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Abstract 

The space charge forces are those generated directly by the charge distribution, with the 
inclusion of the image charges and currents due to the interaction of the beam with a perfectly 
conducting smooth pipe. Space charge forces are responsible of several unwanted phenomena related 
to beam dynamics, such as energy loss, shift of the synchronous phase and frequency, shift of the 
betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge 
effects in high energy storage rings as well as low energy linacs and transport lines. 

 

1.  Introduction 
Charged particles moving in a linear or circular accelerator are guided, confined and accelerated 

by external electromagnetic (e.m.) fields. In particular, the electric field in RF cavities is responsible 
of acceleration, while the magnetic fields guide and focus the particles: the bending magnets are used 
for guiding the charges on the reference trajectory (orbit), the solenoids or quadrupoles for the 
transverse confinement, and the sextupoles for the chromaticity correction. 

The particle motion is governed by the Lorentz force through the equation:  

d m0γ
!v( )

dt
=
!
F ext = e

!
E + !v ×

!
B( )                                                    (1) 

where m0 is the rest mass, γ is the relativistic factor and !v  is the particle velocity. With the above 
equation we can in principle calculate the trajectory of the charge moving through any e.m. field. 

The external forces 

F ext  used for the beam transport and expressed by eq. (1) do not depend on 

the beam current. In a real accelerator, however, there is another important source of e.m. fields to be 
considered, the beam itself, which, circulating inside the pipe, produces additional e.m. fields called 
"self-fields". These fields, which depend on the intensity of the beam current and on the charge 
distribution, perturb the external guiding fields. 

The self-fields are responsible of several unwanted phenomena related to beam dynamics, such 
as energy loss, shift of the synchronous phase and frequency, shift of the betatron frequencies, and 
instabilities. It is customary to divide the study of self-fields in space charge fields and wakefields. 
The space charge forces are those generated directly by the charge distribution, with the inclusion of 
the image charges and currents due to the interaction of the beam with a perfectly conducting smooth 
pipe [1]. The wakefields are instead produced by the finite conductivity of the walls and by all 
geometric variation of the beam pipe (such as resonant devices and transitions of the beam pipe). A 
reference paper on the wakefields can be found in [2]. 

We will discuss in this lecture space charge effects only, which are actually a particular case of 
Coulomb interactions in a multi-particle system. The net effect of the Coulomb interaction in a multi-
particle system can be in fact classified into two regimes [3]: 

 
- collisional regime, dominated by binary collisions caused by close particle encounters i.e. 
single particle scattering 



 
- collective regime or space charge regime, dominated by the self-field produced by the 
particle distribution which varies appreciably only over large distances compared to the 
average separation of the particles.  
 

The collisional part of the total interaction force arises when a particle is scattered by its immediate 
neighbors. This force will cause small random displacements of the particle’s trajectory and statistical 
fluctuations in the particle distribution as a whole, leading for example to intra-beam scattering effects 
in high-energy storage rings [4] (see also Touschek effect [5]). On the other hand space charge forces 
lead to collective behavior of the beam driving for example envelope oscillations, emittance and 
energy spread growth [6].  
 

A measure for the relative importance of collisional versus collective effects in a beam is the 

Debye length: λD =
εoγ

2kBT
e2n

, where n  is the particle density and the transverse beam temperature T 

is defined as kBT = γmo v⊥
2 , kB being the Boltzmann constant [3]. If a test charge is placed inside the 

beam, the excess electric potential ΦD  set up by this charge is effectively screened off in a distance λD 

by charge redistribution in the beam as: ΦD
r( ) = C

r
e−r/λD . This effect is well known from plasma 

physics as Debye shielding [7]. A charged particle beam in a particle accelerator can be viewed in fact 
as a non-neutral plasma [8] in which the smooth focusing channel replaces the restoring force 
produced by ions in a neutral plasma, see Fig. 1. Like in a neutral plasma collective behavior of the 
beam can be observed on length-scales much larger than the Debye length. It follows that if the Debye 
length is much smaller compared to the beam radius, collective effects due to the self fields of the 
beam will play a dominant role in driving the beam dynamics with respect to binary collisions.  
 

 
Fig. 1 – The restoring force produced by the ions (green dots) in a neutral plasma can be replaced by a 
smooth focusing channel for charged particle beam (non-neutral plasma) in a particle accelerator.  

 

the effective interaction range of the test particle is limited to the 
Debye length !

The charges sourrounding the test particles have a screening effect!
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Smooth functions for the charge and field distributions can be used 
as long as the Debye length remains small compared to the particle 

bunch size!

λD!
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r( )ΦSC
r( )

 
Fig. 2 –Representation of the Debye sphere surrounding a test particle (red) in a beam dominated by 
space charge smooth fields (uniform orange). 

 



Smooth functions for the charge and field distributions can be used, as will be done in 
paragraph 3, as long as the Debye length remains large compared to the interparticle distance 
d = n−1/3 , that is as long as the number ND of particles within a Debye sphere of radius λD remains 
large (ND >> 1). A typical particle is actually scattered by all of the other particles within its Debye 
sphere, but the large number of random interaction very rarely causes any sudden change in its motion 
(weakly coupled plasma) and mainly contribute in driving the beam toward a thermal equilibrium [3].  

 
The smoothed space-charge forces acting on a particle can be thus treated like an external force 

and can be separated into linear and nonlinear terms as a function of displacement from the beam axis. 
The linear space-charge term typically defocuses the beam and leads to an increase in beam size. The 
nonlinear space-charge term increases the rms emittance by distorting the phase-space distribution. 
We shall see in paragraph 6 that also the linear component of the space charge field can induce 
reversible emittance growth in a bunched beam when longitudinal/transverse correlations along the 
bunch are taken in to account.  

 
Notice that the Debye length increases with particle energy γ so that at sufficiently high energy 

a transition from space charge to collisional regime may occur.  

2.  Self fields and equations of motion 

2.1  The betatron motion 

Before dealing with the self induced forces produced by the space charge and their effect on the beam 
dynamics in a circular accelerator, we briefly review the transverse equations of motion [9]. In order 
to simplify our study, let us consider a perfectly circular accelerator with radius ρx and obtain the 
transverse single particle equation of motion in the linear regime. 

If we include, in the particle equation of motion given by eq. (1), the self induced forces, we 
have  

d m0γ
!v( )

dt
=
!
Fext !r( )+

!
Fself !r( )                                                      (2) 

 By considering a constant energy γ it becomes: 

d!v
dt
=

!
Fext !r( )+

!
Fself !r( )

m0γ
                                                        (3) 
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Fig. 3: Coordinate system for a charge in a circular accelerator. 

