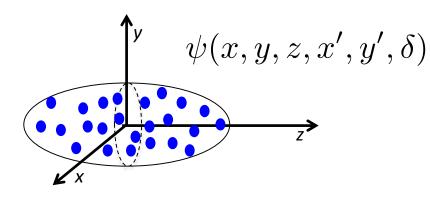


Beam instabilities (I) Giovanni Rumolo in CERN Accelerator School, Advanced Level, Warsaw Wednesday 30.09.2015

- What is a beam instability?
 - A beam becomes unstable when a moment of its distribution exhibits an exponential growth (e.g. mean positions $\langle x \rangle$, $\langle y \rangle$, $\langle z \rangle$, standard deviations σ_x , σ_y , σ_z , etc.) resulting into beam loss or emittance growth!



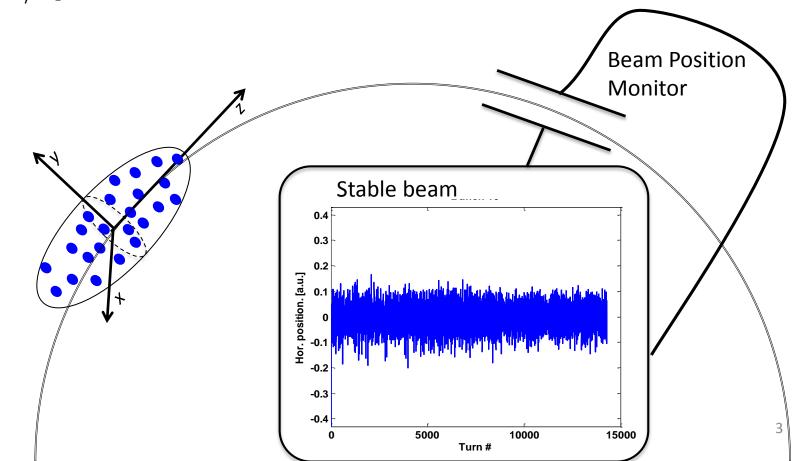
$$N = \int_{-\infty}^{\infty} \psi(x, y, z, x', y', \delta) dx dx' dy dy' dz d\delta$$

$$\langle x \rangle = \frac{1}{N} \int_{-\infty}^{\infty} x \psi(x, y, z, x', y', \delta) dx dx' dy dy' dz d\delta$$

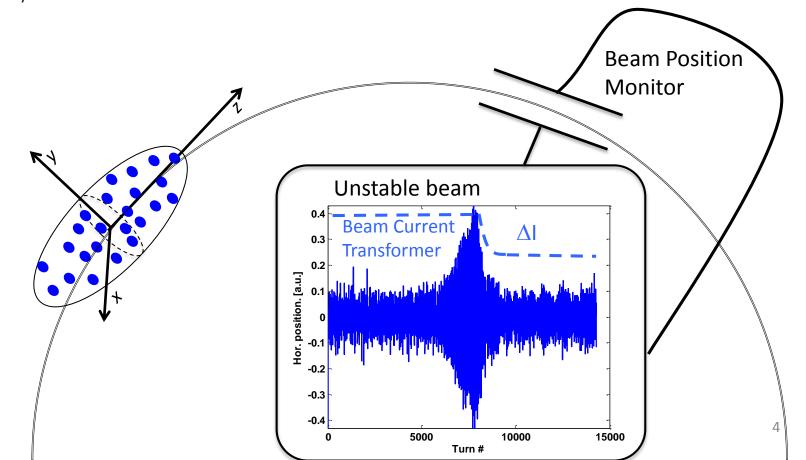
$$\sigma_x^2 = \frac{1}{N} \int_{-\infty}^{\infty} (x - \langle x \rangle)^2 \psi(x, y, z, x', y', \delta) dx dx' dy dy' dz d\delta$$

And similar definitions for $\langle y \rangle, \ \sigma_y, \ \langle z \rangle, \ \sigma_z$

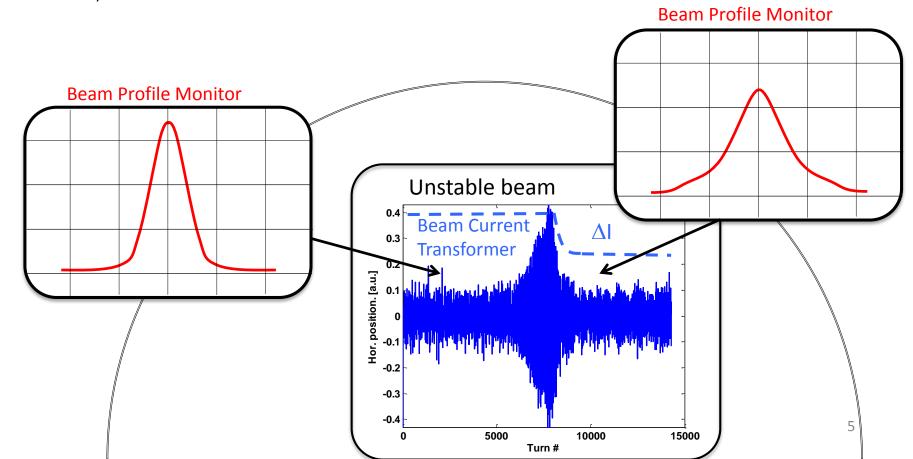
- What is a beam instability?
 - A beam becomes unstable when a moment of its distribution exhibits an exponential growth (e.g. mean positions $\langle x \rangle$, $\langle y \rangle$, $\langle z \rangle$, standard deviations σ_x , σ_y , σ_z , etc.) resulting into beam loss or emittance growth!



- What is a beam instability?
 - A beam becomes unstable when a moment of its distribution exhibits an exponential growth (e.g. mean positions $\langle x \rangle$, $\langle y \rangle$, $\langle z \rangle$, standard deviations σ_x , σ_y , σ_z , etc.) resulting into beam loss or emittance growth!

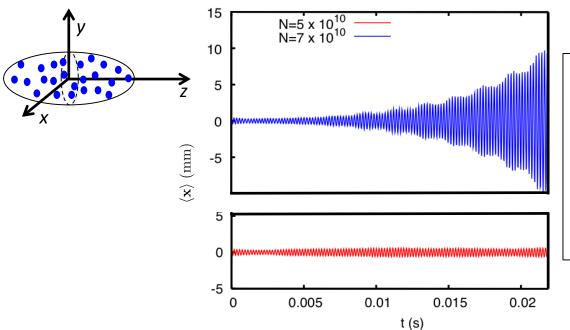


- What is a beam instability?
 - A beam becomes unstable when a moment of its distribution exhibits an exponential growth (e.g. mean positions $\langle x \rangle$, $\langle y \rangle$, $\langle z \rangle$, standard deviations σ_x , σ_y , σ_z , etc.) resulting into beam loss or emittance growth!



Why study beam instabilities?

- What is a beam instability?
 - A beam becomes unstable when a moment of its distribution exhibits an exponential growth (e.g. mean positions $\langle x \rangle$, $\langle y \rangle$, $\langle z \rangle$, standard deviations σ_x , σ_y , σ_z , etc.) resulting into beam loss or emittance growth!
- Why study beam instabilities?
 - The onset of a beam instability usually determines the maximum beam intensity that a machine can store/accelerate (performance limitation)



Typical situation

- A beam centroid instability appears when the intensity is raised above a certain threshold
- The threshold can be optimized by an accurate choice of the machine settings

Why study beam instabilities?

