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Lecture 1 summary

In Lecture 1, we:

• discussed the effect of synchrotron radiation on the (linear)

motion of particles in storage rings;

• derived expressions for the damping times of the vertical,

horizontal, and longitudinal emittances;

• discussed the effects of quantum excitation, and derived

expressions for the equilibrium horizontal and longitudinal

emittances in an electron storage ring in terms of the

lattice functions and beam energy.
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Lecture 1 summary: equilibrium beam sizes

The natural emittance is:

ε0 = Cqγ
2 I5
jxI2

, Cq = 3.832× 10−13 m. (1)

The natural energy spread and bunch length are given by:

σ2
δ = Cqγ

2 I3
jzI2

, σz =
αpc

ωs
σδ. (2)

The momentum compaction factor is:

αp =
I1
C0
. (3)

The synchrotron frequency and synchronous phase are given by:

ω2
s = −

eVRF
E0

ωRF
T0

αp cosφs, sinφs =
U0

eVRF
. (4)
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Lecture 1 summary: synchrotron radiation integrals

The synchrotron radiation integrals are:

I1 =
∮
ηx

ρ
ds, (5)

I2 =
∮ 1

ρ2
ds, (6)

I3 =
∮ 1

|ρ|3
ds, (7)

I4 =
∮
ηx

ρ

(
1

ρ2
+ 2k1

)
ds, k1 =

e

P0

∂By

∂x
, (8)

I5 =
∮ Hx
|ρ|3

ds, Hx = γxη
2
x + 2αxηxηpx + βxη

2
px. (9)
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Lecture 2 objectives: emittance and lattice design

In this lecture, we shall:

• derive expressions for the natural emittance in four types of

lattices:

– FODO;

– double-bend achromat (DBA);

– multi-bend achromats, including the triple-bend

achromat (TBA);

– theoretical minimum emittance (TME).

• consider how the emittance of an achromat may be reduced

by “detuning” from the zero-dispersion conditions.
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Calculating the natural emittance in a lattice

In Lecture 1, we showed that the natural emittance in a

storage ring is given by:

ε0 = Cqγ
2 I5
jxI2

, (10)

where Cq is a physical constant, γ is the relativistic factor, jx is

the horizontal damping partition number, and I5 and I2 are

synchrotron radiation integrals.

Note that jx, I5 and I2 are all functions of the lattice, and are

independent of the beam energy.
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Calculating the natural emittance in a lattice

In most storage rings, if the bends have no quadrupole
component, the damping partition number jx ≈ 1.

In this case we just need to evaluate the two synchrotron
radiation integrals:

I2 =
∮ 1

ρ2
ds, I5 =

∮ Hx
|ρ|3

ds. (11)

If we know the strength and length of all the dipoles in the
lattice, it is straightforward to calculate I2.

For example, if all the bends are identical, then in a complete
ring (total bending angle = 2π):

I2 =
∮ 1

ρ2
ds =

∮
B

(Bρ)

ds

ρ
=

2πB

(Bρ)
≈ 2π

cB

E/e
, (12)

where E is the beam energy.

Evaluating I5 is more complicated: it depends on the lattice
functions...
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Case 1: natural emittance in a FODO lattice
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Case 1: natural emittance in a FODO lattice

Let us consider the case of a simple FODO lattice. To simplify
the system, we use the following approximations:

• the quadrupoles are represented as thin lenses;

• the space between the quadrupoles is completely filled by
the dipoles.

With these approximations, the lattice functions
(Courant–Snyder parameters and dispersion) are completely
determined by the following parameters:

• the focal length f of a quadrupole;

• the bending radius ρ of a dipole;

• the length L of a dipole.
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Case 1: natural emittance in a FODO lattice

In terms of f , ρ and L, the horizontal beta function at the

horizontally-focusing quadrupole is given by:

βx =
4fρ sin θ(2f cos θ + ρ sin θ)√

16f4 − [ρ2 − (4f2 + ρ2) cos 2θ]2
, (13)

where θ = L/ρ is the bending angle of a single dipole.