 



According to the coordinate system of Fig. 3, indicating with r  the charge position, and with x 
and y the transverse displacements with respect to the reference trajectory, we write: 

r = ρ x+x( ) êx + yêy                                                             (4) 

Since the unit vector êx  rotates with angular frequency ω0 (clockwise in the figure), its time 

derivative is ω0 êz , so that the velocity is 

v = d
r
dt
= xêx + yêy +ω0 ρ x+x( ) êz                                                   (5) 

and the acceleration  
a = x −ω0

2 ρ x+x( )"# $%êx + yêy + ω0 ρ x+x( )+ 2ω0 x"# $%êz                               (6) 

In the above equations the dots mean derivative with respect to time.  

If we consider the motion along x, we have: 

!!x −ω0
2 ρ x+x( ) = 1

m0γ
Fx
ext +Fx

self( )                                                  (7) 

Instead of using the time t as variable, we consider the azimuthal position s=vzt, so that the 
acceleration along x becomes  

x = d
2x
dt2

= vz
2 d 2x
ds2

= vz
2 !!x =ωo

2 ρ x+x( )2 !!x                                                   (8) 

for which we have also used eq. (5). With the above equation, the differential equation of motion (7) 
can be written as 

!!x −
1

ρ x+x
=

1
m0vz

2γ
Fx
ext +Fx

self( )                                                   (9) 

We assume now small transverse displacements x with respect to the machine radius ρx, so that 
we can linearly expand the above equation into 

!!x −
1
ρ x

+
1
ρx
2 x =

1
m0vz

2γ
Fx
ext +Fx

self( )                                              (10) 

In addition, we have that the external force is due to the magnetic guiding fields. We suppose to 
have only dipoles and quadrupoles, or, equivalently, we expand the external guiding fields in a Taylor 
series up to the quadrupole component 

−Fx
ext = qvzBy = qvzBy0 + qvz

∂By

∂x
#

$
%

&

'
(
0

x +…                                          (11) 

and recognize that the dipolar magnetic field By0 is responsible of the circular motion along the 
reference trajectory of radius ρx according to the equation 



qvzBy0 =
m0γvz

2

ρx

                                                              (12) 

We finally obtain 

!!x +
1
ρx
2 +

q
m0vzγ

∂By

∂x
#

$
%

&

'
(

)

*
+

,

-
.x =

1
m0vz

2γ
Fx

self                                          (13) 

which can also be written as 

!!x +
1
ρx
2 − k

#

$
%

&

'
(x =

1
m0vz

2γ
Fx

self                                                   (14) 

where we have introduced the normalized gradient 

k = g
p / q

= −
q

m0vzγ
∂By

∂x
#

$
%

&

'
(                                                   (15) 

with g the quadrupole gradient in [T/m] and p the charge momentum.  

Eq. (14) is not exactly correct, because both the curvature radius and the normalized gradient 
depend on the azimuthal position ‘s’. By using the focusing constant Kx(s) we then should write 

!!x (s)+Kx (s)x(s) =
1

m0vz
2γ
Fx

self (x, s)                                               (16) 

In absence of self fields, the solution of the free equation (Hill’s equation) gives the well known 
betatron oscillations: 

x(s) = ax βx (s) cos µx (s)−ϕ x[ ]                                                (17) 

where ax and φx depend on the initial conditions, and 

   

1
2
βx !!βx −

1
4

!βx
2 +Kx (s)βx

2 =1

!µx (s) =1/ βx (s)

Qx =
ωx

ωo

=
1
2π

d !s
βx ( !s )0

L

∫

                                            (18) 

with Qx  the betatron tune. 

In the analysis of the motion in presence of the self induced fields, however, we adopt a 
simplified model where particles execute simple harmonic oscillations around the reference trajectory. 
This is equivalent to have the focusing term Kx constant around the machine. Although this case is 
never fulfilled in a real accelerator, however it provides a reliable model for the description of the 
beam instabilities. Under this approximation eq. (16) becomes 

!!x (s)+Kxx(s) =
1

m0vz
2γ
Fx

self (x, s)                                             (19) 



which is a linear differential equation. The homogeneous solution is given by 

x(s) = Ax cos Kx s−ϕ x
"
#

$
%                                                   (20) 

were, with the notations of eq. (18), we have 

ax βx = Ax

βx =
1
!µx

=
1
Kx

µx (s) = Kx s

Qx =
1
2π

d !s
βx ( !s )0

L

∫ =
L

2πβx

= ρx Kx ⇒ Kx =
Qx

ρx

$

%
&

'

(
)

2

                            (21) 

The differential equation of motion (19) then becomes 

!!x (s)+ Q x

ρx

"

#
$

%

&
'

2

x(s) = 1
m0vz

2γ
Fx

self (x, s)                                 (22) 

An analogous equation of motion can also be written for the vertical plane: 

!!y (s)+
Q y

ρx

"

#
$

%

&
'

2

y(s) = 1
m0vz

2γ
Fy

self (y, s)                                  (23) 

Eqs. (22) and (23) represent our starting point to study the effects of the self induced fields on 
the betatron oscillations. Before analyzing such forces, let’s write the analogous equation for the 
longitudinal dynamics. 

2.2  The synchrotron motion 

In the longitudinal case the motion is governed by the RF voltage, which we write as 

V (t) = V̂ sin ωrf t +ϕs
!" #$                                                  (24) 

where ϕs is the synchronous phase. In the linear approximation, and in absence of the self induced 
forces, the equation of motion is that of a simple harmonic oscillator 

!!z + Qz

ρx

"

#
$

%

&
'

2

z = 0                                                        (25) 

with particles oscillating around the synchronous phase ϕs with a synchronous tune given by: 

Qz =
ωz

ω0

=
qhηV̂ cosϕs

2πβ 2E0
                                                  (26) 

with h the harmonic number, E0 the machine nominal energy, and  

 η = 1
γ 2
−αc                                                            (27) 



The slippage factor η accounts for the increase of the speed with energy (1/γ2), and the length of 
the real orbit due to the dispersion (αc). 

The interaction of the charge with the surroundings may induce longitudinal e.m. forces, which 
have to be included in the equation of motion:  

!!z + Qz

ρx

"

#
$

%

&
'

2

z = η  Fz
self (s)

m0vz
2γ

                                                (28) 

In the linear approximation, the longitudinal force produces a shift of both the synchronous 
phase and the synchronous tune.  

3. Space charge forces 

3.1 Direct space charge forces in the free space 

Let us consider a relativistic charge moving with constant velocity !v . It is well known that its 
electrostatic field is modified because of the relativistic Lorentz contraction along the direction of 
motion as shown in Fig. 4. For an ultra-relativistic charge with γ→∞, the field lines are confined on a 
plane perpendicular to the direction of motion.  
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Fig. 4: Field lines for charges at different energies. 