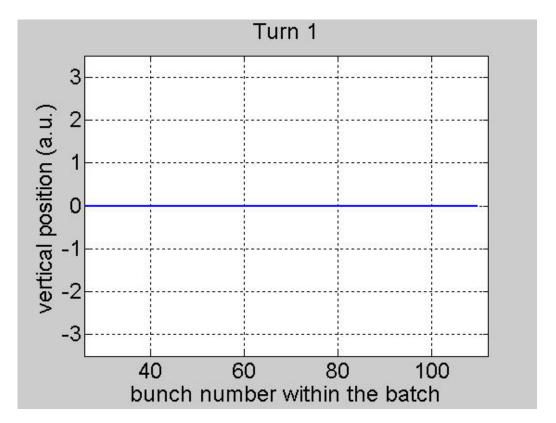
- What is a beam instability?
 - A beam becomes unstable when a moment of its distribution exhibits an exponential growth (e.g. mean positions $\langle x \rangle$, $\langle y \rangle$, $\langle z \rangle$, standard deviations σ_x , σ_y , σ_z , etc.) resulting into beam loss or emittance growth!
- Why study beam instabilities?
 - The onset of a beam instability usually determines the maximum beam intensity that a machine can store/accelerate (performance limitation)
 - Understanding the type of instability limiting the performance, and its underlying mechanism, is essential because it:
 - Allows identifying the source and possible measures to mitigate/suppress the effect
 - Allows dimensioning an active feedback system to prevent the instability

Types of beam instabilities

- ⇒ Beam instabilities occur in both linear and circular machines
 - Longitudinal plane (z,δ)
 - Transverse plane (x,y,x',y')
- ⇒ Beam instabilities can affect the beam on different scales
 - Cross-talk between bunches
 - → The unstable motion of subsequent bunches is coupled
 - → The instability is consequence of another mechanism that builds up along the bunch train
 - Single bunch effect
 - Coasting beam instabilities

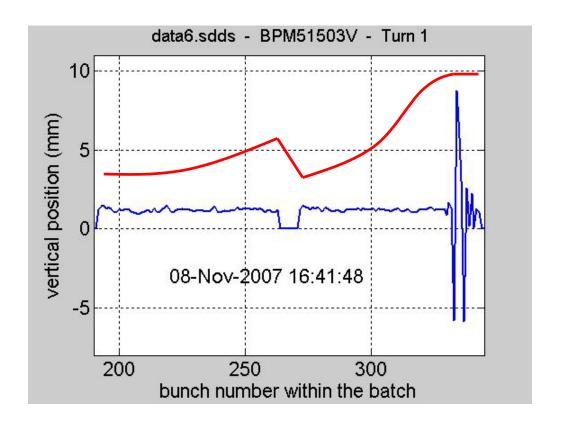
Example of multi-bunch instability

- ⇒ They can affect the beam on different scales
 - Cross-talk between bunches
 - → The unstable motion of subsequent bunches is coupled
 - → The instability is consequence of another mechanism that builds up along the bunch train
 - Single bunch effect



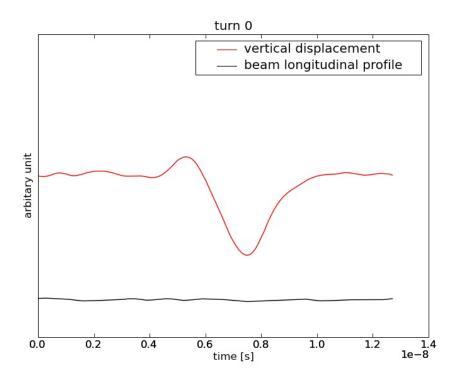
Example of multi-bunch instability

- ⇒ They can affect the beam on different scales
 - Cross-talk between bunches
 - → The unstable motion of subsequent bunches is coupled
 - → The instability is consequence of another mechanism that builds up along the bunch train
 - Single bunch effect

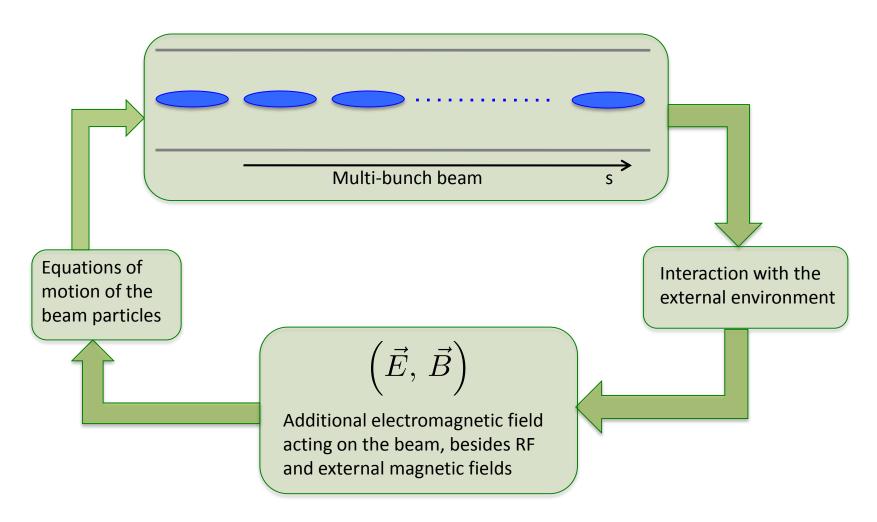


Example of single bunch instability

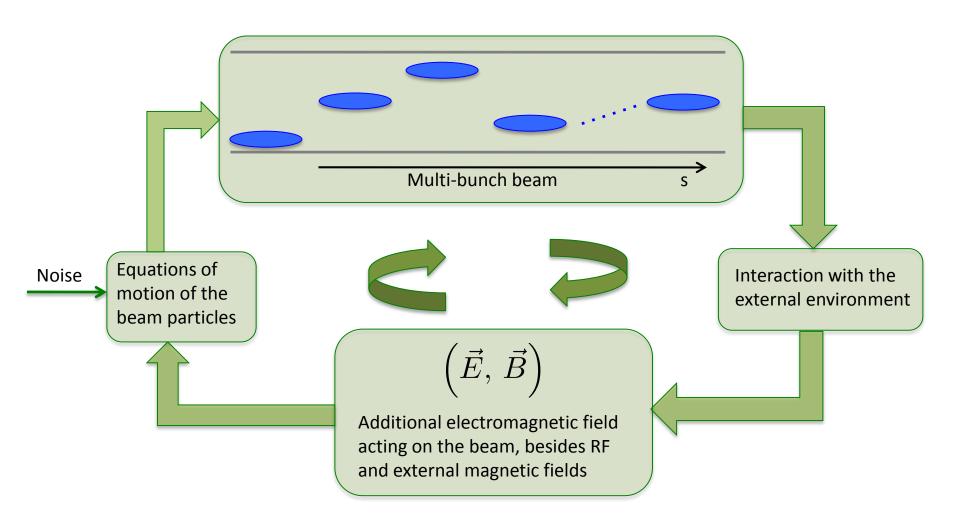
- ⇒ They can affect the beam on different scales
 - Cross-talk between subsequent bunches
 - → The instability builds up along a bunch train
 - → The instability is consequence of another mechanism that builds up along the bunch train
 - Single bunch effect



