

Introduction to Beam Instrumentation

CAS 2015

Warsaw, Poland 27th September – 9th October, 2015

Dr. Rhodri Jones

Head of the CERN Beam Instrumentation Group

Introduction

- What do we mean by beam instrumentation?
 - The "eyes" of the machine operators
 - i.e. the instruments that observe beam behaviour
 - An accelerator can never be better than the instruments measuring its performance!
- What does work in beam instrumentation entail?
 - Design, construction & operation of instruments to observe particle beams
 - R&D to find new or improve existing techniques to fulfill new requirements
 - A combination of the following disciplines
 - Applied & Accelerator Physics; Mechanical, Electronic & Software Engineering
 - A fascinating field of work!
- What beam parameters do we measure?
 - Beam Position
 - Horizontal and vertical throughout the accelerator
 - Beam Intensity (& lifetime measurement for a storage ring/collider)
 - Bunch-by-bunch charge and total circulating current
 - Beam Loss
 - Especially important for superconducting machines
 - Beam profiles
 - Transverse and longitudinal distribution
 - Collision rate / Luminosity (for colliders)
 - Measure of how well the beams are overlapped at the collision point

More Measurements

Machine Tune

Characteristic Frequency
of the Magnetic Lattice
Given by the strength of the
Quadrupole magnets

Machine Chromaticity

Optics Analogy:

[Quadrupole]

Focal length is energy dependent [Spread in particle energy]

Spread in the Machine
Tune due to Particle
Energy Spread
Controlled by Sextupole
magnets

The Typical Instruments

- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Intensity
 - beam current transformers
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - femtosecond diagnostics for ultra short bunches
- Beam Loss
 - ionisation chambers or pin diodes
- Machine Tune and Chromaticity
 - in diagnostics section of tomorrow
- Luminosity
 - in diagnostics section of tomorrow

Wall Current Monitor – The Principle

Wall Current Monitor – Beam Response

Electrostatic Monitor – The Principle

Electrostatic Monitor – Beam Response

Electrostatic Monitor – The Principle

Electrostatic Pick-up — Button

- √ Low cost ⇒ most popular
- × Non-linear
 - requires correction algorithm when beam is off-centre

For Button with Capacitance C_e & Characteristic Impedance R_0

Transfer Impedance:

$$Z_{T(f >> f_c)} = \frac{A}{(2\pi r) \times c \times C_e}$$

Lower Corner Frequency:

$$f_L = \frac{1}{2\pi R_0 C_e}$$

Normalising the Position Reading

- To make it independent of intensity
- 3 main methods:

- Difference/Sum : $(V_A - V_B) / (V_A + V_B) = \Delta / \Sigma$

- Phase : $Arctan(V_A / V_B)$

- Logarithm : $Log(V_A) - Log(V_B)$

Improving the Precision for Next Generation Accelerators

- Standard BPMs give intensity signals which need to be subtracted to obtain a difference which is then proportional to position
 - Difficult to do electronically without some of the intensity information leaking through
 - When looking for small differences this leakage can dominate the measurement
 - Typically 40-80dB (100 to 10000 in V) rejection ⇒ tens micron resolution for typical apertures
- Solution cavity BPMs allowing sub micron resolution
 - Design the detector to collect only the difference signal
 - Dipole Mode TM₁₁ proportional to position & shifted in frequency with respect to monopole mode

Improving the Precision for Next Generation Accelerators

- Standard BPMs give intensity signals which need to be subtracted to obtain a difference which is then proportional to position
 - Difficult to do electronically without some of the intensity information leaking through
 - When looking for small differences this leakage can dominate the measurement
 - Typically 40-80dB (100 to 10000 in V) rejection ⇒ tens micron resolution for typical apertures
- Solution cavity BPMs allowing sub micron resolution
 - Design the detector to collect only the difference signal
 - Dipole Mode TM₁₁ proportional to position & shifted in frequency with respect to monopole mode

Today's State of the Art BPMs

- Obtain signal using waveguides that only couple to dipole mode
 - Further suppression of monopole mode

