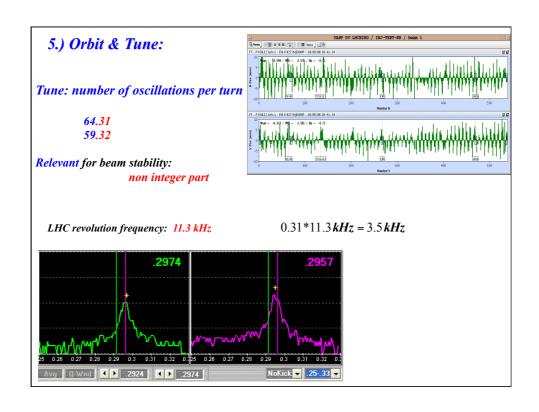
$$M_{total} = M_{QF} * M_{D} * M_{QD} * M_{Bend} * M_{D*...}$$

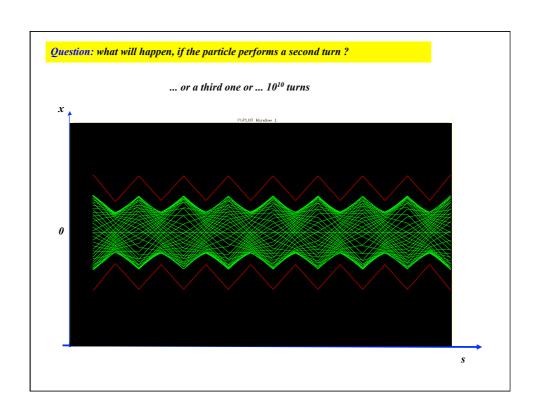
$$\binom{x}{x'}_{s2} = M(s_2, s_1) * \binom{x}{x'}_{s1}$$



"C" and "S" = sin- and cos- like trajectories of the lattice structure, in other words the two independent solutions of the homogeneous equation of motion







Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill 's equation "

Example: particle motion with periodic coefficient

equation of motion: x''(s) - k(s)x(s) = 0

restoring force \neq const, k(s) = depending on the position sk(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

6.) The Beta Function

General solution of Hill's equation:

(i)
$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi)$$

 ε , Φ = integration constants determined by initial conditions

 $\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$\beta(s+L) = \beta(s)$$

Inserting (i) into the equation of motion ...

$$\psi(s) = \int_{0}^{s} \frac{ds}{\beta(s)}$$

 $\Psi(s) = ",phase advance" of the oscillation between point ",0" and ",s" in the lattice. For one complete revolution: number of oscillations per turn ",Tune"$

$$Q_y = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$$

7.) Beam Emittance and Phase Space Ellipse

general solution of Hill equation
$$\begin{cases} (1) & x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi) \\ (2) & x'(s) = -\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left\{ \alpha(s) \cos(\psi(s) + \phi) + \sin(\psi(s) + \phi) \right\} \end{cases}$$

from (1) we get

$$\cos(\boldsymbol{\psi}(s) + \boldsymbol{\phi}) = \frac{x(s)}{\sqrt{\varepsilon} \sqrt{\boldsymbol{\beta}(s)}}$$

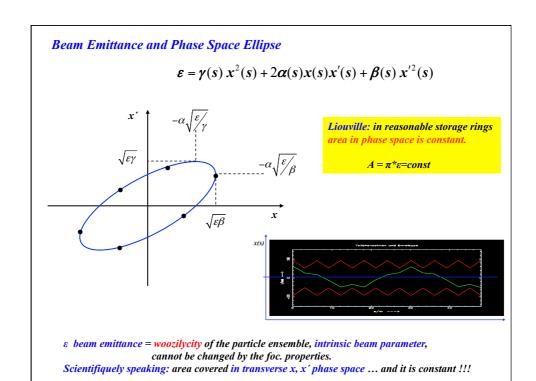
$$\alpha(s) = \frac{-1}{2} \beta'(s)$$

$$\gamma(s) = \frac{1 + \alpha(s)^2}{\beta(s)}$$

Insert into (2) and solve for ε

$$\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)$$

- * E is a constant of the motion ... it is independent of "s"
- * parametric representation of an ellipse in the x x 'space
- * shape and orientation of ellipse are given by α , β , γ



Phase Space Ellipse

particel trajectory: $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\}$

max. Amplitude: $\hat{x}(s) = \sqrt{\varepsilon \beta}$ x' at that position ...?

... put $\hat{x}(s)$ into $\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)$ and solve for x'

$$\varepsilon = \gamma \cdot \varepsilon \beta + 2\alpha \sqrt{\varepsilon \beta} \cdot x' + \beta x'^2 \qquad \qquad x' = -\alpha \cdot \sqrt{\varepsilon / \beta}$$

and in the same way we obtain:

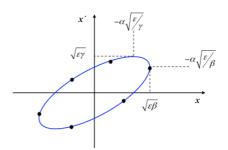
 $\hat{\chi}' = \sqrt{\varepsilon \gamma}$

 $x = \pm \alpha \sqrt{\frac{\varepsilon}{\gamma}}$

* A high β-function means a large beam size and a small beam divergence.

... et vice versa !!!

* In the middle of a quadrupole $\beta = maximum$, $\alpha = zero$ x' = 0 ... and the ellipse is flat

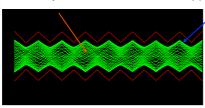


shape and orientation of the phase space ellipse depend on the Twiss parameters β α γ

Emittance of the Particle Ensemble:

 $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\Psi(s) + \phi)$

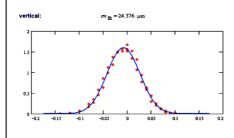
 $\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$



Particle Distribution: $\rho(x) = \frac{N \cdot e}{\sqrt{2\pi}\sigma_x} \cdot e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2}}$