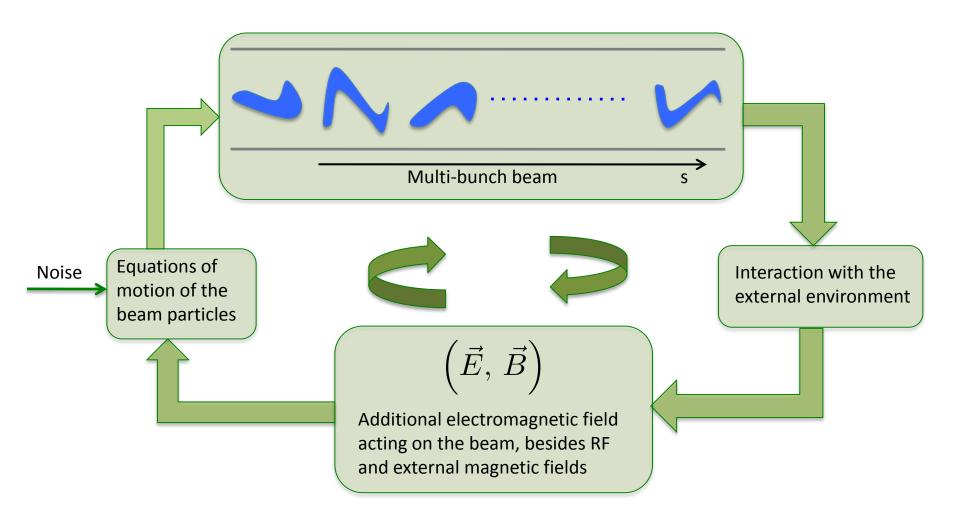
Instability loop



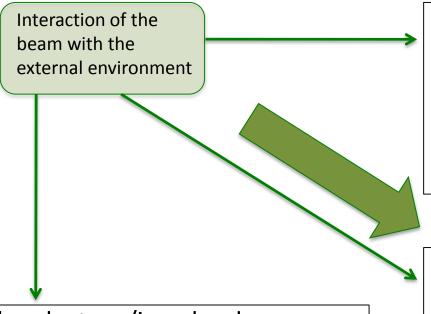
Instability loop



Instability loop



Some examples of beam-environment interaction



Beam self-fields

- Set of Maxwell's equations with
 - The beam as the source term
 - Boundary conditions given by the accelerator component in which the beam propagates

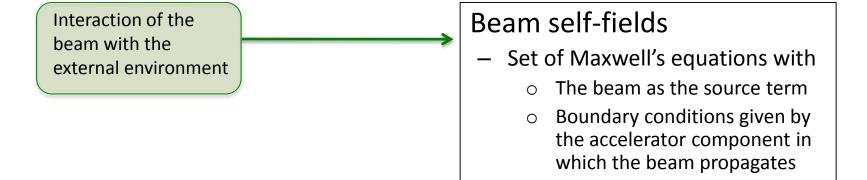
The electron/ion cloud

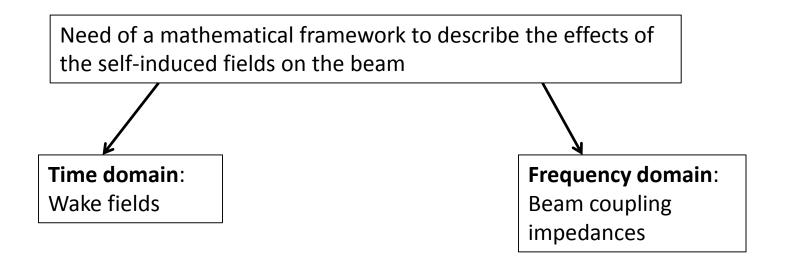
- Electron/ion production and accumulation
- Poisson's equation with
 - The electron cloud as the source term
 - Boundary conditions given by the chamber in which the electron cloud builds up

Fields from another beam

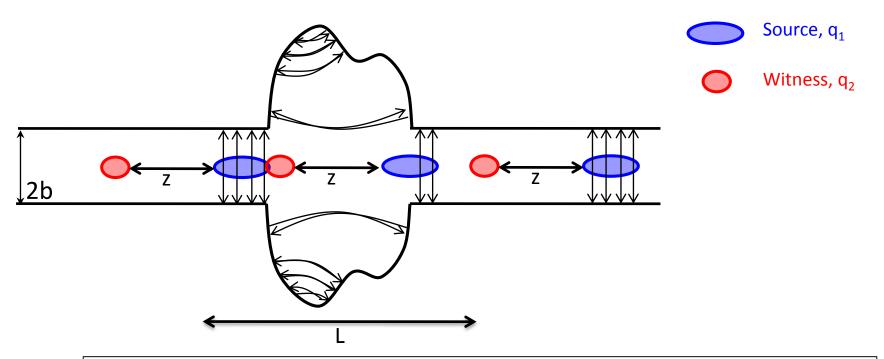
- Set of Maxwell'Sequations with
 - The other beam as the source Additional electromagnetic field acting outhear conditions given by and external anageric wells the encounter between the beams takes place

Electro-magnetic beam-environment interaction



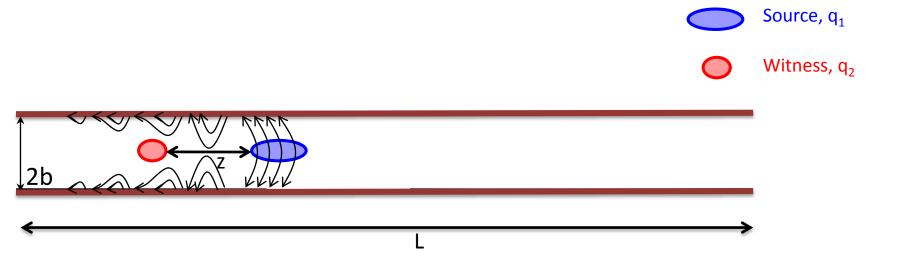


Wake fields (general)

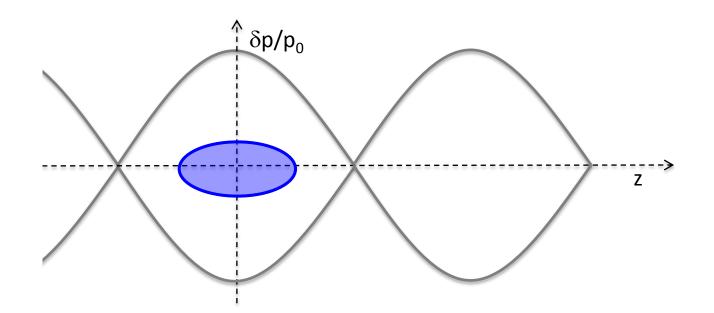


- While source and witness ($q_i \delta(s-ct)$), distant by z<0, move in a perfectly conducting chamber, the witness does not feel any force ($\gamma >> 1$)
- When the source encounters a discontinuity (e.g., transition, device), it produces an electromagnetic field, which trails behind (wake field)
 - The source loses energy
 - The witness feels a net force all along an effective length of the structure, L

Wake fields (general)