 
 

If now another charge is travelling on a parallel trajectory with respect to the first one along the 
z axis, it is easy to see that the e.m. forces between them vanish. In fact, from the relativistic 
transforms of the electric and magnetic fields of a point charge, by using a cylindrical coordinate 
system (r, φ, z) with the origin in the source charge, we have 

Er (z = 0) = q
4π  ε0

γ
r2

Bφ (z = 0) = qβ
4πε0c

γ
r2

Ez (r = 0) = q
4π  ε0

1
γ 2z2

                                                   (29) 

If the two charges travel along the z axis at r = 0 with different longitudinal positions, then the 
force is proportional to the longitudinal electric field Ez, and it vanishes as 1/γ2. On the other hand, if 
the charges have the same longitudinal position (z = 0) and different transverse position, due to the 
combined effect of the defocusing electric and focusing magnetic fields we get 



Fr = q Er −βcBφ( ) = qγ
4πε0r

2 1−β 2( ) = q
4πε0γ

 1
r2                                 (30) 

In both cases, for γ→∞, a charge travelling close to another one on a parallel trajectory is not 
affected by e.m. forces.  

Let us now consider the case of a uniform cylindrical charge distribution travelling with ultra-
relativistic speed in the free space. Under these assumptions, the electric field lines are perpendicular 
to the direction of motion, and the magnetic ones are circumferences, as shown in Fig. 5. The 
transverse electric and magnetic fields intensity can be computed as in the static case, applying the 
Gauss and Ampere laws: 

!
E ⋅ n̂ dS

S∫ =
q

 ε0

,               
!
B ⋅d
!
l

l"∫ = µ0I                                             (31) 

We now suppose that the beam is a uniform cylinder of radius a so that the longitudinal charge 

distribution (charge per unit of length) can be written as λ(r) = λo
r
a
!

"
#
$

%
&
2

, and we want to compute the 

transverse space charge forces acting on a particle inside the beam. 

Applying eqs. (31) to a cylinder for the Gauss’s law and to a circumference for the Ampere’s 
law we obtain: 

Er (2πr)Δz =
λ(r)Δz
ε0

⇒ Er =
λ(r)
2πε0r

=
λ0
2πε0

r
a2

2πrBφ = µ0Jπr
2 = µ0βcλ(r)⇒ Bφ =

λoβ
2πε0c

r
a2

                                   (32) 

 
Fig. 5: Uniform cylindrical charge distribution with its electric and magnetic fields. 

 

We now observe that Bφ =
β
c
Er , so that the e.m. transverse force acting on a charge inside the 

beam is 

Fr (r) = e(Er −βcBφ ) = e(1−β
2 )Er =

e
γ 2

λo
2πε0

r
a2

                                (33) 

We can therefore conclude that inside a uniform cylindrical charge density, travelling with 
ultra-relativistic speed, the transverse space charge forces vanish as 1/γ2 due to the cancellation of the 
electric and the magnetic forces. 



3.2 Effects of conducting and magnetic screens 

In an accelerator, the beams travel inside a vacuum pipe generally made of metallic material (as 
aluminum, copper, stainless steel). This pipe also passes through the coils of magnets (dipoles, 
quadrupoles, sextupoles), and its cross section may have a complicated shape, as in the case of special 
devices like RF cavities, kickers, diagnostics and controls. However, most part of the beam pipe has a 
cross section with a simple shape: circular, elliptic or quasi-rectangular. In order to obtain the space 
charge forces acting on a beam, let us consider only a smooth beam pipe perfectly conducting. 

Before dealing with the problem, it is first necessary to review the basic features of e.m. fields 
close to metallic and magnetic materials. A discussion of the boundary conditions is given in the 
Appendix 1. Here we report only the more relevant conclusions. The electric field of a point charge 
close to a conducting screen can be derived through the method of images, as shown in Fig. A1. For 
what concerns the magnetic field, a constant current close to a good conductor screen with μr ≈ 1, as 
copper or aluminium, produces circular field lines not affected by the presence of the material itself. 
However, if the material is of ferromagnetic type, with μr >> 1, due to its magnetisation, the magnetic 
field lines are strongly affected, inside and outside the material. In particular a very high magnetic 
permeability makes the tangential field zero at the boundary so that the total magnetic field must 
perpendicular to the surface, just like the electric field lines close to a conductor (see Fig. A2).  

As discussed in Appendix 1, the scenario changes when we deal with time-varying fields for 
which it is necessary to compare the wall thickness and the skin depth (region of penetration of the 
e.m. fields) in the conductor. If the fields penetrate and pass through the material, we are practically in 
the static boundary conditions case. Conversely, if the skin depth is very small, fields do not penetrate, 
and then the electric filed lines are perpendicular to the wall, as in the static case, while the magnetic 
field lines are tangent to the surface. In this case, the magnetic field lines can be obtained by 
considering two currents flowing in opposite directions.  

In the following paragraphs we analyse the forces due to the presence of the screens in some 
simple cases. 

3.3 Circular perfectly conducting pipe with beam at center and direct space charge forces 

Due to the symmetry, the transverse fields produced by an ultra-relativistic charge inside a circular, 
perfectly conducting pipe are the same as in the free space. This implies that for a charge distribution 
with cylindrical symmetry, in ultra-relativistic regime, the total force acting on a charge inside the 
beam is still given by eq. (33).  It is interesting to note that this result does not depend on the 
longitudinal distribution of the beam, so that, considering more generally a uniform radial distribution 
and a longitudinal linear density λ(z), the force is 

Fr (r, z) =
e
γ 2

λ(z)
2πε0

r
a2

                                                            (34) 

This force, as that in the free space, has a dependence that goes as 1/γ2 due to the cancellation 
of the electric and magnetic forces, and it is linear with the transverse position r. If the transverse 
distribution is not constant, we can still apply the Gauss’s law to obtain the electric field and the 
Ampere’s law to obtain the magnetic field. For example, given the following distribution: 

ρ  (r, z) = q0

2π( )
3
σ zσ r

2
e

− z2

2σ z
2e

− r2

2σr
2                                                    (35) 

with q0 the bunch charge, the Gauss’s law applied to a cylinder as that of Fig. 5 with an infinitesimal 
height dz, gives, as radial electric field (we suppose γ→∞ so that Ez ≈ 0), 
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2πσ zσ r
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The magnetic field can be obtained in the same way as in eq. (32) so that the total force on a 
charge inside the bunch is 

Fr (r, z) = e 1−β
2( )Er =

e
2πε0γ

2
q0
2πσ z

e
− z2

2σ z
2 1− e

− r2

2σr
2
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'
'
'

                              (37) 

It is important to observe that the self induced forces given by eqs. (34) and (37) are always 
defocusing either in x and in y direction, as shown in Fig. 6. Note that the force given by eq. (37) is 
not linear in the transverse position. 
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Fig. 6: Defocusing transverse self induced forces produced by direct space charge in case of uniform 

(left) and Gaussian (right) distributions. 