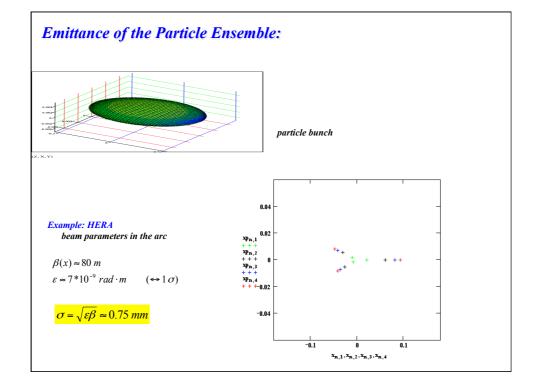
particle at distance 1 σ from centre \leftrightarrow 68.3 % of all beam particles

single particle trajectories, $N \approx 10^{-11}$ per bunch



LHC: $\sigma = \sqrt{\varepsilon * \beta} = \sqrt{5*10^{-10}} m*180 m = 0.3 mm$

aperture requirements: $r_0 = 10 * \sigma$



8.) Transfer Matrix M ... yes we had the topic already

$$\begin{cases} x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\} \\ x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left[\alpha(s) \cos \{\psi(s) + \phi\} + \sin \{\psi(s) + \phi\}\right] \end{cases}$$

remember the trigonometrical gymnastics: sin(a + b) = ... etc

$$x(s) = \sqrt{\varepsilon} \sqrt{\beta_s} \left(\cos \psi_s \cos \phi - \sin \psi_s \sin \phi \right)$$

$$x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta_s}} \left[\alpha_s \cos \psi_s \cos \phi - \alpha_s \sin \psi_s \sin \phi + \sin \psi_s \cos \phi + \cos \psi_s \sin \phi \right]$$

starting at point $s(\theta) = s_{\theta}$, where we put $\Psi(\theta) = \theta$

$$\cos \phi = \frac{x_0}{\sqrt{\varepsilon \beta_0}} ,$$

$$\sin \phi = -\frac{1}{\sqrt{\varepsilon}} (x_0' \sqrt{\beta_0} + \frac{\alpha_0 x_0}{\sqrt{\beta_0}})$$
inserting above ...

$$\underline{x(s)} = \sqrt{\frac{\beta_s}{\beta_0}} \left\{ \cos \psi_s + \alpha_0 \sin \psi_s \right\} \underline{x_0} + \left\{ \sqrt{\beta_s \beta_0} \sin \psi_s \right\} \underline{x_0'}$$

$$\underline{x'(s)} = \frac{1}{\sqrt{\beta_s \beta_0}} \left\{ (\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s \right\} \underline{x_0} + \sqrt{\frac{\beta_0}{\beta_s}} \left\{ \cos \psi_s - \alpha_s \sin \psi_s \right\} \underline{x_0'}$$

which can be expressed ... for convenience ... in matrix form $\begin{pmatrix} x \\ x' \end{pmatrix}_{s} = M \begin{pmatrix} x \\ x' \end{pmatrix}_{0}$

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos \psi_s + \alpha_0 \sin \psi_s \right) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} \left(\cos \psi_s - \alpha_s \sin \psi_s \right) \end{pmatrix}$$

- * we can calculate the single particle trajectories between two locations in the ring, if we know the α β γ at these positions.
- * and nothing but the α β γ at these positions.
- *

* Äquinglanz day Matriza

11.) Résumé:

beam rigidity:
$$B \cdot \rho = \frac{p}{q}$$

bending strength of a dipole:
$$\frac{1}{\rho} \left[m^{-1} \right] = \frac{0.2998 \cdot B_0(T)}{p(GeV/c)}$$

focusing strength of a quadrupole:
$$k \left[m^{-2} \right] = \frac{0.2998 \cdot g}{p(GeV/c)}$$

focal length of a quadrupole:
$$f = \frac{1}{k \cdot l_q}$$

equation of motion:
$$x'' + Kx = \frac{1}{\rho} \frac{\Delta p}{p}$$

matrix of a foc. quadrupole:
$$x_{s2} = M \cdot x_{s1}$$

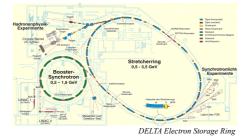
$$M = \begin{pmatrix} \cos\sqrt{|K|}l & \frac{1}{\sqrt{|K|}}\sin\sqrt{|K|}l \\ -\sqrt{|K|}\sin\sqrt{|K|}l & \cos\sqrt{|K|}l \end{pmatrix} , \qquad M = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}$$

12.) Bibliography

- 1.) Klaus Wille, Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
- 2.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962
- 3.) H. Wiedemann, Particle Accelerator Physics (Springer-Verlag, Berlin, 1993)
- 4.) A. Chao, M. Tigner, Handbook of Accelerator Physics and Engineering (World Scientific 1998)
- 5.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01
- 6.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
- 7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
- 9.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970
- 10.) D. Edwards, M. Syphers: An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

9.) Periodic Lattices

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos \psi_s + \alpha_0 \sin \psi_s \right) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} \left(\cos \psi_s - \alpha_s \sin \psi_s \right) \end{pmatrix}$$



"This rather formidable looking matrix simplifies considerably if we consider one complete revolution ..."

$$M(s) = \begin{pmatrix} \cos \psi_{turn} + \alpha_s \sin \psi_{turn} & \beta_s \sin \psi_{turn} \\ -\gamma_s \sin \psi_{turn} & \cos \psi_{turn} - \alpha_s \sin \psi_{turn} \end{pmatrix}$$

 $\psi_{tum} = \int_{s}^{s+L} \frac{ds}{\beta(s)} \qquad \begin{array}{c} \psi_{tum} = phase \ advance \\ per \ period \end{array}$

Tune: Phase advance per turn in units of 2π

Stability Criterion:

Question: what will happen, if we do not make too many mistakes and your particle performs one complete turn?

Matrix for 1 turn:

$$M = \begin{pmatrix} \cos \psi_{turn} + \alpha_s \sin \psi_{turn} & \beta_s \sin \psi_{turn} \\ -\gamma_s \sin \psi_{turn} & \cos \psi_{turn} - \alpha_s \sin \psi_{turn} \end{pmatrix} = \cos \psi \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \psi \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

Matrix for N turns:

$$M^{N} = (1 \cdot \cos \psi + J \cdot \sin \psi)^{N} = 1 \cdot \cos N\psi + J \cdot \sin N\psi$$

The motion for N turns remains bounded, if the elements of M^N remain bounded

$$\psi = real \qquad \Leftrightarrow \quad \left|\cos\psi\right| \le 1 \qquad \Leftrightarrow \quad \left|Tr(M) \le 2\right|$$

stability criterion proof for the disbelieving collegues !!