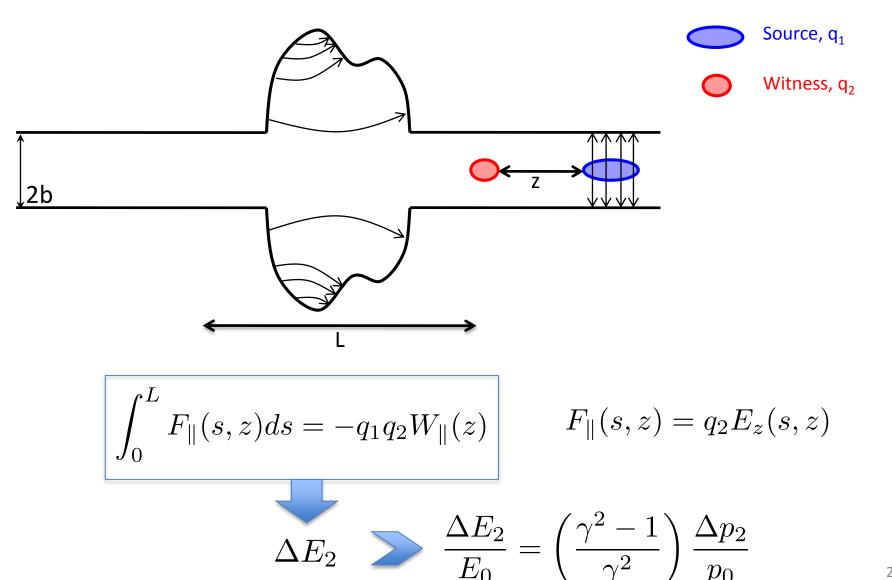


- Not only geometric discontinuities cause electromagnetic fields trailing behind sources traveling at light speed.
- For example, a pipe with finite conductivity causes a delay in the induced currents, which also produces delayed electromagnetic fields
 - No ringing, only slow decay
 - The witness feels a net force all along an effective length of the structure, L
- In general, also electromagnetic boundary conditions other than PEC can be the origin of wake fields.



1. The longitudinal plane

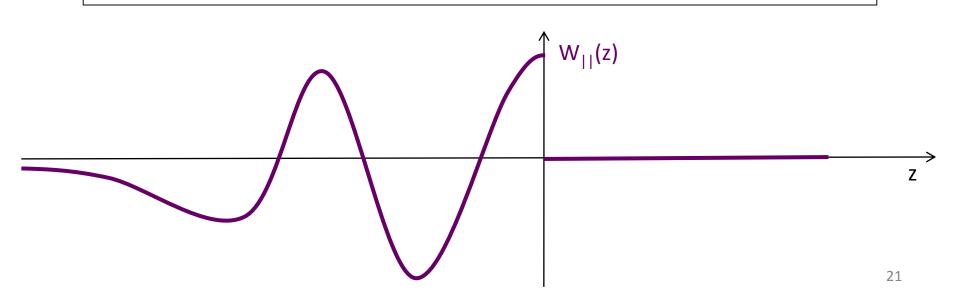
Longitudinal wake function: definition



Longitudinal wake function: properties

$$W_{\parallel}(z) = -rac{\Delta E_2}{q_1 q_2} \qquad {\scriptstyle z \, o \, 0 \ q_2 \, o \, q_1} \qquad W_{\parallel}(0) = -rac{\Delta E_1}{q_1^2}$$

- The value of the wake function in 0, $W_{II}(0)$, is related to the energy lost by the source particle in the creation of the wake
- $W_{II}(0)>0$ since $\Delta E_1<0$
- $W_{II}(z)$ is discontinuous in z=0 and it vanishes for all z>0 because of the ultra-relativistic approximation

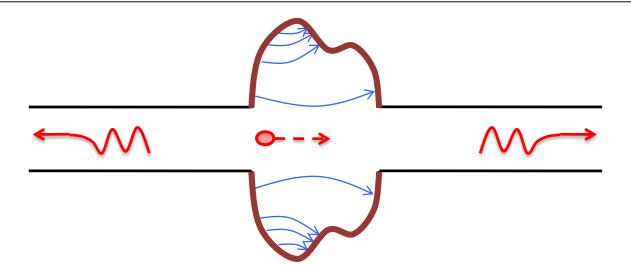


The energy balance

$$W_{\parallel}(0) = -\frac{\Delta E_1}{q_1^2}$$

What happens to the energy lost by the source?

- In the global energy balance, the energy lost by the source splits into
 - Electromagnetic energy of the modes that remain trapped in the object
 - ⇒ Partly dissipated on lossy walls or into purposely designed inserts or HOM absorbers
 - ⇒ Partly transferred to following particles (or the same particle over successive turns), possibly feeding into an instability!
 - Electromagnetic energy of modes that propagate down the beam chamber (above cut-off), which will be eventually lost on surrounding lossy materials



The energy balance

$$W_{\parallel}(0) = -\frac{\Delta E_1}{q_1^2}$$

What happens to the energy lost by the source?

- In the global energy balance, the energy lost by the source splits into
 - Electromagnetic energy of the modes that remain trapped in the object
 - ⇒ Partly dissipated on lossy walls or into purposely designed inserts or HOM absorbers
 - ⇒ Par suc

suc Electrom

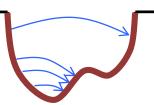
(above c

The energy loss is very important because

- ⇒ It causes beam induced heating of the beam environment (damage, outgassing)
- ⇒ It feeds into both longitudinal and transverse instabilities through the associated EM fields

ticle over

eam chamber pssy materials



Longitudinal impedance

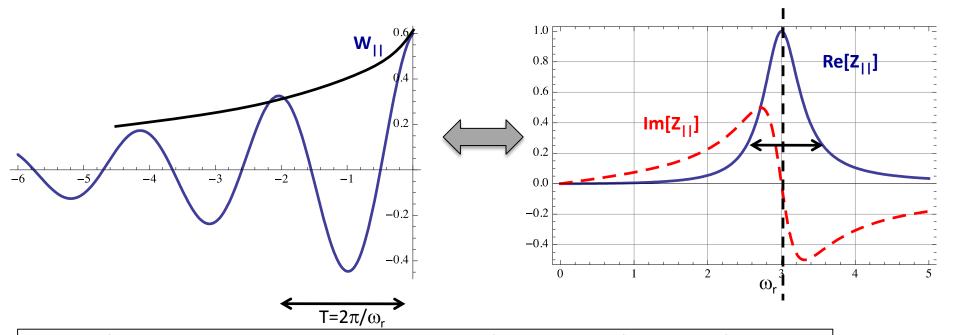
- The wake function of an accelerator component is basically its Green function in time domain (i.e., its response to a pulse excitation)
 - ⇒ Very useful for macroparticle models and simulations, because it can be used to describe the driving terms in the single particle equations of motion!
- We can also describe it as a transfer function in frequency domain
- This is the definition of longitudinal beam coupling impedance of the element under study

$$Z_{\parallel}(\omega) = \int_{-\infty}^{\infty} W_{\parallel}(z) \exp\left(-\frac{i\omega z}{c}\right) \frac{dz}{c}$$

$$[\Omega]$$

Longitudinal impedance: resonator

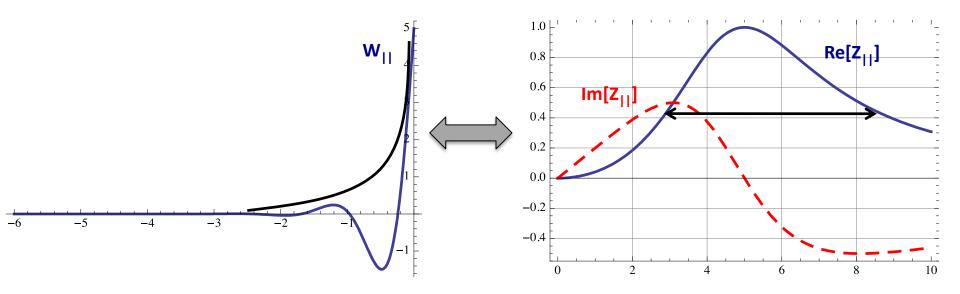
$$Z_{\parallel}(\omega) = \int_{-\infty}^{\infty} W_{\parallel}(z) \exp\left(-\frac{i\omega z}{c}\right) \frac{dz}{c}$$