3.4 Parallel plates with beam at center and indirect space charge forces for d.c. currents 

In some cases, also with elliptical beam pipe, the cross section is such that we can consider only the 
surfaces closer to the beam, which can be approximated by two parallel plates. Let us suppose to have 
a charge distribution λ(z) of radius a between two conducting plates 2h apart. For obtaining the static 
electric field, the two conducting plates can be removed by using the method of images and 
substituted by an infinite series of charges with alternating sign 2h apart each other, as shown in Fig. 
7. 

We now want to evaluate the electric field, due to the image charges, at a position y inside the 
bunch (y<a). The transverse field of the image charge distribution immediately above the real one can 
be written as 

Ey
1,up,im (z, y) = λ(z)

2π  ε0

1
2h− y

                                                   (38) 

while the transverse electric field of the image charge distribution immediately below the real one is, 



Ey
1,down,im (z, y) = − λ(z)

2π  ε0

1
2h+ y

                                                 (39) 
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Fig. 7: A charge between two parallel plates and its image charges. 

If we sum the contribution of all the infinite image charge distributions, we get the total 
transverse electric field 

Ey
im (z, y) = λ(z)

2π  ε0

(−1)n
n=1

∞

∑ 1
2nh+ y

−
1

2nh− y
$

%
&

'

(
)=

λ(z)
2π  ε0

2y (−1)n+1

n=1

∞

∑ 1
2nh( )2

− y2
         (40) 

The sum on the right hand side can be done. We consider however the simplified hypothesis 
that h>>a>y, so we can ignore the term y in the denominator of the sum and we get  

Ey
im (z, y) ≅ λ(z)

2π  ε0

y
2h2

(−1)n+1

n2
n=1

∞

∑ =
λ  (z)

4π  ε0h
2
π 2

12
y                               (41) 

For d.c. or slowly varying currents, we have seen that the boundary conditions imposed by the 
conducting plates do not affect the magnetic field, which remains circular with no image currents. As 
a consequence there is no cancellation effect of the electric and magnetic forces for the fields 
produced by the images, as we have obtained for the real charges (direct forces), and the indirect force 
acting on a charge inside the beam is simply the electric field (41) times the particle charge. 

From the divergence equation, we derive also the other transverse component of the electric 
field along x 

∂
∂x

Ex
im = −

∂
∂y

Ey
im ⇒ Ex

im (z, x) = −λ(z)
4π  ε0h

2
π 2

12
x                                    (42) 

From the above fields, the total forces acting on a charge inside the bunch moving between two 
parallel plates, including also the direct space charge force given by eq. (34), are: 

Fx (z, x) = eλ(z)
π  ε0

1
2a2γ 2 −

π 2

48h2
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'x                                           (43) 

Fy (z, y) = eλ(z)
π  ε0

1
2a2γ 2 +

π 2

48h2
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&y                                           (44) 



Therefore, for γ>>1, and for d.c. or slowly varying currents, the cancellation effect applies only 
to the direct space charge forces. There is no cancellation of the electric and magnetic forces due to 
the image charges. 

3.5 Parallel plates with beam at center and indirect space charge forces for a.c. currents 

We have seen that close to a conductor the e.m. fields have different behaviours, depending on 
the skin depth δw of the material (Appendix 1). Usually, the frequency spectrum of a beam is quite 
rich of harmonics, especially for bunched beams. It is then convenient to decompose the current into a 
d.c. component, I , for which δw>>Δw, with Δw the width of the beam pipe, and an a.c. component, Î, 
for which δw<<Δw. While the d.c. component of the magnetic field does not perceives the presence of 
the material, so that we can apply eqs. (43) and (44), its a.c. component produces a magnetic field 
tangent to the wall, which can be obtained by using an infinite sum of image currents with alternating 
directions. In this case, to get the total magnetic field of the image currents, we can follow the same 
procedure we have used for the electric fields given by eqs. (41) and (42), and by considering the 
relation between a.c. current and its charge distribution: Î = βcλ̂ , thus obtaining a magnetic field due 
to image currents of the kind 

B̂x (z, y) = − β
c
Êy (z, y) = − β

2λ̂(z)
π  ε0

π 2

48h2 y;                                         (45) 

We can see from the above expression that in this case the attractive magnetic force tends to 
compensate the repulsive electric one, which is still given by the second term in the parentheses of eq. 
(44), so that we have a total force due to image charges and currents given by 

F̂y (z, y) = eλ̂(z)
π  εoγ

2
π 2

48h2 y                                                         (46) 

Combining eq. (46) with the direct space charge force, we get for the a.c. component: 

 F̂y (z, y) = eλ̂(z)
2π  ε0γ

2
1
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π 2

24h2
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&y                                                (47) 

and analogously along the x direction 

F̂x (z, x) = eλ̂(z)
2π  ε0γ

2
1
a2 −

π 2

24h2
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'x                                                (48) 

3.6 Parallel plates with beam at center and indirect space charge forces for d.c. currents in 
presence of ferromagnetic materials 

As a last example we consider now the case where outside of the metallic pipe there is a dipole 
magnet. The magnetic field produced by the d.c. currents βcλ (z)  doesn't see the conducting pipe, 
while it is strongly affected by ferromagnetic material. In fact, as seen in the Appendix 1, the magnetic 
field lines must be orthogonal to the pole surface. We have also seen that the total magnetic field can 
be obtained by removing the screen and considering image currents flowing in the same direction. 