The dispersion at a horizontally-focusing quadrupole is given

by:

ηx =
2fρ(2f + ρ tan θ

2)

4f2 + ρ2
. (14)

By symmetry, at the centre of a quadrupole, αx = ηpx = 0.
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Case 1: natural emittance in a FODO lattice

We also know how to evolve the lattice functions through the

lattice, using the transfer matrices, M .

For the Courant–Snyder parameters:

A(s1) = M ·A(s0) ·MT, (15)

where M = M(s1; s0) is the transfer matrix from s0 to s1, and:

A =

(
βx −αx
−αx γx

)
. (16)

The dispersion can be evolved (over a distance ∆s, with

constant bending radius ρ) using:(
ηx
ηpx

)
s1

= M ·
(
ηx
ηpx

)
s0

+

 ρ(1− cos ∆s
ρ )

sin ∆s
ρ

 . (17)
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Case 1: natural emittance in a FODO lattice

For a thin quadrupole, the transfer matrix is: M =

(
1 0
−1/f 0

)
.

For a dipole, the transfer matrix is: M =

 cos sρ ρ sin s
ρ

−1
ρ sin s

ρ cos sρ

.

We now have all the information we need to find an expression

for I5 in the FODO cell.

However, the algebra is rather formidable. The result is most

easily expressed as a power series in the dipole bending angle, θ:

I5
I2

=

(
4 +

ρ2

f2

)−3
2
[
8−

ρ2

2f2
θ2 +O(θ4)

]
. (18)
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Case 1: natural emittance in a FODO lattice

For small θ, the expression for I5/I2 can be written:

I5
I2
≈
(

1−
ρ2

16f2
θ2
)(

1 +
ρ2

4f2

)−3
2

=

(
1−

L2

16f2

)(
1 +

ρ2

4f2

)−3
2

.

(19)

This can be further simplified if ρ� 2f (often the case):

I5
I2
≈
(

1−
L2

16f2

)
8f3

ρ3
, (20)

and still further simplified if 4f � L (less often the case):

I5
I2
≈

8f3

ρ3
. (21)
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Case 1: natural emittance in a FODO lattice

Making the approximation jx ≈ 1 (since there is no quadrupole

component in the dipole), and writing ρ = L/θ, we have:

ε0 ≈ Cqγ2
(

2f

L

)3
θ3. (22)

Notice how the emittance scales with the beam and lattice parameters:

• The emittance is proportional to the square of the energy.

• The emittance is proportional to the cube of the bending angle.
Increasing the number of cells in a complete circular lattice reduces the
bending angle of each dipole, and reduces the emittance.

• The emittance is proportional to the cube of the quadrupole focal
length: stronger quads means lower emittance.

• The emittance is inversely proportional to the cube of the cell (or
dipole) length.
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Case 1: natural emittance in a FODO lattice

The phase advance in a FODO cell is given by:

cosµx = 1−
L2

2f2
. (23)

This means that a stable lattice must have:

f

L
≥

1

2
. (24)

In the limiting case, µx = 180◦, and f has the minimum value

f = L/2. Using the approximation (22equation.22):

ε0 ≈ Cqγ2
(

2f

L

)3
θ3,

the minimum emittance in a FODO lattice is expected to be:

ε0 ≈ Cqγ2θ3. (25)

However, as we increase the focusing strength, the

approximations we used to obtain the simple expression for ε0

start to break down...
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Case 1: natural emittance in a FODO lattice

Plotting the exact formula for I5/I2 as a function of the phase

advance, we find that there is a minimum in the natural

emittance, at µ ≈ 137◦.

Black line:

exact formula.

Red line:

approximation,

I5
I2
≈
(

1− L2

16f2

)
8f3

ρ3 .