- The frequency ω_r is related to the oscillation of E_z , and therefore to the frequency of the mode excited in the object
- The decay time depends on how quickly the stored energy is dissipated (quantified by a quality factor Q)

Longitudinal impedance: resonator

$$Z_{\parallel}(\omega) = \int_{-\infty}^{\infty} W_{\parallel}(z) \exp\left(-\frac{i\omega z}{c}\right) \frac{dz}{c}$$



- In general, the impedance will be composed of several of these resonator peaks
- Other contributors to the global impedance can also have different shapes, e.g. the resistive wall

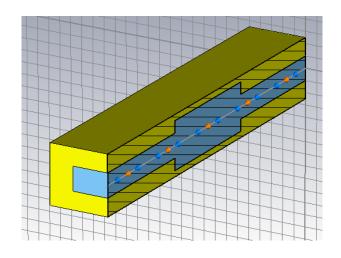
Longitudinal wake & impedance Equations of the resonator

$$Z_{||}^{\text{Res}}(\omega) = \frac{R_{s||}}{1 + iQ\left(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega}\right)}$$

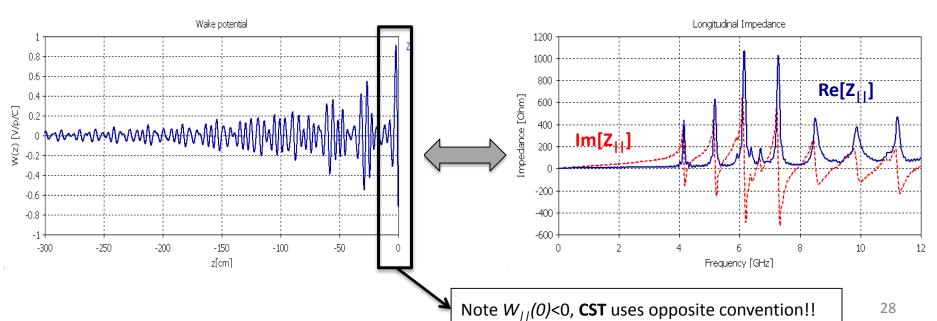
$$W_{||}^{\mathrm{Res}}(z) = \begin{cases} 2\alpha_z R_{s||} \exp\left(\frac{\alpha_z z}{c}\right) \left[\cos\left(\frac{\bar{\omega} z}{c}\right) + \frac{\alpha_z}{\bar{\omega}} \sin\left(\frac{\bar{\omega} z}{c}\right)\right] & \text{if } z < 0 \\ \alpha_z R_{s||} & \text{if } z = 0 \\ & > \\ 0 & \text{if } z < 0 \end{cases}$$

$$\alpha_z = \frac{\omega_r}{2Q} \qquad \bar{\omega} = \sqrt{\omega_r^2 - \alpha_z^2}$$

Longitudinal impedance: cavity

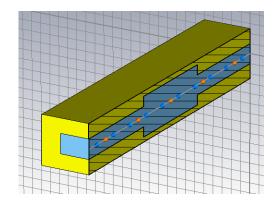


- A more complex example: a simple pill-box cavity with walls having finite conductivity
- Several modes can be excited
 - Below the pipe cut-off frequency the width of the peaks is only determined by the finite conductivity of the walls
 - Above, losses also come from propagation in the chamber

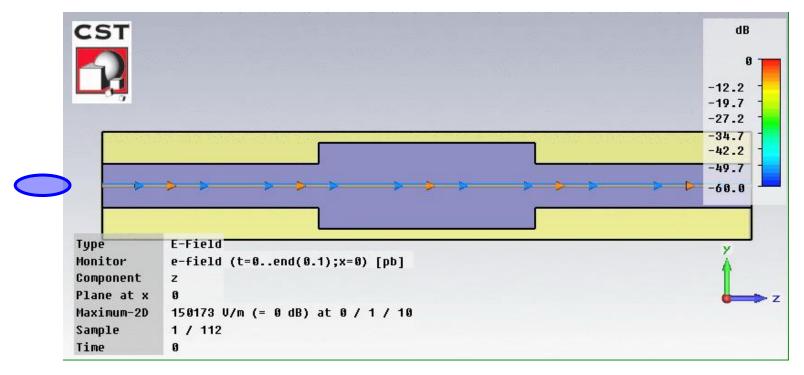


28

Longitudinal impedance: cavity



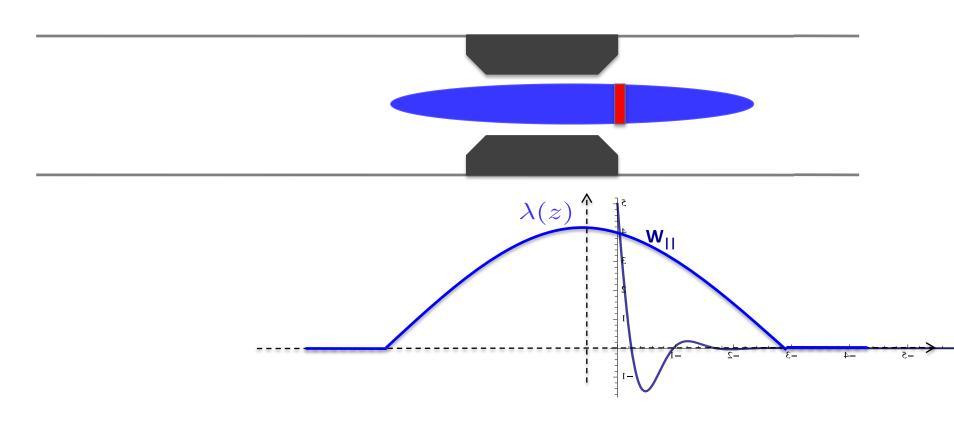
Evolution of the electromagnetic fields (E_z) in the cavity while and after the beam has passed