Matrix for 1 turn:
$$M = \begin{pmatrix} \cos \psi_{num} + \alpha_s \sin \psi_{num} & \beta_s \sin \psi_{num} \\ -\gamma_s \sin \psi_{num} & \cos \psi_{num} - \alpha_s \sin \psi_{num} \end{pmatrix} = \cos \psi \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \psi \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

Matrix for 2 turns:

$$\boldsymbol{M}^{2} = (\boldsymbol{I} \cos \boldsymbol{\psi}_{1} + \boldsymbol{J} \sin \boldsymbol{\psi}_{1}) (\boldsymbol{I} \cos \boldsymbol{\psi}_{2} + \boldsymbol{J} \sin \boldsymbol{\psi}_{2})$$

=
$$I^2 \cos \psi_1 \cos \psi_2 + IJ \cos \psi_1 \sin \psi_2 + JI \sin \psi_1 \cos \psi_2 + J^2 \sin \psi_1 \sin \psi_2$$

now ...

$$I^{2} = I$$

$$IJ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

$$JI = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

$$J^{2} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha^{2} - \gamma\beta & \alpha\beta - \beta\alpha \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

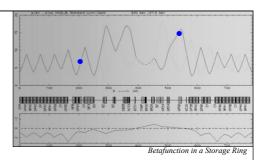
$$\boldsymbol{M}^2 = \boldsymbol{I} \cos(\boldsymbol{\psi}_1 + \boldsymbol{\psi}_2) + \boldsymbol{J} \sin(\boldsymbol{\psi}_1 + \boldsymbol{\psi}_2)$$

$$M^2 = I\cos(2\psi) + J\sin(2\psi)$$

10.) Transformation of α, β, γ

consider two positions in the storage ring: s_0 , s

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix}_{s} = \mathbf{M} * \begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix}_{s0}$$
$$\mathbf{M} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$



since $\varepsilon = const$ (Liouville):

$$\boldsymbol{\varepsilon} = \boldsymbol{\beta}_s x'^2 + 2\boldsymbol{\alpha}_s x x' + \boldsymbol{\gamma}_s x^2$$
$$\boldsymbol{\varepsilon} = \boldsymbol{\beta}_0 x_0'^2 + 2\boldsymbol{\alpha}_0 x_0 x_0' + \boldsymbol{\gamma}_0 x_0^2$$

. remember W = CS'-SC' = I

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{0} = M^{-1} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s}$$

$$M^{-1} = \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$$

$$x_{0} = m_{22}x - m_{12}x'$$

$$x'_{0} = -m_{21}x + m_{11}x'$$
 ... inserting into ε

$$\varepsilon = \beta_0 (m_{11}x' - m_{21}x)^2 + 2\alpha_0 (m_{22}x - m_{12}x')(m_{11}x' - m_{21}x) + \gamma_0 (m_{22}x - m_{12}x')^2$$

sort via x, x'and compare the coefficients to get

The Twiss parameters α , β , γ can be transformed through the lattice via the matrix elements defined above.

$$\begin{split} \beta(s) &= m_{11}^2 \beta_0 - 2 m_{11} m_{12} \alpha_0 + m_{12}^2 \gamma_0 \\ \alpha(s) &= - m_{11} m_{21} \beta_0 + (m_{12} m_{21} + m_{11} m_{22}) \alpha_0 - m_{12} m_{22} \gamma_0 \\ \gamma(s) &= m_{21}^2 \beta_0 - 2 m_{21} m_{22} \alpha_0 + m_{22}^2 \gamma_0 \end{split}$$

in matrix notation:

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s2} = \begin{pmatrix} m_{11}^2 & -2m_{11}m_{12} & m_{12}^2 \\ -m_{11}m_{21} & m_{12}m_{21} + m_{22}m_{11} & -m_{12}m_{22} \\ m_{21}^2 & -2m_{22}m_{21} & m_{22}^2 \end{pmatrix} * \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s1}$$

- 1.) this expression is important
- 2.) given the twiss parameters α , β , γ at any point in the lattice we can transform them and calculate their values at any other point in the ring.
- 3.) the transfer matrix is given by the focusing properties of the lattice elements, the elements of M are just those that we used to calculate single particle trajectories.
- 4.) go back to point 1.)

II.) Acceleration and Momentum Spread

The " not so ideal world "

Remember:

Beam Emittance and Phase Space Ellipse:

equation of motion:
$$x''(s) - k(s) x(s) = 0$$

 $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \varphi)$ general solution of Hills equation:

 $\sigma = \sqrt{\varepsilon \beta} \approx "mm"$ beam size:

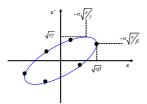
$$\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)$$

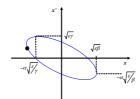
$$\alpha(s) = \frac{-1}{2}\beta'(s)$$

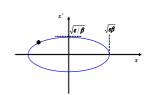
* ε is a constant of the motion ... it is independent of "s" * parametric representation of an ellipse in the x x 'space

$$\gamma(s) = \frac{1 + \alpha(s)^2}{\beta(s)}$$

* shape and orientation of ellipse are given by α , β , γ





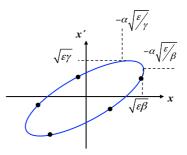


11.) Liouville during Acceleration

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$

Beam Emittance corresponds to the area covered in the x, x' Phase Space Ellipse

Liouville: Area in phase space is constant.



But so sorry ... $\varepsilon \neq const!$

Classical Mechanics:

phase space = diagram of the two canonical variables position & momentum x p_x

$$p_{j} = \frac{\partial L}{\partial \dot{q}_{j}} \quad ; \quad L = T - V = kin. \, Energy - pot. \, Energy \label{eq:pj}$$

According to Hamiltonian mechanics: phase space diagram relates the variables q and p

$$q = position = x$$

 $p = momentum = \gamma mv = mc\gamma\beta_x$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \quad ; \quad \beta_x = \frac{\dot{x}}{c}$$

Liouvilles Theorem: $\int p \, dq = const$

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

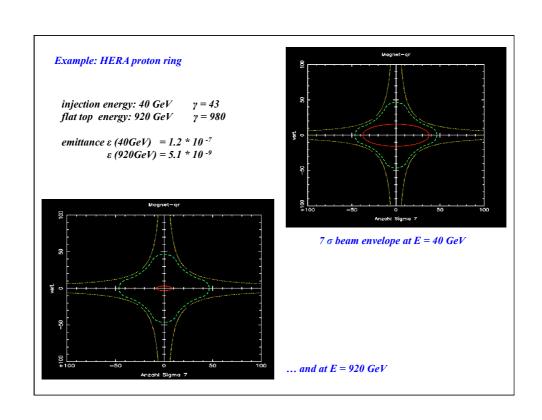
$$x' = \frac{dx}{ds} = \frac{dx}{dt} \frac{dt}{ds} = \frac{\beta_x}{\beta}$$
 where $\beta_x = v_x/c$