Proceeding analogously to Sec. 3.4, with g the gap in the dipole magnet, we obtain: 

Bx
im (z, y) = µ0βcλ (z)

2π
1

2ng− y
−

1
2ng+ y

"

#
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&
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n=1

∞

∑                                       (49) 



Note that in this case we don’t have the term (−1)n . By using the same approximation as before 
h>>a>y, we obtain a magnetic field due to the image currents equal to 

Bx
im (z, y) ≅ µ0βcλ (z)y

4πg2
1
n2n=1

∞

∑ =
µ0βcλ (z)π

2y
24πg2

                                    (50) 

and the corresponding force is 

     Fy
im (z, y) = β

2λ (z)π 2

24πε0g
2 y                                                      (51) 

In order to obtain the magnetic field acting on a particle displaced along the x direction, we can 
use the relation 

!
∇×
!
B = 0 , which, for the z direction gives 

     
∂By

∂x
=
∂Bx

∂y
                                                              (52) 

so that 

By
im (z, x) = µ0βcλ (z)π

2

24πg2
x                                              (53) 

and 

     Fx
im (z, x) = − β

2λ (z)π 2

24πε0g
2 x                                                    (54) 

3.7 Parallel plates with beam at center: general expression of the force 

Taking into account all the boundary conditions and either d.c. and a.c. currents, we can summarize 
what we have obtained in the previous sections for the parallel plates, and write the general expression 
of the force as: 

     Fu =
e

2π  ε0

1
γ 2

1
a2 ∓

π 2

24h2
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,u                              (55) 

where λ is the total current divided by βc, and λ (z)  its d.c. term. We take the sign (+) if u=y, and the 
sign (–) if u=x. 

One often finds the above expression written as: 

Fu =
e

π  ε0

1
γ 2
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,u                                  (56) 

where the Laslett form factors [10] ε0, ε1 and ε2 can be obtained for several beam pipe geometries. For 
example, for parallel plates, by comparing eq. (55) with (56) we get ε0=1/2, ε1=π2/48, ε2=π2/24 [11]. It 
is interesting to note that these forces are anyway linear in the transverse displacement x and y. 

3.8 Longitudinal direct space charge force 

Up to now we have obtained the transverse forces, direct and indirect, produced by space charge 
distributions. The longitudinal electric field, responsible of the longitudinal forces, can be derived 



starting from the knowledge of the transverse fields, as shown in Appendix 2. The transverse electric 
field inside the beam (r≤a) can be expressed by the first of eqs. (32) for a uniform transverse 
distribution, which however can be generalized by considering a non uniform longitudinal distribution 
λ(z), and outside the beam r≥a it is equal to 

Er (r ≥ a) =
λ z( )
2πε0r

                                                         (57) 

As a consequence the last equation of the Appendix 2 becomes  

Ez (r, z) = −
1

2πε0γ
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                                     (58) 

giving a longitudinal force of the kind 

Fz (r, z) =
−e

4πε0γ
2 1− r

2

a2 + 2 ln b
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∂  λ(z)
∂  z

                                      (59) 

Therefore, the longitudinal force acting on a charge is positive (negative) in the region with 
negative (positive) density slope. 

4. Coherent and incoherent tune shifts 

4.1 Coherent and incoherent effects 

We are now ready to study the effects of the space charge forces on the beam dynamics. When the 
beam is located at the centre of symmetry of the pipe, the e.m. forces due to direct space charge and 
images cannot affect the motion of the centre of mass (coherent motion), but they change the 
trajectory of individual charges inside the beam (incoherent effects). These forces may have a 
complicate dependence on the charge position. A simple analysis is done considering only the linear 
expansion of the self induced forces around the equilibrium trajectory, as the forces given by eq. (34) 
or (55).  

Referring to the equations of motion (22), (23), and (28), we now focus our attention to the self 
induced forces and expand them around the ideal orbit analogously to what we have done for the 
external forces. A constant term in the expansion of Fself changes the equilibrium orbit in the 
transverse plane, and the synchronous phase in the longitudinal one, while the linear term, 
proportional to the displacement, changes the focusing strength and therefore induces a shift of the 
betatron and synchrotron frequencies. 

This can happen either in the motion of individual particles inside the beam (incoherent 
motion), and in the transverse oscillations of the whole beam (coherent motion) around the closed 
orbit when the beam is off-center with respect to the beam pipe. 

4.2 Transverse incoherent effects 

Let us consider only the linear term of the transverse self induced forces, that is 

Fx
self (x, s) ≅ ∂Fx

self

∂x
"

#
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%

&
'
x=0

x                                                    (60) 



In case of uniform transverse beam distribution, either in a circular pipe and between parallel 
plates, the force given by eq. (60) is not an approximation, as shown by eqs. (34) and (55). For other 
kind of distributions, as the one given by eq. (35), we can always suppose that the transverse 
displacement r of a charge is much smaller than the transverse bunch dimension σr, so that the term 
inside the square brackets in eq. (37) can be expanded at first order in r giving r / 2σ r( ) . In any case 
we end up with a self induced force linearly dependent on the particle displacement. As a 
consequence, by considering, for example, the motion along the x direction, eq. (22) becomes 
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The linear additional term on the right hand side produces a shift of the betatron tune Qx. Indeed 
we can write 

!!x (s)+ Q x
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where the term m0vz
2γ  has been substituted with β 2E0 . We now recognize in the brackets a term 

proportional to the square of the new betatron tune, shifted, with respect to the initial one Qx, by the 
self induced forces. This term can be written as Qx +ΔQx( )2 / ρx

2 . For small perturbations, the shift 
ΔQx can then be obtained by: 
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Qx
2 + 2QxΔQx
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thus giving 

   ΔQx = −
ρx

2

2β 2E0Qx

∂  Fx
self

∂x
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'
(                                                     (64) 

A similar expression is found in the y direction. The betatron tune shift is negative since the 
space charge forces are defocusing on both planes. Notice that the tune shift is in general function of z, 
due to the dependence of the self induced force on λ(z). The consequence is a tune spread inside the 
beam. This conclusion is generally true also for more realistic non-uniform transverse beam 
distributions, which are characterized by a tune shift dependent also on the betatron oscillation 
amplitude. In these cases, instead of tune shift the effect is called tune spread. 

As example of application of the above expression, let’s find the incoherent shift of the betatron 
tune for a uniform electron beam of charge eNp, radius a and length l0, inside a circular pipe.  The self 
induced force is given by eq. (34), with λ(z) = eNp / l0 so that 

ΔQx = −
ρx
2e2Np

4πε0a
2l0β

2γ 2E0Qx

                                                      (65) 

or, expressed in terms of the classical radius of electron r0: 

ΔQx = −
r0ρx

2Np

a2l0β
2γ 3Qx

                                                      (66) 



In the general case of non-uniform focusing along the accelerator, as given by eq. (16), the 
linear effect of the self induced forces can be treated as a quadrupole error ΔKu [11] distributed along 
the accelerator, with u representing one of the axis x or y, thus giving a betatron tune shift of: 

ΔQu =
1
4π

βu!∫ (s)ΔKu(s)ds =
−1

4πβ 2E0
βu(s)

∂Fu
self

∂u
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&
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(
)ds!∫                         (67) 

For example, by considering the previous case of a uniform electron beam inside a circular 
pipe, but with non-uniform focusing, eq. (65) will be replaced by 

ΔQx = −
r0Np

2πβ 2γ 3l0
βx (s)
a2 (s)

ds!∫ = −
r0Np

2πβ 2γ 3l0
2πρx

εx
                                      (68) 

which has been obtained by observing that the quantity a2(s)/β(s) is the beam emittance εx, which is 
constant along the machine. 