Single bunch effects

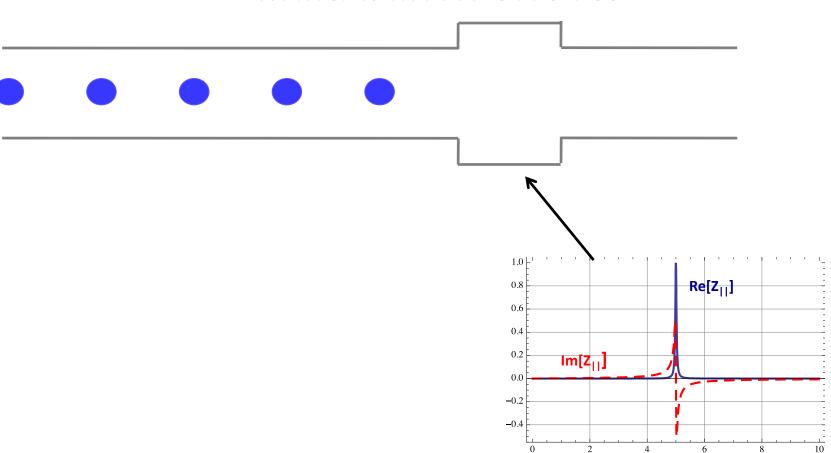


Single bunch effects

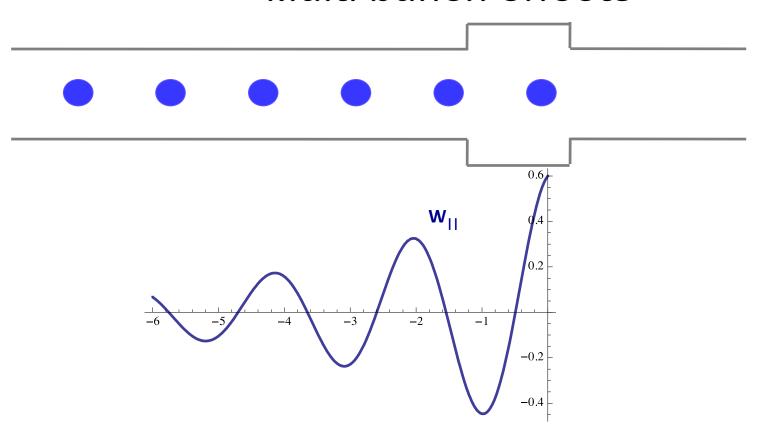


$$\Delta E(z) = -e^2 \int_z^{\hat{z}} \lambda(z') W_{\parallel}(z - z') dz'$$

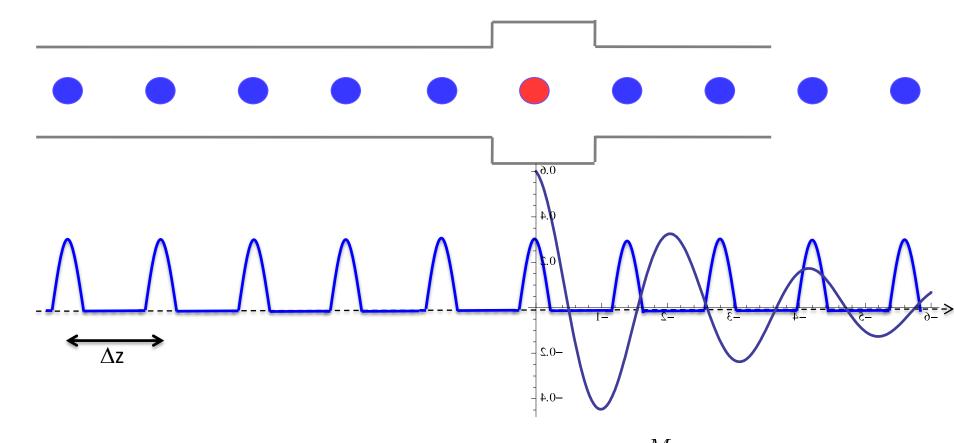
Multi bunch effects



Multi bunch effects



Multi bunch effects

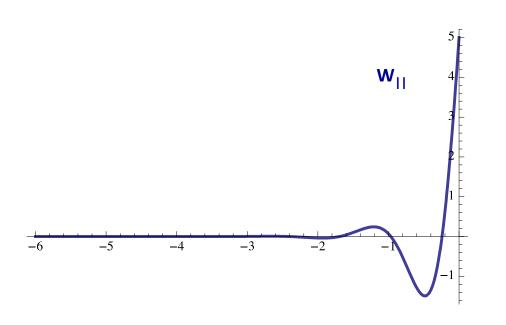


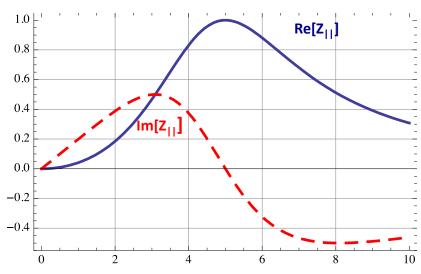
$$\Delta E_{j} = -e^{2} \int_{z_{j}}^{\infty} \lambda(z') W_{||}(z_{j} - z') dz' \approx N_{s} e^{2} \sum_{k=0}^{M} N_{i} W[(j - i) \Delta z]$$

$$\Delta E_{j} = -e^{2} \int_{z_{j}}^{\infty} \lambda(z') W_{||}(z_{j} - z') dz' \approx N_{j} e^{2} \sum_{k=0}^{M} \sum_{i=0}^{M} N_{i} W[(j - i) \Delta z + kC]$$

Single bunch vs. Multi bunch

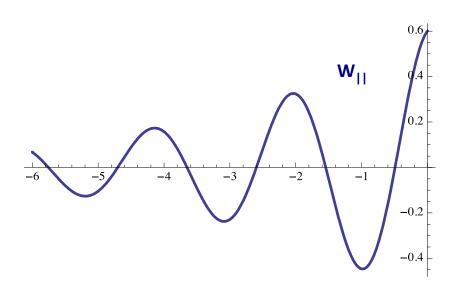
- A short-lived wake, decaying over the length of one bunch, can only cause intra-bunch (head-tail) coupling
- It can be therefore responsible for single bunch instabilities

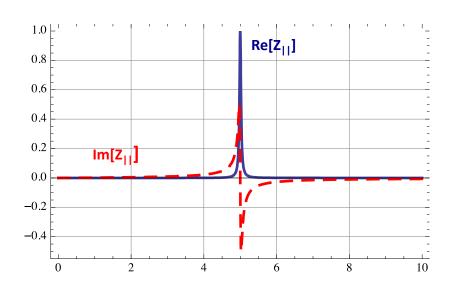




Single bunch vs. Multi bunch

- A long-lived wake field, decaying over the length of a bunch train or even more than a turn, causes bunch-to-bunch or multi-turn coupling
- It can be therefore responsible for multi-bunch or multi-turn instabilities



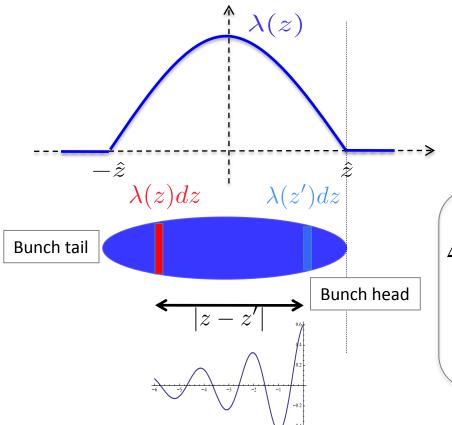


- Detailed calculations:
 - Energy loss
 - Robinson instability

- Qualitative descriptions:
 - Coupled bunch instabilities
 - Single bunch modes

Energy loss of a bunch (single pass)

- The energy kick $\Delta E(z)$ on each particle $\frac{e}{c}$ in the witness slice $\frac{\lambda(z)dz}{c}$ is the integral of the contributions from the wakes left behind by all the preceding $\frac{e\lambda(z')dz}{c}$ slices (sources)
- The total energy loss ΔE of the bunch can then be obtained by integrating $\Delta E(z)$ $\lambda(z)$ over the full bunch extension



$$\Delta E(z) = -e^2 \int_z^{\hat{z}} \lambda(z') W_{\parallel}(z - z') dz'$$

$$\Delta E = \int_{-\hat{z}}^{\hat{z}} \lambda(z) \Delta E(z) dz$$

$$\Delta E = -\frac{e^2}{2\pi} \int_{-\infty}^{\infty} \tilde{\lambda}(\omega) \tilde{\lambda}^*(\omega) Z_{\parallel}(\omega) d\omega =$$
$$-\frac{e^2}{2\pi} \int_{-\infty}^{\infty} |\tilde{\lambda}(\omega)|^2 \operatorname{Re} \left[Z_{\parallel}(\omega) \right] d\omega$$

