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SPACE CHARGE 
DOMINATED BEAMS

Massimo Ferrario

INFN-LNF

EQUATION OF MOTION

 The motion of charged particles is governed by the Lorentz force :

  

€ 

d mγ v( )
dt

= Fe.m.
ext = e E + v × B( )

Where m is the rest mass, γ the relativistic factor and v the particle velocity 

Charged  particles  are  accelerated,  guided  and  confined  by  external 
electromagnetic fields. 

 Acceleration is  provided by the electric field of the RF cavity

Magnetic  fields  are  produced  in  the  bending  magnets  for  guiding  the 
charges  on  the  reference  trajectory  (orbit),  in  the  quadrupoles  for  the 
transverse confinement, in the sextupoles for the chromaticity correction.
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There is another important source of e.m. fields :  the beam itself

Direct self fields

Image self fields

 Wake  fields  

SELF FIELDS AND WAKE FIELDS

Space Charge

   
•    energy loss

•    energy spread and emittance degradation

•    shift of the synchronous phase and frequency (tune)
 
•    shift of the betatron frequencies (tunes)
    
•    instabilities. 

These fields depend on the current and on the charges velocity.

They are responsible of many phenomena of beam dynamics: 

(wake-fields)
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Trace space of an ideal laminar beam 
x

!x = dx
dz

=
px
pz

"

#
$

%
$

       px << pz

X 

X’ 

Trace space laminar beam 
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X 

X’ 

Trace space of non laminar beam 

Twiss parameters: 12 =−αβγ

Ellipse equation:
Geometric emittance (Liouville):

€ 

εg

€ 

γx2 + 2αx $ x + β $ x 2 = εg

Ellipse area: A = πεg

x

!x

!β = −2α
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Phase space evolution

With space charge => no cross over



No space charge => cross over



21/09/15

6

rms emittance 

x

x’

€ 

σ x
€ 

σ x'

€ 

σ x
2 = x2 = x2

−∞

+∞

∫
−∞

+∞

∫ f x, & x ( )dxd & x 

rms beam envelope: 

€ 

γx2 + 2αx $ x + β $ x 2 = εrms

€ 

σ x = x2 = βεrms    

σ x' = % x 2 = γεrms

Define rms emittance: 

such that: 

€ 

α = −
1

2εrms

d
dz

x2 = −
x % x 
εrms

= −
σ xx'

εrms

Since: 
 

it follows: 
€ 

α = −
$ β 
2

€ 

εrms
f x, !x( )dxd !x

−∞

+∞

∫
−∞

+∞

∫ =1 !f x, !x( ) = 0

€ 

γβ −α 2 = 1

σ x '
2

εrms

σ x
2

εrms
−
σ xx '

εrms

"

#
$

%

&
'

2

=1

It holds also the relation: 

Substituting             we get 

€ 

α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

!σ x = x '2 = γεrms

σ xx ' = x !x = −αεrms

€ 

" x =
px

pz
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x

x’

a

a’

€ 

€ 

εrms
2 = x2 # x 2 − x # x 2

!x =Cxn

εrms
2 =C2 x2 x2n − xn+1

2( )
When n = 1   ==>   εrms = 0

When n = 1    ==>   εrms = 0

x

x’

a

a’

What does rms emittance tell us about phase space distributions 
under linear or non-linear forces acting on the beam? 

Assuming a generic            correlation of the type: 

€ 

x, " x 

Constant under linear transformation only

And without acceleration:

€ 

" x =
px

pz
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εn,rms = σ x
2σ px

2 −σ xpx
2 =

1
moc

x2 px
2 − xpx

2( ) ≈ βγ εrms

Normalized rms emittance:

px = pz !x =mocβγ !xCanonical transverse momentum: 

Liouville theorem: the density of particles n, or the volume V 
occupied by a given number of particles in phase space 
(x,px,y,py,z,pz) remains invariant under linear tranformations. 

It hold also in the projected phase spaces (x,px),(y,py)(,z,pz) 
provided that there are no couplings  

€ 

pz ≈ p

€ 

εn,rms

dσ x

dz
=
d
dz

x2 =
1
2σ x

d
dz

x2 =
1
2σ x

2 x !x =
σ xx '

σ x

d 2σ x

dz2
=
d
dz
σ xx '

σ x

=
1
σ x

dσ xx '

dz
−
σ xx '
2

σ x
3 =

1
σ x

x '2 − x !!x( )−σ xx '
2

σ x
3 =

σ x '
2 + x !!x
σ x

−
σ xx '
2

σ x
3

!!σ x =
σ x
2σ x '

2 −σ xx '
2

σ x
3 −

x !!x
σ x

=
εrms
2

σ x
3 +

x !!x
σ x

Envelope Equation without Acceleration

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

Now take the derivatives: 

And simplify: 

We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term. 
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Lets now consider for example the simple case with   
describing a beam drifting in the free space.  
 