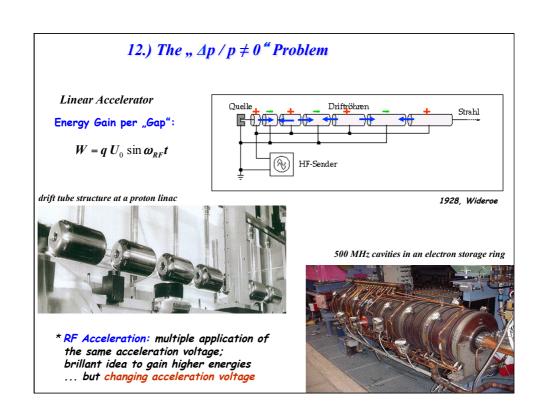
$$\int pdq = mc \int \gamma \beta_x dx$$
$$\int pdq = mc \gamma \beta \int x' dx$$

$$\Rightarrow \quad \varepsilon = \int x' dx \propto \frac{1}{\beta \gamma}$$

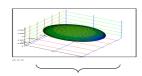
the beam emittance shrinks during acceleration $\varepsilon \sim 1/\gamma$

Nota bene: 1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1/2}$ in both planes. $\sigma = \sqrt{\varepsilon \beta}$ 2.) At lowest energy the machine will have the major aperture problems, → here we have to minimise LHC Error Analysis MAD-X 3.00.03 03/12/08 10.32.07 5000. 4500. 3.) we need different beam 4000. optics adopted to the energy: 3500. A Mini Beta concept will only 3000. be adequate at flat top. 2500. 2000. 600. 550. 500. 450. 400. 1500. 1000. 500. 350. 8.01 16.02 300. 250. $Momentum\ offset = -0.00\ \%$ s (m) [*10**(3)] 200. 150. 100. LHC mini beta optics at 7000 GeV 24.3 LHC injection optics at 450 GeV s (m) [*10**(3)]



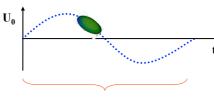


Problem: panta rhei !!! (Heraklit: 540-480 v. Chr.)



Example: HERA RF:

Bunch length of Electrons ≈ 1cm



$$\begin{array}{c} \boldsymbol{v} = 500 \boldsymbol{MHz} \\ \boldsymbol{c} = \boldsymbol{\lambda} \, \boldsymbol{v} \end{array}$$

$$\lambda = 60 \, cn$$

$$\lambda = 60 \ cm$$

$$\sin(90^{\circ}) = 1$$

 $\sin(84^{\circ}) = 0.994$

$$\frac{\Delta U}{U} = 6.0 \ 10^{-3}$$

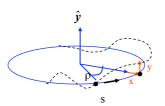
typical momentum spread of an electron bunch:

$$\frac{\Delta p}{p} \approx 1.0 \ 10^{-3}$$

13.) Dispersion: trajectories for $\Delta p / p \neq 0$

Force acting on the particle

$$F = m\frac{d^2}{dt^2}(x+\rho) - \frac{mv^2}{x+\rho} = e B_y v$$



remember: $x \approx mm$, $\rho \approx m$... \rightarrow develop for small x

$$m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = eB_y v$$

consider only linear fields, and change independent variable: $t \to s$ $B_y = B_0 + x \frac{\partial B_y}{\partial x}$

$$x'' - \frac{1}{\rho}(1 - \frac{x}{\rho}) = \underbrace{mv}_{p} + \underbrace{mv}_{p}$$

... but now take a small momentum error into account !!!

Dispersion:

develop for small momentum error

$$\Delta p \ll p_0 \Rightarrow \frac{1}{p_0 + \Delta p} \approx \frac{1}{p_0} - \frac{\Delta p}{p_0^2}$$

$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} \approx \frac{e B_0}{p_0} - \frac{\Delta p}{p_0^2} e B_0 + \frac{xeg}{p_0} - xeg \frac{\Delta p}{p_0^2}$$
$$-\frac{1}{\rho} \qquad k * x \qquad \approx 0$$

$$x'' + \frac{x}{\rho^2} \approx \frac{\Delta p}{p_0} * \frac{(-eB_0)}{p_0} + k * x = \frac{\Delta p}{p_0} * \frac{1}{\rho} + k * x$$

$$\frac{1}{\rho}$$

$$x'' + \frac{x}{\rho^2} - kx = \frac{\Delta p}{p_0} \frac{1}{\rho}$$

$$x'' + x(\frac{1}{\rho^2} - k) = \underbrace{\frac{\Delta p}{p_0}}_{1} \frac{1}{\rho}$$

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. → inhomogeneous differential equation.

Dispersion:

$$x'' + x(\frac{1}{\rho^2} - k) = \frac{\Delta p}{p} \cdot \frac{1}{\rho}$$

general solution:

$$x(s) = x_h(s) + x_i(s)$$

$$x(s) = x_h(s) + x_i(s)$$

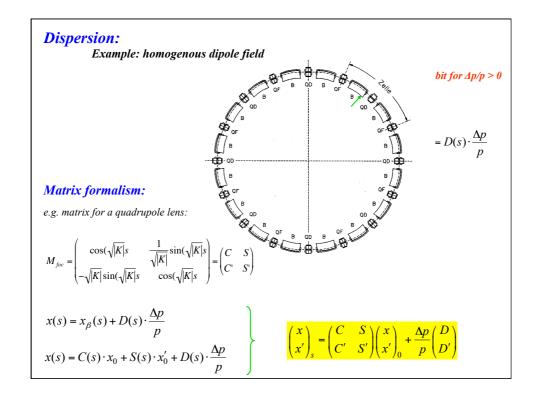
$$\begin{cases} x_h''(s) + K(s) \cdot x_h(s) = 0 \\ x_i''(s) + K(s) \cdot x_i(s) = \frac{1}{\rho} \cdot \frac{\Delta p}{p} \end{cases}$$

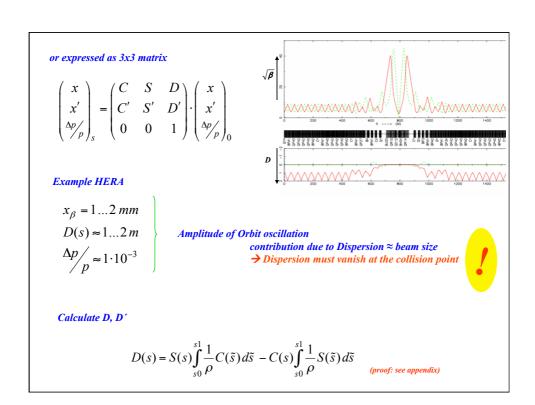
Normalise with respect to $\Delta p/p$:

$$D(s) = \frac{x_i(s)}{\frac{\Delta p}{p}}$$

Dispersion function D(s)

- * is that special orbit, an ideal particle would have for $\Delta p/p = 1$
- * the orbit of any particle is the sum of the well known x_{β} and the dispersion
- * as D(s) is just another orbit it will be subject to the focusing properties of the lattice