Energy loss of a bunch (multi-pass)

- The total energy loss Δ E of the bunch can still be obtained by integrating Δ E(z) over the full bunch extension
- $\Delta E(z)$ this time also includes contributions from all previous turns, spaced by multiples of the ring circumference C

$$\Delta E = -\frac{e^2}{2\pi} \int_{-\infty}^{\infty} \lambda(z) dz \int_{-\infty}^{\infty} dz' \lambda(z') \sum_{k=-\infty}^{\infty} W_{\parallel}(kC + z - z') dz'$$

$$\sum_{k=-\infty}^{\infty} W_{||}(kC+z-z') = \frac{c}{C} \sum_{p=-\infty}^{\infty} Z_{||}(p\omega_0) \exp\left[-\frac{ip\omega_0(z-z')}{c}\right]$$

$$\Delta E = -\frac{e^2 \omega_0}{2\pi} \sum_{p=-\infty}^{\infty} Z_{\parallel}(p\omega_0) \int_{-\infty}^{\infty} \lambda(z) \exp\left(\frac{-ip\omega_0 z}{c}\right) dz \int_{-\infty}^{\infty} \lambda(z') \exp\left(\frac{ip\omega_0 z'}{c}\right) dz'$$

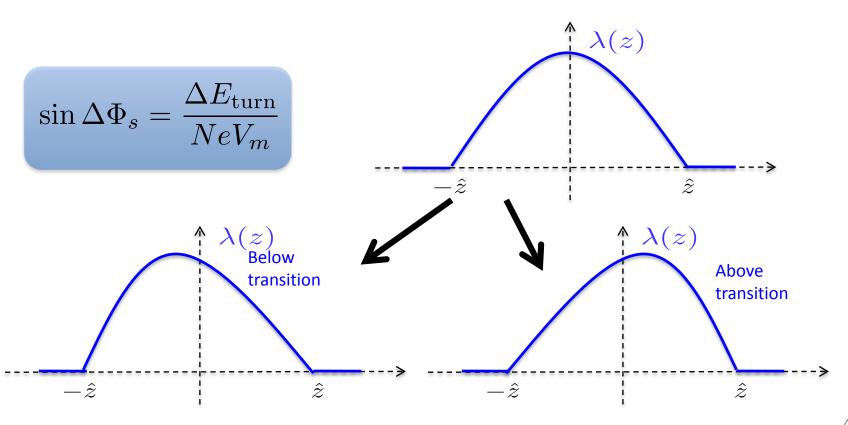
$$\tilde{\lambda}(p\omega_0)$$

$$\tilde{\lambda}^*(p\omega_0)$$

$$\Delta E = -\frac{e^2 \omega_0}{2\pi} \sum_{p=-\infty}^{\infty} |\tilde{\lambda}(p\omega_0)|^2 \operatorname{Re}\left[Z_{\parallel}(p\omega_0)\right]$$

Energy loss per turn: stable phase shift

- The RF system has to compensate for the energy loss by imparting a net acceleration to the bunch
- Therefore, the bunch readjusts to a new equilibrium distribution in the bucket and moves to a synchronous angle $\Delta\Phi_{\rm s}$



Example

Gaussian bunch and power loss with a broad-band resonator impedance

$$\lambda(z) = \frac{N}{\sqrt{2\pi}\sigma_z} \exp\left(-\frac{z^2}{2\sigma_z^2}\right) \qquad \stackrel{\mathcal{F}}{\iff} \qquad \tilde{\lambda}(\omega) = N \exp\left(-\frac{\omega^2 \sigma_z^2}{2c^2}\right)$$

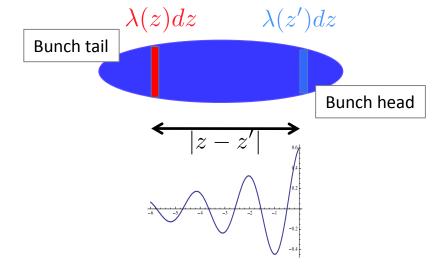
$$\int_{-\infty}^{\infty} |\tilde{\lambda}(\omega)|^2 \operatorname{Re}\left[Z_{||}(\omega)\right] d\omega$$

can be calculated with $Z_{||}(\omega) = Z_{||}^{Res}(\omega)$ from previous slide in the two limiting cases

$$\sigma_z\gg rac{c}{\omega_r}$$
 Need to expand Re[Z $_{||}(\omega)$] for small ω

$$\sigma_z \ll rac{c}{\omega_r}$$
 Can assume $|\lambda(\omega)|$ constant over $\mathrm{Re}[\mathrm{Z}_{||}(\omega)]$

- The single particle in the witness slice $\lambda(z)dz$ will feel the force from the RF, from the bunch own space charge, and that associated to the wake
- The wake contribution can extend to several turns

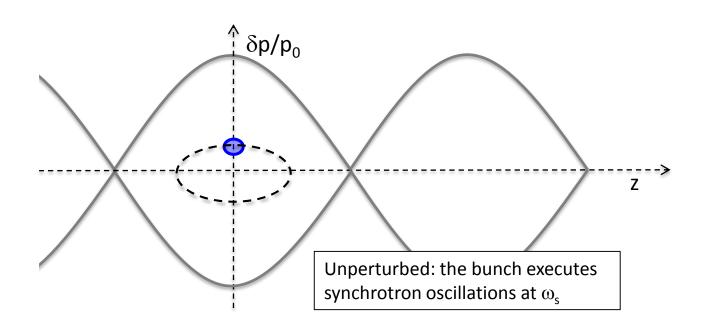


$$\frac{d^2z}{dt^2} + \frac{\eta e V_{\rm rf}(z)}{m_0 \gamma C} = \frac{\eta e^2}{m_0 \gamma C} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} \lambda(z' + kC) W_{||}(z - z' - kC) dz'$$

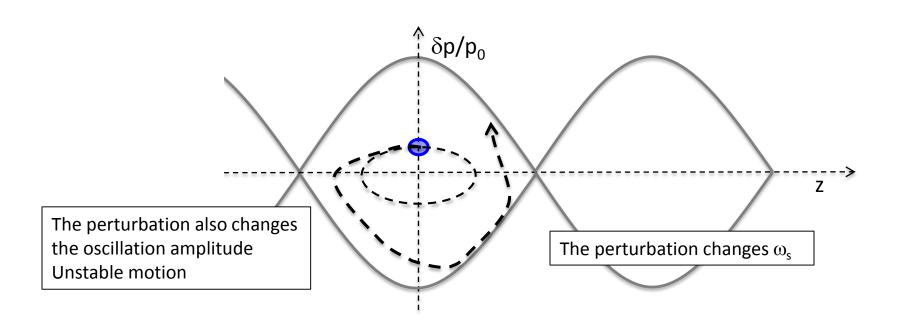
External RF

Wake fields

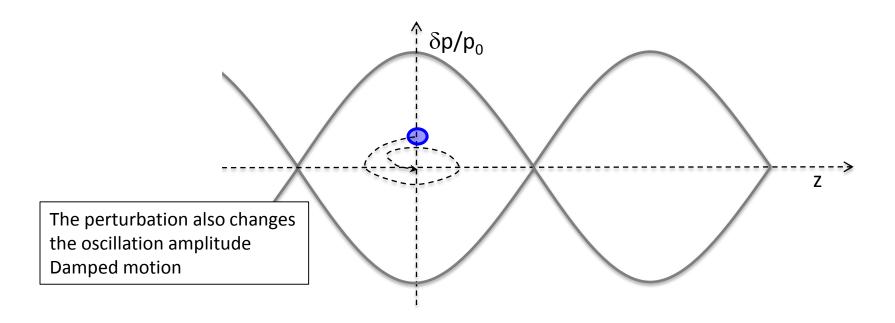
- To illustrate the Robinson instability we will use some simplifications:
 - ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear synchrotron oscillations in absence of the wake forces)
 - ⇒ The bunch additionally feels the effect of a multi-turn wake