It turns out that the minimum value of the natural emittance in

a FODO lattice is given by:

ε0,FODO,min ≈ 1.2Cqγ
2θ3. (26)
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Case 1: natural emittance in a FODO lattice

Using Eq. (22equation.22), we estimate that a storage ring

constructed from 16 FODO cells (32 dipoles) with 90◦ phase

advance per cell (f = L/
√

2), and storing beam at 2 GeV would

have a natural emittance of around 125 nm.

Many modern applications (including synchrotron light sources)

demand emittances smaller by one or two orders of magnitude.

How can we design a lattice with a smaller natural emittance?

Looking at curly-H in a FODO cell provides a clue...
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Case 1: natural emittance in a FODO lattice
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Case 1: natural emittance in a FODO lattice

The curly-H function remains at a relatively constant value

throughout the lattice:
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Case 2: natural emittance in a DBA lattice

As a first attempt at reducing the natural emittance, we can
try reducing the curly-H function in the dipoles, by designing a
lattice that has zero dispersion at either end of a dipole pair.

The result is a double bend achromat (DBA) cell:
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Case 2: natural emittance in a DBA lattice

To calculate the natural emittance in a DBA, let us begin by

considering the conditions for zero dispersion at the start and

the exit of the cell.

Assume that the dispersion is zero at the start of the cell.

Place a quadrupole midway between the dipoles, to reverse the

gradient of the dispersion.

By symmetry, the dispersion at the exit of the cell will be zero.

In the thin lens approximation, this condition can be written:(
1 0
−1/f 1

)
·
(
ηx
ηpx

)
=

(
ηx

ηpx − ηx
f

)
=

(
ηx
−ηpx

)
. (27)
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Case 2: natural emittance in a DBA lattice

Hence the central quadrupole must have focal length:

f =
ηx

2ηpx
. (28)

The actual value of the dispersion (and its gradient) is

determined by the dipole bending angle θ, the bending radius ρ,

and the drift length L:

ηx = ρ(1− cos θ) + L sin θ, ηpx = sin θ. (29)

Is this style of lattice likely to have a lower natural emittance

than a FODO lattice?

We can get some idea by looking at the curly-H function...
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Case 2: natural emittance in a DBA lattice

The curly-H function is much smaller in the DBA lattice (right)

than in the FODO lattice (left).

Note that we use the same dipoles (bending angle and length)

in both cases.

Low Emittance Machines 22 Part 2: Emittance and Lattice Design

Case 2: natural emittance in a DBA lattice

Let us calculate the minimum natural emittance of a DBA

lattice, for given bending radius ρ and bending angle θ in the

dipoles.

To do this, we need to calculate the minimum value of:

I5 =
∫ Hx
ρ3

ds (30)

in one dipole, subject to the constraints:

ηx,0 = ηpx,0 = 0, (31)

where ηx,0 and ηpx,0 are the dispersion and gradient of the

dispersion at the entrance of a dipole.
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Case 2: natural emittance in a DBA lattice

We know how the dispersion and the Courant–Snyder

parameters evolve through the dipole, so we can calculate I5
for one dipole, for given initial values of the Courant–Snyder

parameters αx,0 and βx,0.

Then, we simply have to minimise the value of I5 with respect

to αx,0 and βx,0.

Again, the algebra is rather formidable, and the full expression

for I5 is not especially enlightening.

Therefore, we just quote the significant results...
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Case 2: natural emittance in a DBA lattice

We find that, for given ρ and θ and with the constraints:

ηx,0 = ηpx,0 = 0, (32)

the minimum value of I5 is given by:

I5,min =
1

4
√

15

θ4

ρ
+O(θ6). (33)

This minimum occurs for values of the Courant–Snyder

parameters at the entrance to the dipole given by:

βx,0 =

√
12

5
L+O(θ3), αx,0 =

√
15 +O(θ2), (34)

where L = ρθ is the length of a dipole.
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Case 2: natural emittance in a DBA lattice

Since we know that I2 in a single dipole is given by:

I2 =
∫ 1

ρ2
ds =

θ

ρ
, (35)

we can now write down an expression for the minimum

emittance in a DBA lattice:

ε0,DBA,min = Cqγ
2I5,min

jxI2
≈

1

4
√

15
Cqγ

2θ3. (36)

The approximation is valid for small θ. Note that we have again

assumed that, since there is no quadrupole component in the

dipole, jx ≈ 1.