The envelope equation reduces to: 
 

x !!x = 0

σ x
3 !!σ x = εrms

2

With initial conditions               at zo, depending on the upstream 
transport channel, the  equation has a hyperbolic solution:  
 

σ o, !σ o

Considering the case              (beam at waist) 
  
and using the definition  
 
the solution is often written in terms of the       function as:  
 

!σ o = 0

σ x = βεrms

This relation indicates that without any external focusing element the 
 
 beam envelope increases from the beam waist by a factor          with 
 
 a characteristic length  
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βo

β z( )
2βo

βw

For an effective transport of a beam with finite emittance is mandatory 
to make use of some external force providing beam confinement in the 
transport or accelerating line.  

Assuming that each particle is subject only to a linear focusing  

force, without acceleration: 
 
take the average over the entire particle ensemble  

!!x + kx
2x = 0

€ 

" " σ x + kx
2σ x =

εrms
2

σ x
3

x !!x = −kx
2 x2

We obtain the rms envelope equation with a linear focusing force 
in which the rms emittance enters as defocusing pressure like 
term. 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3
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Space Charge: What does it mean?
The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1)   Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects

Continuous Uniform Cylindrical Beam Model

€ 

J =
I
πa2

€ 

ρ =
I

πa2v

€ 

a

€ 

εoE ⋅ dS = ρdV∫∫
Gauss’s law

€ 

Bϑ =
β
c
Er

€ 

Er =
I

2πεoa
2v
r    for   r ≤ a

Er =
I

2πεov
1
r

     for   r > a

Ampere’s law

€ 

B ⋅ dl = µo J ⋅ dS∫∫

€ 

Bϑ = µo
Ir

2πa2
   for    r ≤ a

Bϑ = µo
I
2πr

   for    r > a
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γ= 1 γ = 5 γ = 10

L(t)
Rs(t) Δt

€ 

Er(r,s,γ ) =
Ir

2πε0R
2βc

g s,γ( )

€ 

Ez(0,s,γ ) =
I

2πγε0R
2βc

h s,γ( )

€ 

Fr =
eEr
γ 2

=
eIr

2πγ 2ε0R
2βc

g s,γ( )

Bunched Uniform Cylindrical Beam Model

Lorentz Force

Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high velocities, tends to 
compensate for the repulsive electric force. Therefore space charge defocusing is 
primarily a non-relativistic effect.

is a linear function of the transverse coordinate

€ 

dpr
dt

= Fr =
eEr
γ 2

=
eIr

2πγ 2ε0R
2βc

g s,γ( )

€ 

Bϑ =
β
c
Er

Fx =
eIx

2πγ 2ε0σ x
2βc

g s,γ( )

€ 

Er(r,s,γ ) =
Ir

2πε0R
2βc

g s,γ( )
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Envelope Equation with Space Charge

!!x =
ksc s,γ( )
σ x
2 x

Space Charge de-focusing force

Single particle transverse motion: dpx
dt

= Fx              px= p !x = βγmoc !x

d
dt

p !x( ) = βc d
dz

p !x( ) = Fx

!!x =
Fx
βcp

Generalized perveance
ksc s,γ( ) = 2I

IA βγ( )3
g s,γ( ) IA =

4πεomoc
3

e
=17kA

x !!x =
ksc
σ x
2 x2 =ksc

!!σ x + k
2σ x =

εn
2

βγ( )2σ x
3
+
ksc
σ x

External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation

€ 

x " " x 

€ 

" " σ x =
εrms

2

σ x
3 −

x " " x 
σ x

Including all the other terms the envelope equation reads:

€ 

ρ =
βγ( )2 kscσ x

2

εn
2Laminarity Parameter: 
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€ 

" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x

€ 

" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x

ρ>>1

ρ<<1

Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator 

€ 

ρ =
2Iσ 2

γIAεn
2 ≡

2Iσ q
2

γIAεn
2 =

4I 2

' γ 2IA
2εn

2γ 2

€ 

γ tr =
2I
# γ IAεn

Laminarity parameter 

Transition Energy (ρ=1) 