- Prototype BPM for ILC Final Focus
 - Required resolution of 2nm (yes nano!) in a 6 × 12mm diameter beam pipe
 - Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan)

Criteria for Electronics Choice - so called "Processor Electronics"

- Accuracy
 - mechanical and electromagnetic errors
 - electronic components
- Resolution
- Stability over time
- Sensitivity and Dynamic Range
- Acquisition Time
 - measurement time
 - repetition time
- Linearity
 - aperture & intensity
- Radiation tolerance

Processing System Families

Modern BPM Read-out Electronics

- Based on the individual treatment of the electrode signals
 - Use of frequency domain signal processing techniques
 - Developed for telecommunications market minimising analogue circuitry
 - Rely on high frequency & high resolution analogue to digital converters
 - Bandpass filters convert BPM signals into sinewave-like signal bursts
 - Frequency down-conversion used if necessary to adapt to ADC sampling rate
 - All further processing carried out in the subsequent digital electronics

The Typical Instruments

- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Intensity
 - beam current transformers
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - Femtosecond diagnostics for ultra short bunches
- Beam Loss
 - ionisation chambers or pin diodes
- Machine Tunes and Chromacitities
 - in diagnostics section of tomorrow
- Luminosity
 - in diagnostics section of tomorrow

AC (Fast) Current Transformers

AC (Fast) Current Transformers

Fast Beam Current Transformer

- 500MHz Bandwidth
- Low droop (< 0.2%/μs)

Acquisition Electronics

Data taken on LHC type beams at the CERN-SPS

What one can do with such a System

Bad RF Capture of a single LHC Batch in the SPS (72 bunches)

The DC transformer

- AC transformers can be extended to very low frequency but not to DC (no dl/dt !)
- DC measurement is required in storage rings
- To do this:
 - Take advantage of non-linear magnetisation curve
 - Use 2 identical cores modulated with opposite polarities

DCCT Principle – Case 1: no beam

DCCT Principle - Case 1: no beam

DCCT Principle - Case 2: with beam

Zero Flux DCCT Schematic

The Typical Instruments

- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Intensity
 - beam current transformers
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - femtosecond diagnostics for ultra short bunches
- Beam Loss
 - ionisation chambers or pin diodes
- Machine Tunes and Chromacitities
 - in diagnostics section of tomorrow
- Luminosity
 - in diagnostics section of tomorrow

Secondary Emission (SEM) Grids

- When the beam passes through secondary electrons are ejected from the wires
- The liberated electrons are removed using a polarisation voltage
- The current flowing back onto the wires is measured
- One amplifier/ADC chain is used for each wire

Profiles from SEM grids

- Charge density
 measured from each
 wire gives a projection
 of the beam profile in
 either horizontal or
 vertical plane
- Resolution is given by distance between wires
- Used only in low energy linacs and transfer lines as heating is too great for circulating beams

Wire Scanners

- A thin wire is moved across the beam
 - has to move fast to avoid excessive heating of the wire and/or beam loss
- Detection
 - Secondary particle shower detected outside the vacuum chamber using a scintillator/photo-multiplier assembly
 - Secondary emission current detected as for SEM grids
- Correlating wire position with detected signal gives the beam profile

Beam Profile Monitoring using Screens

Optical Transition Radiation

- Radiation emitted when a charged particle beam goes through the interface of 2 media with different dielectric constants
- surface phenomenon allows the use of very thin screens (~10μm)

Beam Profile Monitoring using Screens

Screen Types

- Luminescence Screens
 - destructive (thick) but work during setting-up with low intensities
- Optical Transition Radiation (OTR) screens
 - much less destructive (thin) but require higher intensity

Sensitivities measured with protons with previous screen holder, normalised for $7 \text{ px/}\sigma$

Type	Material	Activator	Sensitivity
Luminesc.	CsI	Tl	6 10 ⁵
66	Al_2O_3	0.5%Cr	3 10 ⁷
66	Glass	Се	3 10°
66	Quartz	none	6 10 ⁹
OTR [bwd]	Al		2 1010
66	Ti		2 1011
44	C		2 1012
Luminesc. GSI	P43: Gd ₂ O ₂ S	Tb	2 107