Example: Drift

$$M_{Drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

$$D(s) = S(s) \int_{s0}^{s1} \frac{1}{\rho} C(\tilde{s}) d\tilde{s} - C(s) \int_{s0}^{s1} \frac{1}{\rho} S(\tilde{s}) d\tilde{s}$$

$$= 0$$

$$M_{Drift} = \begin{pmatrix} 1 & l & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

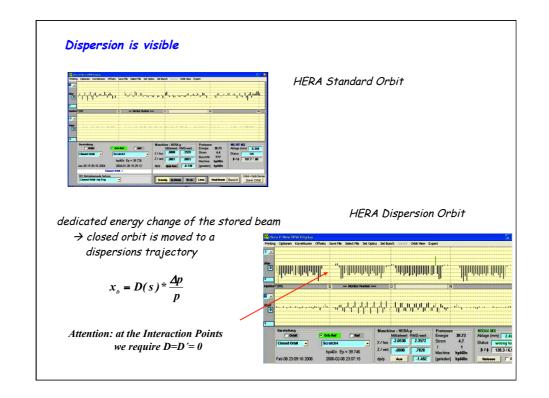
$$Example: Dipole$$

$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s) \\ -\sqrt{|K|} \sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}_{0}$$

$$K = \frac{1}{\rho^{2}}$$

$$s = l_{B}$$

$$M_{Dipole} = \begin{pmatrix} \cos \frac{l}{\rho} & \rho \sin \frac{l}{\rho} \\ -\frac{1}{\rho} \sin \frac{l}{\rho} & \cos \frac{l}{\rho} \end{pmatrix} \rightarrow D'(s) = \sin \frac{l}{\rho}$$



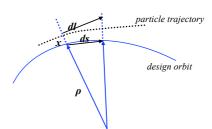
14.) Momentum Compaction Factor: α_n

The dispersion function relates the momentum error of a particle to the horizontal orbit coordinate and so it changes the length of the off - energy - orbit!!

particle with a displacement x to the design orbit → path length dl ...

$$\frac{dl}{ds} = \frac{\rho + x}{\rho}$$

$$\Rightarrow dl = \left(1 + \frac{x}{\rho(s)}\right) ds$$



circumference of an off-energy closed orbit

$$l_{\Delta E} = \int dl = \int \left(1 + \frac{x_{\Delta E}}{\rho(s)}\right) ds$$

remember:

$$x_{\Delta E}(s) = D(s) \frac{\Delta p}{p}$$

$$\delta l_{\Delta E} = \frac{\Delta p}{p} \oint \left(\frac{D(s)}{\rho(s)} \right) ds$$

* The lengthening of the orbit for off-momentum particles is given by the dispersion function and the bending radius.

Definition:

$$\frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

$$\Rightarrow \alpha_p = \frac{1}{L} \int \left(\frac{D(s)}{\rho(s)} \right) ds$$

For first estimates assume:

$$\frac{1}{\rho} = const.$$

$$\int_{dipoles} D(s) ds \approx l_{\Sigma(dipoles)} \cdot \langle D \rangle_{dipole}$$

$$\boldsymbol{\alpha}_{p} = \frac{1}{L} \ \boldsymbol{I}_{\Sigma(dipoles)} \cdot \langle \boldsymbol{D} \rangle \frac{1}{\boldsymbol{\rho}} = \frac{1}{L} \ 2\pi \boldsymbol{\rho} \cdot \langle \boldsymbol{D} \rangle \frac{1}{\boldsymbol{\rho}} \quad \Rightarrow \quad \boldsymbol{\alpha}_{p} \approx \frac{2\pi}{L} \ \langle \boldsymbol{D} \rangle \approx \frac{\langle \boldsymbol{D} \rangle}{R}$$

$$\alpha_p \approx \frac{2\pi}{L} \langle D \rangle \approx \frac{\langle D \rangle}{R}$$

Assume: $v \approx c$

$$\Rightarrow \frac{\delta T}{T} = \frac{\delta l_{\varepsilon}}{L} = \alpha_{p} \frac{\Delta p}{p}$$

α_p combines via the dispersion function the momentum spread with the longitudinal motion of the particle.

15.) Gradient Errors

Matrix in Twiss Form

Transfer Matrix from point "0" in the lattice to point "s":

$$M(s) = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}}(\cos\psi_s + \alpha_0\sin\psi_s) & \sqrt{\beta_s\beta_0}\sin\psi_s \\ \frac{(\alpha_0 - \alpha_s)\cos(\psi_s - (1 + \alpha_0\alpha_s)\sin\psi_s)}{\sqrt{\beta_s\beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}}(\cos(\psi_s - \alpha_0\sin\psi_s)) \end{pmatrix}$$

For one complete turn the Twiss parameters have to obey periodic bundary conditions:

 $\beta(s+L) = \beta(s)$ $\alpha(s+L) = \alpha(s)$

$$\gamma(s+L) = \gamma(s)$$

$$M(s) = \begin{pmatrix} \cos \psi_{turn} + \alpha_s \sin \psi_{turn} & \beta_s \sin \psi_{turn} \\ -\gamma_s \sin \psi_s & \cos \psi_{turn} - \alpha_s \sin \psi_{turn} \end{pmatrix}$$

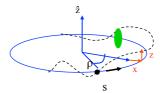
Quadrupole Error in the Lattice

optic perturbation described by thin lens quadrupole

$$\boldsymbol{M}_{dist} = \boldsymbol{M}_{\Delta k} \cdot \boldsymbol{M}_{0} = \begin{pmatrix} 1 & 0 \\ \Delta k ds & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \psi_{turn} + \boldsymbol{\alpha} \sin \psi_{turn} & \boldsymbol{\beta} \sin \psi_{turn} \\ - \boldsymbol{\gamma} \sin \psi_{turn} & \cos \psi_{turn} - \boldsymbol{\alpha} \sin \psi_{turn} \end{pmatrix}$$

quad error

ideal storage ring



$$M_{dist} = \begin{pmatrix} \cos \psi_0 + \alpha \sin \psi_0 & \beta \sin \psi_0 \\ \Delta k ds (\cos \psi_0 + \alpha \sin \psi_0) - \gamma \sin \psi_0 & \Delta k ds \beta \sin \psi_0 + \cos \psi_0 - \alpha \sin \psi_0 \end{pmatrix}$$

rule for getting the tune

 $Trace(M) = 2\cos\psi = 2\cos\psi_0 + \Delta k ds\beta\sin\psi_0$

Quadrupole error → Tune Shift

$$\psi = \psi_0 + \Delta \psi$$
 $\cos(\psi_0 + \Delta \psi) = \cos \psi_0 + \frac{\Delta k ds \, \beta \sin \psi_0}{2}$

remember the old fashioned trigonometric stuff and assume that the error is small!!!