I=100 A

I=1 kA

I=4 kA

ρ

Potential space charge emittance growth 

ρ = 1 

εth = 0.6 µm

Eacc = 25 MV/m
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Surface charge density Surface electric field

Restoring force

Plasma frequency

Plasma oscillations

Neutral Plasma

Magnetic focusing

Magnetic focusing

Single Component       
Cold Relativistic Plasma

• Oscillations

• Instabilities

• EM Wave propagation
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Single Component 
Relativistic Plasma

€ 

" " σ + ks
2σ =

ksc s,γ( )
σ

ks =
qB

2mcβγ

€ 

δ # # σ s( ) + 2ks
2δσ s( ) = 0

€ 

σ eq s,γ( ) =
ksc s,γ( )
ks

Equilibrium solution:

€ 

σ ζ( ) =σ eq s( ) +δσ s( )

Small perturbation:

€ 

σ s( ) =σ eq s( ) +δσ o s( )cos 2ksz( )

Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:

€ 

δσ s( ) = δσ o s( )cos 2ksz( )

σ(z)

ε(z)

Envelope oscillations drive Emittance oscillations

€ 

εrms = σ x
2σ x'

2 −σ xx'
2 = x2 % x 2 − x % x 2( ) ≈ sin 2ksz( )
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Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam 

x

px

Projected Phase Space Slice Phase 
Spaces

X

X
’

Perturbed trajectories oscillate around the 
equilibrium with the  

same frequency but with different amplitudes 
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σ(z)

ε(z)

energy spread induces decoherence

There is another important source of e.m. fields :  the beam itself

Direct self fields

Image self fields

 Wake  fields  

IMAGE SELF FIELDS

Space Charge
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Static Fields: conducting or magnetic screens 

Let us consider a point charge q close to a conducting screen. 
The  electrostatic  field  can  be  derived  through  the  "image  method".  Since  the 
metallic  screen  is  an  equi-potential  plane,  it  can  be  removed  provided  that  a 
"virtual" charge is introduced such that the potential is constant at the position of 
the screen

q q - q

I

A constant current in the free space produces circular magnetic 
field. 

If µr≈1, the material, even in the case of a good conductor, does not 
affect the field lines.
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 Circular  Perfectly Conducting  Pipe (Beam at Center)

In the case of charge distribution, and γ→∞, 
the  electric  field  lines  are  perpendicular  to 
the direction of motion. The transverse fields 
intensity can be computed like in the static 
case, applying the Gauss and Ampere laws.

€ 

λo = ρπa2

2)/()( arr oλλ =

€ 

J = βcρ

I = Jπa2 = βcλ0(A) 2

2

 
2

)()(B

   
2

)(

 

a
r

c
rE

c
r

a
r

rE

arfor

o

o
r

o

o
r

  
=

 
=

 
=

<

πε
βλβ

πε
λ

θ

Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2
=

eλo r
2πεoγ

2a2

there is a cancellation of the electric and magnetic forces

In some cases, the beam pipe cross section is such that we can consider only the 
surfaces closer to the beam, which behave like two parallel plates. In this case, we 
use the image method to a charge distribution of radius a between two conducting 
plates 2h apart. By applying the superposition principle we get the total image field 
at a position y inside the beam. 

€ 

Ey
im(z ,y) =

λ(z )
2π εo

(−1)n

n=1

∞

∑ 1
2nh + y

−
1

2nh − y

( 

) 
* 

+ 

, 
- 

€ 

Ey
im(z ,y) =

λ(z )
2π εo

(−1)n

n=1

∞

∑ −2y
2nh( )2 − y2

≅
λ (z)
4π εoh

2

π 2

12
y

Where we have assumed:   h>>a>y. 

For  d.c.  or  slowly  varying  currents,  the  boundary  condition  imposed  by  the 
conducting  plates  does  not  affect  the  magnetic  field.  We do  not  need  “image 
currents “As a consequence there is no cancellation effect for the fields produced 
by the "image" charges. 