4.3 Transverse coherent effects 

Let us suppose to have a beam displaced from the pipe axis, due for example to coherent betatron 
oscillations. Due to induction, there will be a higher concentration of charges of opposite sign on the 
pipe surface closer to beam, which attracts the beam itself more intensely than the induced charges on 
the opposite side. As a consequence, its center of mass will experience a defocusing force.  

As example, let us suppose to have an electron beam with uniform longitudinal charge 
distribution λ0 = eNp/l0 inside a conducting cylindrical pipe of radius b, displaced by x from its axis, as 
shown in Fig. 8. Since the electric field lines of the charge distribution must be perpendicular to the 
pipe, by imposing that the conductor surface is equipotential, we can remove and substitute the pipe 
with a charge distribution -λ0 at a distance on the axis equal to d=b2/x on the same direction of the 
displacement. 

λ0"
�λ0"

d!

b!

x!

 
Fig. 8: A charge distribution inside a cylindrical pipe and its image charge distribution. 

 

The image charge distribution attracts the whole beam thus producing a coherent defocusing 
effect. The electric field of the image charge acting on the center of mass of the beam is 

Ex
im (x) ≅ λ0

2π  ε0

1
d − x

                                                             (69) 

If we linearize the electric field by considering small displacements of the beam, such that 
x<<d, then 1/(d-x) ! 1/d = x/b2, and we obtain 



Ex
im (x) ≅ λ0

2π  ε0

x
b2                                                              (70) 

which gives a linear coherent force 

Fx
self (x) ≅ eλ0

2π  ε0

x
b2                                                              (71) 

This force produces a coherent betatron tune shift that can still be evaluated by using eq. (64) 
giving 

ΔQx = −
ρx

2eλ0

4π  ε0β
2E0b

2Qx

= −
r0ρx

2Np

b2l0β
2γQx

                                               (72) 

This coherent betatron tune shift, differently from the incoherent one given by eq. (66), does not 
depend on the beam size but on the pipe radius and it is inversely proportional to the beam energy. 

4.4 Longitudinal incoherent effects 

The effects of longitudinal space charge forces on the beam dynamics can be obtained by using eq. 
(28). We expand the self induced force and, as already discussed in section 4.1, we observe that the 
constant term in the expansion leads to a shift of the synchronous phase, while the linear term, 
proportional to the displacement, changes the focusing strength and therefore induces a shift of the 
synchrotron tune. 

Let us analyse the motion of the beam around the new equilibrium phase and let us consider the 
linear term of the longitudinal self induced force: 
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  The equation of motion (28) becomes 
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  As in the transverse case, let us consider the same approximation leading to eq. (63), obtaining 
in this case 

ΔQz =
−ηρx
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Differently from the transverse betatron tune shifts, the synchrotron tune shift can be either 
positive or negative and changes with the position of the charge inside the beam. 

For example let us consider a transverse uniform beam of radius a in a cylindrical pipe, having 
a parabolic longitudinal distribution of the kind  

λ(z) =
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The incoherent tune shift can be obtained by combining eqs. (59), (75) and (76), thus giving 
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which depends on the transverse position r of the charge inside the beam. If, instead of a parabolic 
bunch distribution, we had a Gaussian one, then the synchrotron tune shift would have a dependence 
also on the longitudinal position z. 

5. Consequences of the space charge tune shifts 
In circular accelerators the values of the betatron tunes should not be close to rational numbers in 
order to avoid the crossing of linear and non-linear resonances where the beam becomes unstable. The 
tune spread induced by the space charge force can make hard to satisfy this basic requirement. 
Typically, in order to avoid major resonances the stability requires [9, 12] 

ΔQu < 0.5  

If the tune spread exceeds this limit, it is possible to reduce the effect of space charge tune 
spread by increasing the injection energy. 

It is worth noting that the incoherent tune spread produces also a beneficial effect, called 
Landau damping, which can cure the coherent instabilities, provided that the coherent tune remains 
inside the incoherent spread. 

6. Direct space charge effects in a Linac 
In a Linac or a beam transport line direct space charge effects can lead to significant 

longitudinal-transverse correlations of the bunch parameters which may produce mismatch with the 
focusing and accelerating devices thus contributing to emittance growth (and energy spread). 
Matching conditions suitable to preserve the beam quality can be derived from a simple model as will 
be shown hereafter. A more detailed discussion can be found in the many classical textbooks on this 
subject as the ones listed in references [3,13]. 

Let us consider a bunched beam with initially uniform charge distribution in a cylinder of 
radius R and length l0, carrying a current I and moving with longitudinal velocity 

€ 

v = βc . The linear 
components of the longitudinal and transverse space charge fields are given by [14]: 
 

Ez (ζ ) =
IL

2πε0R
2βc

h ζ( )                                                             (78) 

Er (r,ζ ) =
Ir

2πε0R
2βc

g ζ( )                                                             (79)  

 
where the field form factors are described by the functions: 
 

h ζ( ) = A+ (1−ζ )2 − A+ζ 2 + 2ζ −1( )                                             (80) 

g ζ( ) = (1−ζ )
2 A2 + (1−ζ )2

+
ζ

2 A2 +ζ 2
                                              (81)  

 



where 

€ 

ζ =
z
L

 is the normalized longitudinal coordinate along the bunch and 

€ 

A =
R
γL

 is the beam aspect 

ratio. As 

€ 

γ  increases 

€ 

g ζ( ) → 1  and 

€ 

h ζ( ) → 0 . Thus, direct space charge fields mainly affect transverse 
beam dynamics.  

The transverse beam dynamics of a beam characterized by an rms envelope 

€ 

σ = x2  and 
transverse normalized thermal rms emittance at the source [3]: 

εn,th
2 =

x2 px
2

moc( )2
=
γkBTσ o

2

moc
2                                                       (82) 

can be conveniently described, under the paraxial ray approximation, i. e. 

€ 

px << pz ,  by the rms 
envelope equation that for an axisymmetric beam is [3,15,16]: 

σ !! +
!γ
γ
σ ! + kext

2 σ =
Ksc

γ 3σ
+
εn,th
2

γ 2σ 3                                                    (83) 

The first term is the change in the envelope slope, the second term drives the envelope 
oscillation damping due to acceleration, the third term accounts for linear external focusing forces, the 
fourth represents the defocusing space charge effects and the fifth the internal pressure due to the 

emittance. Ksc =
Î
2IA

 is the beam perveance, 

€ 

ˆ Ι  is the peak current, IA the Alfvén current (~17 kA), 

and !γ =
eEacc

mc2
, 

€ 

Eacc  being the accelerating field.  