$$\cos \psi_0 \underbrace{\cos \Delta \psi}_{\approx 1} - \sin \psi_0 \underbrace{\sin \Delta \psi}_{\approx \Delta \psi} = \cos \psi_0 + \frac{kds \beta \sin \psi_0}{2}$$

$$\Delta \psi = \frac{kds \, \beta}{2}$$

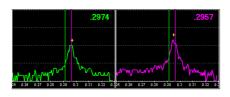
and referring to Q instead of ψ :

$$\psi = 2\pi Q$$

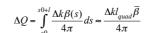
$$\Delta Q = \int_{s_0}^{s_{0+1}} \frac{\Delta k(s) \beta(s) ds}{4\pi}$$

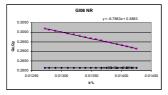
- the tune shift is proportional to the β -function at the quadrupole
- III mini beta quads: $\beta \approx 1900$ m arc quads: $\beta \approx 80$ m
- !!!! β is a measure for the sensitivity of the beam

a quadrupol error leads to a shift of the tune:



Example: measurement of
$$\beta$$
 in a storage ring:
tune spectrum





Without proof (CERN-94-01)

A quadrupole error will always lead to a tune shift, but in addition to a change of the beta-function.

$$\Delta\beta(s) = \frac{\beta(s)}{2\sin(2\pi Q)} \oint \beta(\tilde{s}) \Delta k(\tilde{s}) \cos(2|\psi(s) - \psi(\tilde{s})| - \pi Q) d\tilde{s}$$

As before the effect of the error depends on the β -function at the observation point as well as at the place of the error itself, on the error strength and there is again a resonance denominator

→ half integer tunes are forbidden.

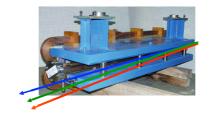
16.) Chromaticity:

A Quadrupole Error for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

dipole magnet

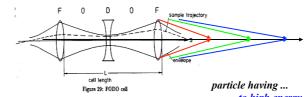
$$\alpha = \frac{\int B \, dl}{p / e}$$



$$x_D(s) = D(s) \frac{\Delta p}{p}$$

focusing lens

$$k = \frac{g}{\frac{p}{e}}$$



to high energy
to low energy
ideal energy

Chromaticity: Q'

$$k = \frac{g}{p/e}$$

$$p = p_0 + \Delta p$$

in case of a momentum spread:

$$k = \frac{eg}{p_0 + \Delta p} \approx \frac{e}{p_0} (1 - \frac{\Delta p}{p_0}) g = k_0 + \Delta k$$

$$\Delta k = -\frac{\Delta p}{p_0} k_0$$

... which acts like a quadrupole error in the machine and leads to a tune spread:

$$\Delta Q = -\frac{1}{4\pi} \frac{\Delta p}{p_0} k_0 \beta(s) ds$$

definition of chromaticity:

$$\Delta Q = Q' \frac{\Delta p}{p} ; \qquad Q' = -\frac{1}{4\pi} \int k(s) \beta(s) ds$$

... what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself!!

Q' is a number indicating the size of the tune spot in the working diagram,

Q' is always created if the beam is focussed

 \rightarrow it is determined by the focusing strength k of all quadrupoles

$$Q' = -\frac{1}{4\pi} \oint \beta(s) k(s) \, ds$$

k = quadrupole strength

 β = betafunction indicates the beam size ... and even more the sensitivity of the beam to external fields

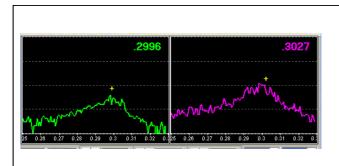
Example: LHC

$$Q' = -250$$

 $\Delta p/p = +/-0.2 *10^{-3}$
 $\Delta Q = 0.256 \dots 0.36$

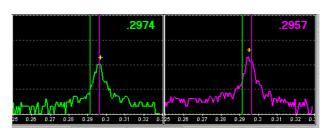
→ Some particles get very close to resonances and are lost

in other words: the tune is not a point it is a pancake



Tune signal for a nearly uncompensated cromaticity ($Q' \approx 20$)

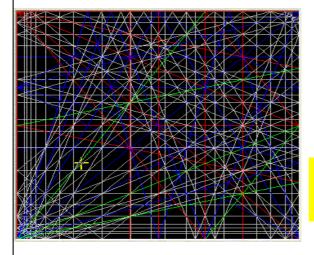
Ideal situation: cromaticity well corrected, ($Q' \approx 1$)



Tune and Resonances

$$m*Q_x+n*Q_y+l*Q_s = integer$$

Tune diagram up to 3rd order



... and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive

Correction of Q'

1.) sort the particles acording to their momentum

$$x_D(s) = D(s) \frac{\Delta p}{p}$$

2.) apply a magnetic field that rises quadratically with x (sextupole field)

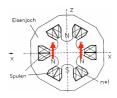
$$B_x = \tilde{g}xz$$

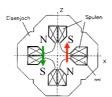
$$B_z = \frac{1}{2}\tilde{g}(x^2 - z^2)$$

$$\frac{\partial B_x}{\partial z} = \frac{\partial B_z}{\partial x} = \tilde{g}x$$

linear rising "gradient":

Sextupole Magnets:





normalised quadrupole strength:

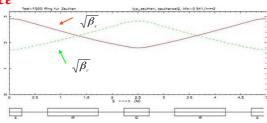
$$k_{sext} = \frac{\tilde{g}x}{p/e} = m_{sext}x$$

$$k_{sext} = m_{sext.} D \frac{\Delta p}{p}$$

corrected chromaticity:
$$Q_{cell_{-x}}^{I} = -\frac{1}{4\pi} \left\{ k_{qf} \hat{\beta}_{x} l_{qf} - k_{qd} \tilde{\beta}_{x} l_{qd} \right\} + \frac{1}{4\pi} \sum_{F sext} k_{2}^{F} l_{sext} D_{x}^{F} \beta_{x}^{F} - \frac{1}{4\pi} \sum_{D sext} k_{2}^{D} l_{sext} D_{x}^{D} \beta_{y}^{D}$$