2h q

Parallel Plates (beam at center)

-q

-q 2h

q

q 4h

y
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From the divergence equation we derive also the other transverse component, 
notice the opposite sign:

€ 

∂
∂x
Ex
im = −

∂
∂y
Ey
im ⇒ Ex

im(z ,x) =
−λ(z )
4π εoh

2

π 2

12
x

Including also the direct space charge force, we get:

Fx (z, x) = eλ(z)x
π  εo

1
2a2γ 2 −

π 2

48h2

"

#
$

%

&
'

Fy (z, x) = eλ(z)y
π  εo

1
2a2γ 2 +

π 2

48h2

"

#
$

%

&
'

(

)

*
*

+

*
*

Therefore, for γ>>1, and for d.c. or slowly varying currents the cancellation effect 
applies only for the direct space charge forces. There is no cancellation of the 
electric and magnetic forces due to the "image" charges.

For  ferromagnetic  type,  with  µr>>1,  the  very  high  magnetic 
permeability  makes  the  tangential  magnetic  field  zero  at  the 
boundary  so  that  the  magnetic  field  is  perpendicular  to  the 
surface, just like the electric field lines close to a conductor. 
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Bx
im (z, y) = µoβcλ(z)

2π  n=1

∞

∑ 1
2ng− y

−
1

2ng+ y
$

%
&

'

(
)

Bx
im (z, y) ≅ µoβcλ(z)y

4πg2
1
n2n=1

∞

∑ =
µoβcλ(z)π

2y
24πg2

Fx
im (z, x) ≅ β

2λ(z)π 2

24πεog
2 x

2g I

I

I 2g

I

I 4g

y

In analogy with the image method we get the magnetic field, in 
the region outside the material, as superposition of the fields due 
to two symmetric equal currents flowing in the same direction. 
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It is necessary to compare the wall thickness and the skin depth (region of 
penetration of the e.m. fields) in the conductor. 

If the fields penetrate and pass through the material, we are practically in 
the static boundary conditions case. Conversely, if the skin depth is very 
small, fields do not penetrate, the electric filed lines are perpendicular to 
the wall, as in the static case, while the magnetic field line are tangent to 
the surface. 

I -II -I

Δw

δw

Time-varying fields  

€ 

δw ≅
2

ωσµ

Usually, the frequency beam spectrum is quite rich of harmonics, 
especially for bunched beams. 

It is convenient to decompose the current into a d.c. component, I, 
for which δw>>Δw, and an a.c. component, Î, for which δw<< Δw.

While the d.c. component of the magnetic field does not perceives 
the  presence  of  the  material,  its  a.c.  component  is  obliged to  be 
tangent at the wall. For a charge density λ we have I=λv. 

We can see that this current produces a magnetic field able to cancel 
the effect of the electrostatic force.

Parallel Plates (Beam at Center) a.c. currents
Δw

δw
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Ey (z, x) =
λ(z)y
π  εo

π 2

48h2

Bx (z, x) = β
c
Ey (z, x) 

!

"
##

$
#
#

Fx (z, x) = e λ(z)x
2π  εoγ

2
1
a2 −

π 2

24h2

"

#
$

%

&
'

Fy (z, x) = e λ(z)y
2π  εoγ

2
1
a2 +

π 2

24h2

"

#
$

%

&
'

"

#

$
$
$
$$

There is cancellation of the electric and magnetic forces !!

I

-I

-I

I

I

Fy (z, x) = e 1−β 2( )Ey =
1
γ 2
e λ(z)y
π  εo

π 2

48h2

Parallel Plates - General expression of the force 

Taking into account all the boundary conditions for d.c. and a.c. 
currents, we can write the expression of the force as:

  

€ 

Fu =
e

2π εo

1
γ 2

1
a2


π 2

24h2
% 

& 
' 

( 

) 
* λ  β 2 π 2

24h2
+
π 2

12g2
% 

& 
' 

( 

) 
* λ 

- 

. 
/ 

0 

1 
2 u

where λ is the total current, and λ its d.c. part. We take the sign (+) if u=y, and the 
sign (–) if u=x.

-L. J. Laslett, LBL Document PUB-6161, 1987, vol III
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r
a

D.C. A.C.

€ 

F⊥ (r) =
e
γ 2

λ(z)
2π ε0

r
a2

€ 

Fx (z,x) =
eλ0x
π ε0

1
2a2γ 2 −

π 2

48h2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Fy (z,x) =
eλ0y
π ε0

1
2a2γ 2 +

π 2

48h2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Fx (z, x) = e
λ(z)x
π  ε0γ

2
1

2a2 −
π 2

48h2

"

#
$

%

&
'

Fy (z, x) = e
λ(z)y

π  ε0γ
2

1
2a2 +

π 2

48h2

!