From the envelope equation (83) we can identify two regimes of beam propagation: space 
charge dominated and emittance dominated. A beam is space charge dominated as long as the space 
charge collective forces are largely dominant over the emittance pressure. A measure of the relative 
importance of space charge effects versus emittance pressure is given by the laminarity parameter, 
defined as the ratio between the space charge term and the emittance term:  

ρ =
Î
2IAγ

σ 2

εn
2                                                              (84) 

When ρ greatly exceeds unity, the beam behaves like a laminar flow (all beam particles move 
on trajectories that do not cross) and transport and acceleration require a careful tuning of focusing 
and accelerating elements in order to keep laminarity. Correletated emittance growth is typical in this 
regime which can be conveniently made reversible if proper beam matching conditions are fulfilled, 
as discussed hereafter. When  

€ 

ρ < 1 the beam is emittance dominated (also named thermal regime 
corresponding to a Debye length large compare to the bunch envelope) and the space charge effects 
can be neglected. The transition to thermal regime occurs when 

€ 

ρ ≈ 1  corresponding to the transition 
energy  
 

€ 

γ tr =
ˆ I 

2IA

σ 2

εn
2                                                                    (85)

 
 

For example a beam with 

€ 

ˆ I =100 A, 

€ 

εn=1 µm, and 

€ 

σ =300 µm is leaving the space charge 
dominated regime and is entering the thermal regime at the transition energy of 131 MeV. From this 
example one may conclude that space charge dominated regime is typical of low energy beams. 
Actually for applications like linac driven Free Electron Lasers high density beams with peak currents 
exceeding kA are required. Even if the bunch energy has reached values higher than γtr, space charge 
effects may recur if bunch compressors are active increasing 

€ 

ˆ Ι , so that a new transition energy with 

higher Î has to be considered. 



When longitudinal correlations within the bunch are important, as the one induced by the 
space charge effects, the beam envelope evolution is generally dependent also on the longitudinal 
bunch coordinate ζ . In this case the bunch should be considered as an ensemble of N longitudinal 
slices of envelope 

€ 

σ s z,ζ( )  whose evolution can be computed considering N slice envelope equations 
equivalent to (83) provided that the bunch parameters refer to each single slice: γ s,  !γ s,  ksc,s = kscg ζ( ) . 
Correlations within the bunch may cause emittance oscillations that can be evaluated, once a solution 
of the slice envelope equation is known, by using the following correlated emittance definition: 

εn,rms,cor = γ σ s
2 !σ s

2 − σ s !σ s                                                  (86) 

where the average is performed over the entire slice ensemble. In the simplest case of only 2 slices the 
previous definition reduces to: 

εn,rms,cor = γ σ1 !σ 2 −σ 2 !σ1                                                         (87)  
which is a simple and useful formula for an estimation of the emittance scaling [17].  

The total normalized rms emittance is then given by the superposition of the correlated and 
uncorrelated terms as :  

εn,rms = εn,th
2 +εn,rms,cor

2                                                              (88) 
 
 

σ r,B

 
Fig. 9 - Schematic representation of a nearly matched beam in a long solenoid. The dashed line 
represent the reference slice envelope fully matched to the Brillouin flow condition. The other slice 
envelopes are oscillating around the equilibrium solution. 

 
An interesting example [6] to consider here, showing the consequences of a non perfect beam 

matching, is the propagation of a beam in the space charge dominated regime nearly matched to an 

external focusing channel produced by a long solenoid, giving kext
2 = ksol

2 =
qB
2γmoc

!

"
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&

2

, as illustrated in 

Fig. 9. To simplify our analysis we can neglect acceleration, as in the case of a simple beam transport 
line. The envelope equation for each slice, indicated as σ s , reduces to: 

 

!!σ s + kext
2 σ s =

ksc,s
γ 3σ s

                                                       (89)  

A stationary solution, called Brillouin flow, is given by:  
 

σ s,B =
1
kext
2

Îg ζ( )
2γ 3IA

                                                       (90) 



 
where the local dependence of the current 

€ 

ˆ I s = ˆ I g ζ( )  within the bunch has been explicitly indicated. 
This solution represents the matching conditions for which the external focusing completely balances 
the internal space charge force. Unfortunately since kext has a slice independent constant value, the 
Brillouin matching condition cannot be achieved at the same time for all the bunch slices. Assuming 
there is a reference slice perfectly matched with an envelope 

€ 

σ r,B , the matching condition for the 
other slices can be written as: 
 

σ sB =σ rB +
σ rB

2
δIs
Î
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with respect to the reference slice. Considering a small perturbation 

€ 

δs from the equilibrium in the 
form  
 

σ s =σ s,B +δs                                                                (92) 
 
and substituting in the equation (89) we can obtain a linearized equation for the slice offset:  
 

δs!! + 2kext
2 δs = 0                                                               (93) 

 
which has a solution given by: 
 

δs = δo cos 2kextz( )                                                         (94) 

 
where 

€ 

δo =σ so −σ sB  is the amplitude of the initial slice mismatch that we assume for convenience the 
same for all slices. Inserting (94) in (92) we get the perturbed solution: 
 

σ s =σ s,B +δo cos 2kextz( )                                                     (95) 

 
Equation (95) shows that slice envelopes oscillate altogether around the equilibrium solution 

with the same frequency for all slices ( 2kext , often called plasma frequency) dependent only on the 
external focusing forces. This solution represents a collective behavior of the bunch similar to the one 
of the electrons subject to the restoring force of ions in a plasma. Using the two slices model and eq. 
(95) the emittance evolution (87) results:  
 

εn,rms,cor =
1
4
γ kextσ r,B

ΔI
Î
δo sin 2kextz( )                                         (96) 

 
 
where 

€ 

ΔI = ˆ I 1 − ˆ I 2 . Notice that in this simple case envelope oscillations of the mismatched slices 
induce correlated emittance oscillations which periodically goes back to zero, showing the reversible 
nature of the correlated emittance growth. It is, in fact, the coupling between transverse and 
longitudinal motion induced by the space charge fields that allows reversibility. With a proper tuning 
of the transport line length or of the focusing field one can compensate for the transverse emittance 
growth. Similar arguments can be considered when including acceleration, despite the analytical 
treatment results to be more complex [6]. In this case for a well matched beam to the accelerating 
structure the plasma frequency 2Kext → 0  with increasing γ. Before the transition energy is 



achieved, the emittance performs damped oscillations. A careful tuning of the external fields can 
minimize the value of the emittance at the beam extraction. 
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APPENDIX 1 – BOUNDARY RELATIONS FOR CONDUCTORS 

A1.1 STATIC ELECTRIC AND MAGNETIC FIELDS 

When we have two materials with different relative permittivity, which we call εr1 and εr2, in the 
passage from one material to another, the tangential electric field and the normal electric displacement 
are preserved, so that we have the boundary relations: 

Et1 = Et2

εr1En1 = εr2En2

 

If one of the two materials is a conductor with a finite conductivity, then the electric field 
vanishes inside it, and the walls are equipotential surfaces. This implies that the electric field lines are 
orthogonal to the conductor surface, independently of the dielectric and magnetic properties of the 
material. The only condition is to have a finite conductivity.  