$$Q'_{cell_{y}} = -\frac{1}{4\pi} \left\{ -k_{qf} \tilde{\beta}_{y} l_{qf} + k_{qd} \hat{\beta}_{y} l_{qd} \right\} + \frac{1}{4\pi} \sum_{F \text{ sext}} k_{2}^{F} l_{\text{sext}} D_{x}^{F} \beta_{x}^{F} - \frac{1}{4\pi} \sum_{D \text{ sext}} k_{2}^{D} l_{\text{sext}} D_{x}^{D} \beta_{y}^{D}$$

$$Q' = \frac{-1}{4\pi} * \oint k(s) \beta(s) ds$$



β-Function in a FoDo structure

$$\hat{\beta} = \frac{(1 + \sin\frac{\psi_{cell}}{2})L}{\sin\psi_{cell}} \qquad \qquad \breve{\beta} = \frac{(1 - \sin\frac{\psi_{cell}}{2})L}{\sin\psi_{cell}}$$

$$\mathbf{Q}' = \frac{-1}{4\pi} N * \frac{\hat{\boldsymbol{\beta}} - \breve{\boldsymbol{\beta}}}{f_{\mathcal{Q}}}$$

$$Q' = \frac{-1}{4\pi} N * \frac{1}{f_{Q}} * \left\{ \frac{L(1 + \sin \frac{\psi_{cell}}{2}) - L(1 - \sin \frac{\psi_{cell}}{2})}{\sin \mu} \right\}$$

using some TLC transformations ... ξ can be expressed in a very simple form:

$$Q' = \frac{-1}{4\pi}N * \frac{1}{f_Q} * \frac{2L\sin\frac{\psi_{cell}}{2}}{\sin\psi_{cell}}$$

$$Q' = \frac{-1}{4\pi}N * \frac{1}{f_Q} * \frac{L\sin\frac{\psi_{cell}}{2}}{\sin\frac{\psi_{cell}}{2}\cos\frac{\psi_{cell}}{2}}$$

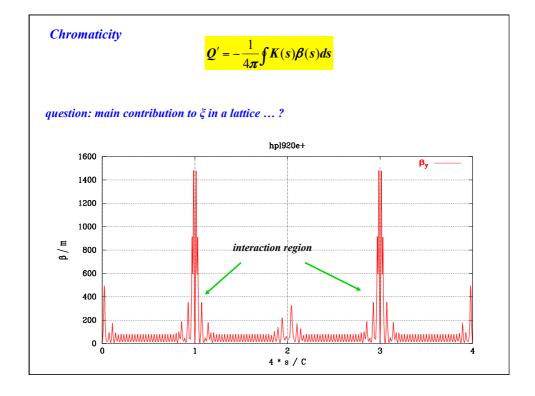
remember ...
$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$$

$$Q'_{cell} = \frac{-1}{4\pi f_Q} * \frac{L \tan \frac{\psi_{cell}}{2}}{\sin \frac{\psi_{cell}}{2}}$$
putting
sin

$$O' = \frac{-1}{1} *_{tan} \psi_{cell}$$

$$\sin\frac{\psi_{cell}}{2} = \frac{L}{4f_Q}$$

contribution of one FoDo Cell to the chromaticity of the ring:



Dipole Errors / Quadrupole Misalignment

The Design Orbit is defined by the strength and arrangement of the dipoles.

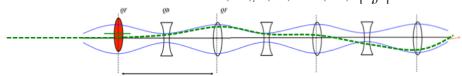
Under the influence of dipole imperfections and quadrupole misalignments we obtain a "Closed Orbit" which is hopefully still closed and not too far away from the design.

Dipole field error:
$$\theta = \frac{dl}{\rho} = \frac{\int B \, dl}{B \rho}$$

Quadrupole offset:
$$g = \frac{dB}{dx} \rightarrow \Delta x \cdot g = \Delta x \frac{dB}{dx} = \Delta B$$

misaligned quadrupoles (or orbit offsets in quadrupoles) create dipole effects that lead to a distorted "closed orbit"

normalised to p/e:
$$\Delta x \cdot k = \Delta x \cdot \frac{g}{B\rho} = \frac{1}{\rho} \quad \begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ x' \end{pmatrix} = \begin{vmatrix} 0 \\ \frac{l}{\rho} \end{vmatrix}$$

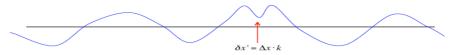


In a Linac – starting with a perfect orbit – the misaligned quadrupole creates an oscillation that is transformed from now on downstream via $\begin{pmatrix} x \\ x' \end{pmatrix}_f = M \begin{pmatrix} x \\ x' \end{pmatrix}_i$

... and in a circular machine??

we have to obey the periodicity condition.

The orbit is closed !! ... even under the influence of a orbit kick.



Calculation of the new closed orbit:

the general orbit will always be a solution of Hill, so ...

$$x(s) = a \cdot \sqrt{\beta} \cos(\psi(s) + \varphi)$$

We set at the location of the error s=0, $\Psi(s)=0$ and require as 1^{st} boundary condition: periodic amplitude

$$x(s+L) = x(s)$$

$$a \cdot \sqrt{\beta(s+L)} \cdot \cos(\psi(s) + 2\pi Q - \varphi) = a \cdot \sqrt{\beta(s)} \cdot \cos(\psi(s) - \varphi)$$

$$\cos(2\pi Q - \varphi) = \cos(-\varphi) = \cos(\varphi)$$

$$\rightarrow \varphi = \pi Q$$

$$\beta(s+L) = \beta(s)$$

$$\psi(s=0) = 0$$

$$\psi(s+L) = 2\pi Q$$

Misalignment error in a circular machine

 2^{nd} boundary condition: $x'(s+L) + \delta x' = x'(s)$

we have to close the orbit



$$x(s) = a \cdot \sqrt{\beta} \cos(\psi(s) - \varphi)$$

$$x'(s) = a \cdot \sqrt{\beta} \left(-\sin(\psi(s) - \varphi) \psi' + \frac{\beta'(s)}{2\sqrt{\beta}} a \cdot \cos(\psi(s) - \varphi) \right)$$

$$x'(s) = -a \cdot \frac{1}{\sqrt{\beta}} \left(\sin(\psi(s) - \varphi) + \frac{\beta'(s)}{2\sqrt{\beta}} a \cdot \cos(\psi(s) - \varphi) \right)$$

$$\psi(s) = \int \frac{1}{\beta(s)} ds$$
$$\psi'(s) = \frac{1}{\beta(s)}$$

$$\sqrt{p}$$
 $\sqrt{2}\sqrt{p}$

boundary condition: $x'(s+L) + \delta x' = x'(s)$

$$-a \cdot \frac{1}{\sqrt{\beta(\tilde{s}+L)}} \left(\sin(2\pi Q - \varphi) + \frac{\beta'(\tilde{s}+L)}{2\beta(\tilde{s}+L)} \sqrt{\beta(\tilde{s}+L)} \right. \\ \left. a \cdot \cos(2\pi Q - \varphi) + \frac{\Delta \tilde{s}}{\rho} \right. \\ = -a \cdot \frac{1}{\sqrt{\beta(\tilde{s})}} \left(\sin(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right) \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right) \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right) \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \right. \\ \left. a \cdot \cos(-\varphi) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \right. \\ \left. a \cdot \cos($$