"
#

$

%
&

λ(z) = λo  +  λ  cos kzz( )    ;  kz = 2π / lw

(δw<< Δw)

Space charge effects in storage rings
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When the beam is located at the centre of symmetry of the pipe, the e.m. forces due 
to  space  charge  and  images  cannot  affect  the  motion  of  the  centre  of  mass 
(coherent),  but  change  the  trajectory  of  individual  charges  in  the  beam 
(incoherent). 

These force may have a complicate dependence on the charge position. A simple 
analysis  is  done  considering  only  the  linear  expansion  of  the  self-fields  forces 
around the equilibrium trajectory.

Incoherent and Coherent Transverse Effects

Consider a perfectly circular accelerator with radius ρx. The beam 
circulates  inside  the  beam pipe.  The  transverse  single  particle 
motion  in  the  linear  regime,  is  derived  from  the  equation  of 
motion. Including the self field forces in the motion equation, we 
have 

    

€ 

d mγ v( )
dt

= F ext  r ( ) + F self  r ( )

O

  ρ
x

y

x

z

    

€ 

dv
dt

=
F ext  r ( ) + F self  r ( )

mγ

Self Fields and betatron  motion
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In the analysis of the motion of the particles in presence of the self 
field,  we will adopt a simplified model where particles execute 
simple harmonic oscillations around the reference orbit. 
This is the case where the focussing term is constant. Although 
this condition in never fulfilled in a real accelerator, it provides a 
reliable model  for the description of the beam instabilities

€ 

" " x (s)+ Kxx(s) =
1

β 2Eo

Fx
self (x)

€ 

" " x (s)+
Q x

ρx

$ 

% 
& 

' 

( 
) 

2

x(s) =
1

β 2Eo

Fx
self (x,s)€ 

Kx =
Qx

ρx

# 

$ 
% 

& 

' 
( 

2

Qx Betatron tune: n. of betatron oscillations per turn

Transverse Incoherent  Effects

We take the linear term of the transverse force in the betatron equation:

Fx
s.c. (x, z) ≅ ∂Fx

s.c.

∂x
"

#
$

%

&
'
x=0

x

((x +
Qx

ρx

"

#
$

%

&
'

2

x = 1
β 2Eo

∂Fx
s.c.

∂x
"

#
$

%

&
'
x=0

x

)

*

+
+

,

+
+

€ 

Qx + ΔQx( )2 ≅Qx
2 + 2QxΔQx ⇒ ΔQx = −

ρx
2

2β 2EoQx

∂ Fx
s.c.

∂x

) 

* 
+ 

, 

- 
. 

The  betatron  shift  is  negative  since  the  space  charge  forces  are 
defocusing on both planes. Notice that the tune shift  is in general 
function of “z”, therefore there is a tune spread inside the beam.

€ 

" " x +
Qx

ρx

$ 

% 
& 

' 

( 
) 

2

−
1

β 2Eo

∂Fx
s.c.

∂x

$ 

% 
& 

' 

( 
) 

x=0

$ 

% 

& 
& 

' 

( 

) 
) 
x = 0
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Example:  Incoherent  betatron  tune  shift  for  an  uniform 
electron beam of radius a, length lo, inside circular  perfectly 
conducting  pipe 
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For a real  bunched beams the space charge forces, and the tune shift 
depend on the longitudinal and radial position of the charge. 

Consequences of the space charge  tune shifts

In circular accelerators the values of the betatron tunes should not be 
close to rational numbers in order to avoid the crossing of linear and 
non-linear resonances where the beam becomes unstable.

 

The tune spread induced by the space charge force can make hard to 
satisfy  this  basic  requirement.  Typically,  in  order  to  avoid  major 
resonances the stability requires 

€ 

ΔQu < 0.3
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Transverse Coherent  Effects

If the beam experiences a transverse deflection kick, it starts to 
perform betatron oscillations as a whole. The beam, source of the 
space  charge  fields  moves  transversely  inside  the  pipe,  while 
individual particles still continue their incoherent motion around 
the common coherent trajectory.

λ -λ

d

b

x

€ 

d =
b2

x

The image charge is at a distance “d” such that
the pipe surface is at constant voltage, and pulls
 the beam away from the center of the pipe.

 Circular  Perfectly Conducting  Pipe (Beam off Center)
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The effect is defocusing: the horizontal electric image
 field E and the horizontal force F are: 
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