Beam Profile Monitoring using Screens

- Usual configuration
 - Combine several screens in one housing e.g.
 - Al₂O₃ luminescent screen for setting-up with low intensity
 - Thin (~10um) Ti OTR screen for high intensity measurements
 - Carbon OTR screen for very high intensity operation

- Advantages compared to SEM grids
 - allows analogue camera or CCD acquisition
 - gives two dimensional information
 - high resolution: ~ 400 x 300 = 120'000 pixels for a standard CCD
 - more economical
 - Simpler mechanics & readout electronics
 - time resolution depends on choice of image capture device
 - From CCD in video mode at 50Hz to Streak camera in the GHz range

Luminescence Profile Monitor

Luminescence Profile Monitor

Beam size shrinks as beam is accelerated

CERN-SPS Measurements

- Profile Collected every 20ms
- Local Pressure at ~5×10⁻⁷ Torr

The Synchrotron Light Monitor

The Synchrotron Light Monitor

Measuring Ultra Short Bunches

- Next Generation FELs & Linear Colliders
 - Use ultra short bunches to increase brightness or improve luminosity
- How do we measure such short bunches?
 - Transverse deflecting cavity

p⁺ @ LHC	250ps
H- @ SNS	100ps
e-@ILC	500fs
e- @ CLIC	130fs
e- @ XFEL	80fs
e- @ LCLS	<75fs

Electro-Optic Sampling – Non Destructive

The Typical Instruments

- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Intensity
 - beam current transformers
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - femtosecond diagnostics for ultra short bunches
- Beam Loss
 - ionisation chambers or pin diodes
- Machine Tunes and Chromacitities
 - in diagnostics section of tomorrow
- Luminosity
 - in diagnostics section of tomorrow

Beam Loss Detectors

- Role of a BLM system:
 - 1. Protect the machine from damage
 - 2. Dump the beam to avoid magnet quenches (for SC magnets)
 - 3. Diagnostic tool to improve the performance of the accelerator
- Common types of monitor
 - Long ionisation chamber (charge detection)
 - Up to several km of gas filled hollow coaxial cables
 - Position sensitivity achieved by comparing direct & reflected pulse
 - e.g. SLAC 8m position resolution (30ns) over 3.5km cable length
 - Dynamic range of up to 10⁴
 - Fibre optic monitors
 - Similar layout with electrical signals replaced by light produced through Cerenkov effect

Beam Loss Detectors

- Common types of monitor (cont)
 - Short ionisation chamber (charge detection)
 - Typically gas filled with many metallic electrodes and kV bias
 - Speed limited by ion collection time tens of microseconds
 - Dynamic range of up to 10⁸

Beam Loss Detectors

- Common types of monitor (cont)
 - PIN photodiode (count detection)
 - Detect MIP crossing photodiodes
 - Count rate proportional to beam loss
 - Speed limited by integration time
 - Dynamic range of up to 10⁹

Beam Loss Detectors - New Materials

Diamond Detectors

- Fast & sensitive
- Used in LHC to distinguish bunch by bunch losses
- Investigations now ongoing to see if they can work in cryogenic conditions

BLM Threshold Level Estimation

Summary

- This was an overview of the common types of instruments that can be found in most accelerators
 - Only small subset of those currently in use or being developed
 - Many exotic instruments are tailored for specific accelerator needs
- Tomorrow you will see how to use these instruments to run and optimise accelerators
 - Introduction to Accelerator Beam Diagnostics (H. Schmickler)

Want to know more? Then Join the afternoon course:

- Beam Instrumentation & Diagnostics
 - For in-depth analysis of these instruments & their applications
 - 3 Sessions : BPM design & Tune Measurement
 - Using specially developed software & laboratory measurements
 - 2 Sessions : Emittance measurements & ultra-fast diagnostics
 - 1 Session : Design your own beam instrumentation suite
 - Group challenge to present this for a particular accelerator