Nota bene: referssto the location of the kick

Misalignment error in a circular machine

Now we use: $\beta(s+L) = \beta(s)$, $\varphi = \pi Q$

$$\frac{-a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) + \frac{\Delta \tilde{s}}{\rho} = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) + \frac{\Delta \tilde{s}}{\rho} \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) + \frac{\Delta \tilde{s}}{\rho} \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) + \frac{\Delta \tilde{s}}{\rho} \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) + \frac{\Delta \tilde{s}}{\rho} \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) + \frac{\Delta \tilde{s}}{\rho} \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) + \frac{\Delta \tilde{s}}{\rho} \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) + \frac{\Delta \tilde{s}}{\rho} \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \Big(\sin(\pi Q) + \frac{\beta'(\tilde{s})}{2\beta(\tilde{s})} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q) \Big) = \frac{a}{\sqrt{\beta(\tilde{s})}} \sqrt{\beta(\tilde{s})} \ a \cdot \cos(\pi Q)$$

$$\Rightarrow 2\ a \cdot \frac{\sin(\pi Q)}{\sqrt{\beta(\tilde{s})}} = \frac{\Delta \tilde{s}}{\rho} \quad \Rightarrow \quad a = \frac{\Delta \tilde{s}}{\rho} \cdot \sqrt{\beta(\tilde{s})} \frac{1}{2\sin(\pi Q)} \qquad \text{! this is the amplitude of the orbit oscillation resulting from a single kick}$$

inserting in the equation of motion

$$x(s) = a \cdot \sqrt{\beta} \cos(\psi(s) + \varphi)$$

$$x(s) = \frac{\Delta \tilde{s}}{\rho} \cdot \frac{\sqrt{\beta(\tilde{s})}\sqrt{\beta(s)}\cos(\psi(s) - \varphi)}{2\sin(\pi Q)}$$

 $!\ the\ distorted\ orbit\ depends\ on\ the\ kick\ strength,$

! the local β function

! the β function at the observation point

!!! there is a resoncance denominator

→ watch your tune !!!

Misalignment error in a circular machine

For completness:

if we do not set $\psi(s=0)=0$ we have to write a bit more but finally we get:

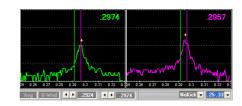
$$x(s) = \frac{\sqrt{\beta(s)}}{2\sin(\pi Q)} * \int \sqrt{\beta(\widetilde{s})} \frac{1}{\rho(\widetilde{s})} \cos(|\psi(\widetilde{s}) - \psi(s)| - \pi Q) d\widetilde{s}$$

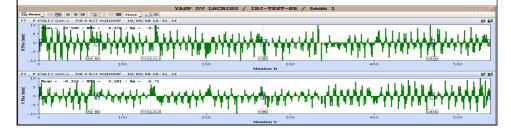
Reminder: LHC

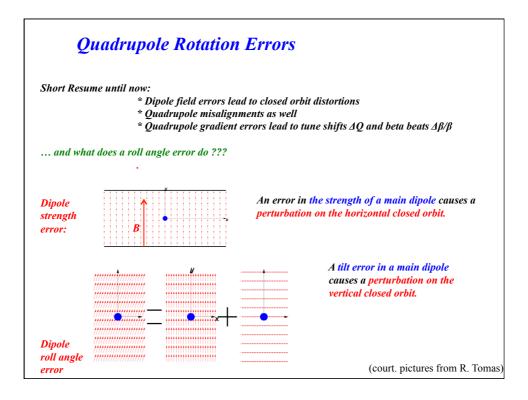
Tune: $Q_x = 64.31$, $Q_y = 59.32$

Relevant for beam stability:

non integer part avoid integer tunes



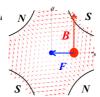




Quadrupole Rotation Errors

quadrupole tilt errors lead to coupling of the transverse motions

Standard quadrupol

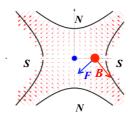


Lorents Forces

 $F_x = -kx$ and $F_y = ky$ making horizontal dynamics totally decoupled from vertical.

$$F = q(\vec{v} \times \vec{B})$$

Skew Quadrupole:



Lorents Force:

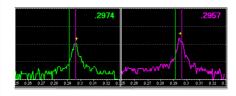
A horizontal offset leads to a horizontal and vertical component of the Lorentz force

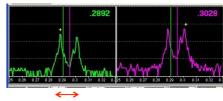
-> to coupling between x and y plane

Quadrupole Rotation Errors

Observations on Beam:

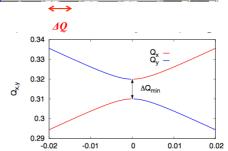
Coupling makes it impossible to approach tunes below a certain ΔQ_{min} that depends on the tune and the coupling strength





observed tune as a function of the quadrupole strength "closest tune aproach"

Correction via dedicated skew quadrupoles in the machine



Resume':

beam emittance:

$$\varepsilon \propto \frac{1}{\beta \gamma}$$

beta function in a drift:

$$\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$$

... and for
$$\alpha = 0$$

$$\beta(s) = \beta_0 + \frac{s^2}{\beta_0}$$

particle trajectory for $\Delta p/p \neq 0$ inhomogenious equation:

$$x'' + x(\frac{1}{\rho^2} - k) = \frac{\Delta p}{p_0} \frac{1}{\rho}$$

... and its solution:

$$x(s) = x_{\beta}(s) + D(s) \cdot \frac{\Delta p}{p}$$

momentum compaction:

$$\frac{\delta l_e}{L} = \alpha_{cp} \frac{\Delta p}{p} \qquad \alpha_{cp} \approx \frac{2\pi}{L} \langle D \rangle \approx \frac{\langle D \rangle}{R}$$

$$\Delta K(s) \beta(s) ds$$

quadrupole error:

$$\Delta Q = \int_{s_0}^{s_{0+1}} \frac{\Delta K(s) \beta(s) ds}{4\pi}$$

chromaticity:

$$Q' = -\frac{1}{4\pi} \int K(s) \beta(s) ds$$