If we have a charge close to a conductor, in order to obtain the electric field, we need to include 
the effects of the induced charges on the conducting surfaces, and we must know how they are 
distributed. Generally this task is not easy, but if we have an infinite conducting screen, the problem 
can be easily solved by making use of the method of images: we can remove the screen and put at a 
symmetric location a charge with opposite sign, as shown in Fig. A1. 

!

conduc&ng(
wall(

 
Fig. A1: Method of images. 

 
The total electric field is the sum of the direct and the image field: 

!
Etot =

!
Edirect +

!
Eimages  

For the static magnetic field between two materials with different permeability, the following 
boundary relations hold: 

Ht1 = Ht2

µr1Hn1 = µr2Hn2

 

Thus, static magnetic fields do not perceive the presence of the conductor, if it has a magnetic 
permeability µr ≈ 1, as copper or aluminium, and the field lines expand as in the free space. However, 
a beam pipe in a real machine goes through many magnetic components (like dipoles and 
quadrupoles) made of ferromagnetic materials with high permeability (of the order of 103 − 105). For 
these materials, due to the boundary conditions, the magnetic field lines are practically orthogonal to 
the surface.  Similarly to electric field lines for a conductor, the total magnetic field can be derived by 



using the image method: we remove the magnetic wall and put a symmetric current with same sign, as 
shown in Fig. A2. 

 
Fig. A2: Method of image current. 

 
 

A1.2 TIME VARYING FIELDS 

Static electric fields vanish inside a conductor for any finite conductivity, while static magnetic fields 
pass through unless of high permeability. This is no longer true for time changing fields, which can 
penetrate inside the material in a region δw called skin depth. In order to write the skin depth as a 
function of the material properties, we write the following Maxwell’s equations inside the conducting 
material together with the constitutive relations: 
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Let us consider a plane wave linearly polarized with the electric field in the y direction 
propagating in the material along x, as shown in Fig. A3.  

 
Fig. A3: Plane wave propagating inside a conducting material. 

 

From the Maxwell’s equations we get the wave equation for the electric field: 



∂ 2Ey

∂x2
−εµ

∂ 2Ey

∂t2
−σµ

∂Ey

∂t
= 0  

In order to find the solution of the wave equation, we assume that the electric field propagates 
in the x direction with the law 

Ey = !E0e
iωt−γx  

If we substitute the above expression in the wave equation, we get the equation for the complex 
amplitude of the electric field !E0  

(γ 2 +εµω 2 − iωµσ ) !E0e
iωt−γx = 0  

An analogous equation holds for Hz. In order to have non-zero electric field, the term inside the 
parentheses must be zero. If σ>>ωε this reduces to 

γ ≅ (1+ i) σµω
2

 

Under such a condition we say that the material behaves like a conductor. Since γ has a real 
part, fields propagating in the material are attenuated. The attenuation constant, measured in meters, is 
called skin depth δw: 

δw ≅
1

ℜ(γ )
=

2
ωσµ

 

The skin depth depends on the material properties and the frequency. Copper, for example, has 
a skin depth of 

δw ≅
6.66
f
(cm)  

If we assume a beam pipe 2 mm thick, we find that fields pass through the wall up to 
frequencies of 1 kHz. 

Time varying fields generally pass through the conductor wall if the skin depth is larger than the 
wall thickness. This happens at relatively low frequency when δw is large, while at higher frequencies, 
for a good conductor, the skin depth is very small and much lower than the wall thickness, so that we 
can consider that both electric and magnetic fields vanish inside the wall. In this condition, the electric 
field lines are perpendicular to the wall surface, as in the static case, while the magnetic field lines are 
tangent to the wall. As a consequence, in order to obtain the electric field which is time varying close 
to a good conductor, we can still use the method of the images, while for the magnetic field it is easy 
to see that we can use the method shown in Fig. A2, by changing the direction of the image current. 

  



APPENDIX 2 – LONGITUDINAL FORCES 

In order to derive the relationship between the longitudinal and transverse forces inside a beam, let us 
consider the case of cylindrical symmetry and ultra-relativistic bunches.  We know from Faraday’s 
law of induction that a varying magnetic field produces a rotational electric field: 

!
E ⋅d
!
l = − ∂

∂t!∫
"
B ⋅ n̂ dS

S
∫  

In order to obtain the longitudinal electric field, we choose, as path for the circulation, a 
rectangle going through the beam pipe (a cylinder of radius b) and the beam, parallel to the z axis and 
with radius a, as shown in Fig. A4. For a generic position r<a , and by taking Δz small enough so that 
we can consider the electric field constant, we have: 

Ez (r, z)Δz+ Er (r, z+
r

b

∫ Δz)dr −Ez (b, z)Δz − Er (r, z
r

b

∫ )dr = −Δz ∂
∂t

Bφ (r
r

b

∫ )dr  

We now write Er (r, z+Δz)−Er (r, z) =
∂Er (r, z)

∂z
Δz  so that from the above equation we get 

Ez (r, z) = Ez (b, z)−
∂Er (r, z)

∂z
+
∂Bφ (r, z)

∂t
"
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&
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r
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∫ dr  

By considering that z = - βct, we can also write  

Ez (r, z) = Ez (b, z)−
∂
∂z

Er (r, z)−βcBφ (r, z)"# $%
r

b

∫ dr  

Since the transverse electric field and the azimuthal magnetic field are related by Bφ =
β
c
Er , we 

finally obtain  

Ez (r, z) = Ez (b, z)− 1−β
2( ) ∂
∂z

Er (r, z)
r

b

∫ dr  

Note that for perfectly conducting walls we have Ez(b,z) = 0, so that 

Ez (r, z) = −
1
γ 2

∂
∂z

Er (r, z)
r

b

∫ dr  

 

 
Fig. A4: Geometry for obtaining the longitudinal electric field due to space charge. 

 