Compare the above expression with that for the minimum

emittance in a FODO lattice:

ε0,FODO,min ≈ Cqγ2θ3. (37)
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Case 2: natural emittance in a DBA lattice

We see that in both cases (FODO and DBA), the emittance

scales with the square of the beam energy, and with the cube

of the bending angle.

However, the emittance in a DBA lattice is smaller than that in

a FODO lattice (for given energy and dipole bending angle) by

a factor 4
√

15 ≈ 15.5.

This is a significant improvement... but can we do even better?
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Case 3: natural emittance in a TME lattice

For a DBA lattice, we imposed the constraints:

ηx,0 = ηpx,0 = 0. (38)

To get a lower emittance, we can consider relaxing these

constraints.

To derive the conditions for a “theoretical minimum

emittance” (TME) lattice, we write down an expression for:

I5 =
∫ Hx

ρ
ds, (39)

with arbitrary dispersion ηx,0, ηpx,0 and Courant–Snyder

parameters αx,0 and βx,0 in a dipole with given bending radius ρ

and angle θ.

Then, we minimise I5 with respect to ηx,0, ηpx,0, αx,0 and βx,0...
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Case 3: natural emittance in a TME lattice

The result is:

ε0,TME,min ≈
1

12
√

15
Cqγ

2θ3. (40)

The minimum emittance is obtained with dispersion at the
entrance to the dipole given by:

ηx,0 =
1

6
Lθ +O(θ3), ηpx,0 = −

θ

2
+O(θ3), (41)

and with Courant–Snyder functions at the entrance:

βx,0 =
8√
15
L+O(θ2), αx,0 =

√
15 +O(θ2). (42)

The dispersion and beta function reach minimum values in the
centre of the dipole:

ηx,min = ρ

1− 2
sin θ

2

θ

 =
Lθ

24
+O(θ4), βx,min =

L

2
√

15
+O(θ2).

(43)
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Case 3: natural emittance in a TME lattice

By symmetry, we can consider a single TME cell to contain a

single dipole, rather than a pair of dipoles as was necessary for

the FODO and DBA cells.

Outside the dipole, the

dispersion is relatively

large. This is not ideal

for a light source, since

insertion devices at

locations with large

dispersion will blow up

the emittance.

Note that the cell shown here does not achieve the exact conditions for a

TME lattice: a more complicated design would be needed for this.
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Summary: natural emittance in FODO, DBA and TME lattices

Lattice style Minimum emittance Conditions/comments

90◦ FODO ε0 ≈ 2
√

2Cqγ2θ3 f
L = 1√

2

137◦ FODO ε0 ≈ 1.2Cqγ2θ3 minimum emittance FODO

DBA ε0 ≈ 1
4
√

15
Cqγ2θ3

ηx,0 = ηpx,0 = 0

βx,0 ≈
√

12/5L αx,0 ≈
√

15

TME ε0 ≈ 1
12
√

15
Cqγ2θ3 ηx,min ≈ Lθ

24 βx,min ≈ L
2
√

15
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Comments on lattice design for low emittance

The results we have derived have been for “ideal” lattices that

perfectly achieve the stated conditions in each case.

In practice, lattices rarely, if ever, achieve the ideal conditions.

In particular, the beta function in an achromat is usually not

optimal for low emittance; and it is difficult to tune the

dispersion for the ideal TME conditions.

The main reasons for this are:

• Beam dynamics issues generally impose a number of strong

constraints on the design.

• Optimizing the lattice functions while respecting all the

various constraints can require complex configurations of

quadrupoles.
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Comments on lattice design for low emittance

A particularly challenging constraint on design of a

low-emittance lattice is the dynamic aperture.

Storage rings require a large dynamic aperture in order to

achieve good injection efficiency and good beam lifetime.

However, low emittance lattices generally need low dispersion

and beta functions, and hence require strong quadrupoles. As a

result, the chromaticity can be large, and requires strong

sextupoles for its correction.

Strong sextupoles lead to strongly nonlinear motion, and limit

the dynamic aperture (the trajectories of particles at large

betatron amplitudes or large energy deviations become

unstable).
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Further options and issues

We have derived the main results for this lecture.

However, there are many other options besides FODO, DBA

and TME for the lattice “style”.

In the remainder of this lecture, we will discuss:

• the use of the DBA lattice in third-generation synchrotron

light sources;

• detuning a DBA lattice to reduce the emittance;

• the use of multi-bend achromats.
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Further options and issues

Lattices composed of DBA cells have been a popular choice for

third generation synchrotron light sources, e.g. the ESRF.

The DBA structure provides a lower natural emittance than a

FODO lattice with the same number of dipoles.

The long, dispersion-free straight sections provide ideal

locations for insertion devices such as undulators and wigglers.
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“Detuning” a DBA

If an insertion device, such as an undulator or wiggler, is
incorporated in a storage ring at a location with large
dispersion, then the dipole fields in the device can make a
significant contribution to the quantum excitation (I5).

As a result, the insertion device can lead to an increase in the
natural emittance of the storage ring.

By using a DBA lattice, we provide dispersion-free straights in
which we can locate undulators and wigglers without blowing
up the natural emittance.

However, there is some tolerance. In many cases, it is possible
to “detune” the lattice from the strict DBA conditions, thereby
allowing some reduction in natural emittance at the cost of
some dispersion in the straights.

The insertion devices will then contribute to the quantum
excitation; but depending on the lattice and the insertion
devices, there may still be a net benefit.
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“Detuning” a DBA

Some light sources that were originally designed with
zero-dispersion straights take advantage of tuning flexibility to
operate with non-zero dispersion in the straights.

This provides a lower natural emittance, and better output for
users. For example, the ESRF:
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Multiple-bend achromats

In principle, it is possible to combine the DBA and TME lattices

by having an arc cell consisting of more than two dipoles.

The dipoles at either end of the cell have zero dispersion (and

gradient of the dispersion) at their outside faces, thus

satisfying the achromat condition.

The lattice is tuned so that in the “central” dipoles, the

Courant–Snyder parameters and dispersion satisfy the TME

conditions.

Since the lattice functions are different in the central dipoles

compared to the end dipoles, we have additional degrees of

freedom we can use to minimise the quantum excitation.

Therefore, it is possible to have cases where the end dipoles

and central dipoles differ in: the bend angle (i.e. length of

dipole), and/or the bend radius (i.e. strength of dipole).
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Multiple-bend achromats

For simplicity, let us consider the case where the dipoles all
have the same bending radius (i.e. they all have the same field
strength), but they vary in length.

Assuming each arc cell has a fixed number, M , of dipoles, and
θ = 2π/MNcells, the bending angles satisfy:

2α+ (M − 2)β = M. (44)

Since the synchrotron radiation integrals are additive, for an
M-bend achromat, we can write:

I5,cell ≈
2

4
√

15

(αθ)4

ρ
+

(M − 2)

12
√

15

(βθ)4

ρ
=

6α4 + (M − 2)β4

12
√

15

θ4

ρ
,

(45)

I2,cell ≈ 2
αθ

ρ
+ (M − 2)

βθ

ρ
= [2α+ (M − 2)β]

θ

ρ
. (46)

Low Emittance Machines 39 Part 2: Emittance and Lattice Design



Multiple-bend achromats

Hence, in an M-bend achromat:

I5,cell

I2,cell
≈

1

12
√

15

[
6α4 + (M − 2)β4

2α+ (M − 2)β

]
θ3. (47)

Minimising the ratio I5/I2 with respect to α gives:

α

β
=

1
3√3

,
6α4 + (M − 2)β4

2α+ (M − 2)β
≈
M + 1

M − 1
. (48)

The central bending magnets should be longer than the outer
bending magnets by a factor 3√3.

Then, the minimum natural emittance in an M-bend achromat
is given by:

ε0 ≈ Cqγ2 1

12
√

15

(
M + 1

M − 1

)
θ3, 2 < M <∞. (49)

Note that θ is the average bending angle per dipole.
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Example of a triple-bend achromat: the Swiss Light Source

The storage ring in the Swiss Light Source consists of 12 TBA

cells. The circumference is 288 m, and the beam energy is

2.4 GeV.

In the “zero-dispersion” mode, the natural emittance is

4.8 nm-rad.
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Example of a triple-bend achromat: the Swiss Light Source

Detuning the achromat to allow dispersion in the straights

reduces the natural emittance from 4.8 nm-rad to 3.9 nm-rad (a

reduction of about 20%).
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A 7-bend achromat: MAX IV

Note: vertical focusing provided by gradient in the bending magnets.

S.C. Leeman et al, “Beam dynamics and expected performance of Sweden’s

new storage-ring light source: MAX IV,” PRST-AB 12, 120701 (2009).
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A 7-bend achromat: MAX IV

Beam energy 3 GeV

Circumference 528 m

Number of cells 20

Horizontal emittance (no IDs) 0.326 nm

Horizontal emittance (with IDs) 0.263 nm
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Final thought: variational (longitudinal gradient) bends

In principle, we can relax the constraint that the field strength

in a dipole is constant along the length of the dipole.

Allowing a longitudinal variation in the strength provides

another degree of freedom in reducing the emittance. We

expect an optimised design to have the strongest field at the

centre of the dipole, where the dispersion can be minimised.

J. Guo and T. Raubenheimer, Proceedings of EPAC’02, Paris, France.
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Summary (1)

The natural emittance in a storage ring is determined by the

balance between the radiation damping (given by I2) and the

quantum excitation (given by I5).

The quantum excitation depends on the lattice functions.

Different “styles” of lattice can be used, depending on the

emittance specification for the storage ring.

In general, for small bending angle θ the natural emittance can

be written as:

ε0 ≈ FCqγ2θ3, (50)

where θ is the bending angle of a single dipole, and the

numerical factor F is determined by the lattice style...
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Summary (2)

ε0 ≈ FCqγ2θ3

Lattice style F

90◦ FODO 2
√

2

137◦ FODO 1.2

Double-bend achromat (DBA) 1
4
√

15

Multi-bend achromat 1
12
√

15

(
M+1
M−1

)
TME 1

12
√

15
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Summary (3)

Achromats have been popular choices for storage ring lattices

in third-generation synchrotron light sources for two reasons:

• they provide lower natural emittance than FODO lattices;

• they provide zero-dispersion locations appropriate for

insertion devices (wigglers and undulators).

Light sources have been built using double-bend achromats

(e.g. ESRF, APS, SPring-8, DIAMOND, SOLEIL) and

triple-bend achromats (e.g. ALS, SLS).
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Summary (4)

Increasing the number of bends in a single cell of an achromat

(“multiple-bend achromats”) reduces the emittance, since the

lattice functions in the “central” bends can be tuned to

conditions for minimum emittance.

“Detuning” an achromat to allow some dispersion in the

straights provides the possibility of further reduction in natural

emittance, by moving towards the conditions for a theoretical

minimum emittance (TME) lattice.
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