- To illustrate the Robinson instability we will use some simplifications:
 - ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear synchrotron oscillations in absence of the wake forces)
 - ⇒ The bunch additionally feels the effect of a multi-turn wake



- To illustrate the Robinson instability we will use some simplifications:
 - ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear synchrotron oscillations in absence of the wake forces)
 - ⇒ The bunch additionally feels the effect of a multi-turn wake



- To illustrate the Robinson instability we will use some simplifications:
 - ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear synchrotron oscillations in absence of the wake forces)
 - ⇒ The bunch additionally feels the effect of a multi-turn wake

$$\frac{d^2z}{dt^2} + \omega_s^2 z = \frac{Ne^2\eta}{Cm_0\gamma} \sum_{k=-\infty}^{\infty} W_{\parallel} \left[z(t) - z(t - kT_0) - kC \right]$$

We assume that the wake can be linearized on the scale of a synchrotron oscillation

$$W_{\parallel}[z(t) - z(t - kT_0) - kC] \approx W_{\parallel}(kC) + W'_{\parallel}(kC) \cdot [z(t) - z(t - kT_0)]$$

$$W_{\parallel}[z(t) - z(t - kT_0) - kC] \approx W_{\parallel}(kC) + W'_{\parallel}(kC) \cdot [z(t) - z(t - kT_0)]$$

- \Rightarrow The term Σ W_{||}(kC) only contributes to a constant term in the solution of the equation of motion, i.e. the synchrotron oscillation will be executed around a certain z_0 and not around 0. This term represents the stable phase shift that compensates for the energy loss
- ⇒ The dynamic term proportional to $z(t)-z(t-kT_0) \approx kT_0dz/dt$ will introduce a "friction" term in the equation of the oscillator, which can lead to instability!

$$z(t) \propto \exp\left(-i\Omega t\right)$$

$$\Omega^2 - \omega_s^2 = -\frac{Ne^2\eta}{Cm_0\gamma} \sum_{k=-\infty}^{\infty} \left[1 - \exp\left(-ik\Omega T_0\right)\right] \cdot W'_{\parallel}(kC)$$

$$i \cdot \frac{1}{C} \sum_{p=-\infty}^{\infty} \left[p\omega_0 Z_{\parallel}(p\omega_0) - (p\omega_0 + \Omega) Z_{\parallel}(p\omega_0 + \Omega) \right]$$

- ⇒ We assume a small deviation from the synchrotron tune
- \Rightarrow Re(Ω ω_s) \rightarrow Synchrotron tune shift
- \Rightarrow Im(Ω ω_s) \rightarrow Growth/damping rate, only depends on the dynamic term, if it is positive there is an instability!

$$\Omega^2 - \omega_s^2 \approx 2\omega_s \underbrace{\left(\Omega - \omega_s\right)}_{\text{Complex frequency shift}}$$

$$\Delta\omega_s = \text{Re}(\Omega - \omega_s) = \left(\frac{e^2}{m_0c^2}\right)\frac{N\eta}{2\gamma T_0^2\omega_s}\,\mathbf{x}$$

$$\mathbf{x} \sum_{p=-\infty}^{\infty} \left[p\omega_0 \text{Im} Z_{\parallel}(p\omega_0) - (p\omega_0 + \omega_s) \text{Im} Z_{\parallel}(p\omega_0 + \omega_s)\right]$$

$$\tau^{-1} = \operatorname{Im}(\Omega - \omega_s) = \left(\frac{e^2}{m_0 c^2}\right) \frac{N\eta}{2\gamma T_0^2 \omega_s} \sum_{p=-\infty}^{\infty} (p\omega_0 + \omega_s) \operatorname{Re} Z_{\parallel}(p\omega_0 + \omega_s)$$

$$\tau^{-1} = \operatorname{Im}(\Omega - \omega_s) = \left(\frac{e^2}{m_0 c^2}\right) \frac{N\eta}{2\gamma T_0^2 \omega_s} \sum_{p = -\infty}^{\infty} (p\omega_0 + \omega_s) \operatorname{Re} Z_{\parallel}(p\omega_0 + \omega_s)$$

- \Rightarrow We assume the impedance to be peaked at a frequency ω_r close to $h\omega_0 >> \omega_s$ (e.g. RF cavity fundamental mode or HOM)
- ⇒ Only two dominant terms are left in the summation at the RHS of the equation for the growth rate
- \Rightarrow Stability requires that η and $\Delta[\text{Re Z}_{||}(h\omega_0)]$ have different signs

$$\tau^{-1} = \left(\frac{e^2}{m_0c^2}\right) \frac{N\eta h\omega_0}{2\gamma T_0^2 \omega_s} \begin{bmatrix} \operatorname{Re}Z_{\parallel}(h\omega_0 + \omega_s) - \operatorname{Re}Z_{\parallel}(h\omega_0 - \omega_s) \end{bmatrix} \begin{bmatrix} \operatorname{Re}Z_{\parallel}(h\omega_0) \end{bmatrix} \begin{bmatrix} \operatorname{Re}$$

Stability criterion $ightarrow \ \eta \cdot \Delta \left[\mathrm{Re} Z_{\parallel}(h\omega_0) \right] < 0$

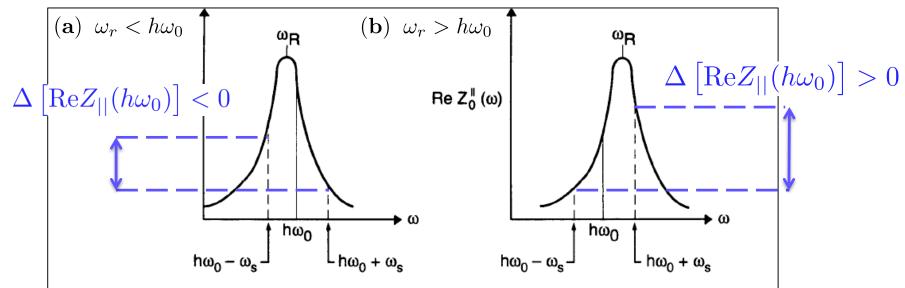


Figure 4.4. Illustration of the Robinson stability criterion. The rf fundamental mode is detuned so that ω_R is (a) slightly below $h\omega_0$ and (b) slightly above $h\omega_0$. (a) is Robinson damped above transition and antidamped below transition. (b) is antidamped above transition and damped below transition.

	$\omega_{\rm r} < {\rm h}\omega_{\rm 0}$	$\omega_{\rm r} > h\omega_{\rm 0}$
Above transition (η>0)	stable	unstable
Below transition (η <0)	unstable	stable

$$\tau^{-1} = \operatorname{Im}(\Omega - \omega_s) = \left(\frac{e^2}{m_0 c^2}\right) \frac{N\eta}{2\gamma T_0^2 \omega_s} \sum_{p = -\infty}^{\infty} (p\omega_0 + \omega_s) \operatorname{Re} Z_{\parallel}(p\omega_0 + \omega_s)$$

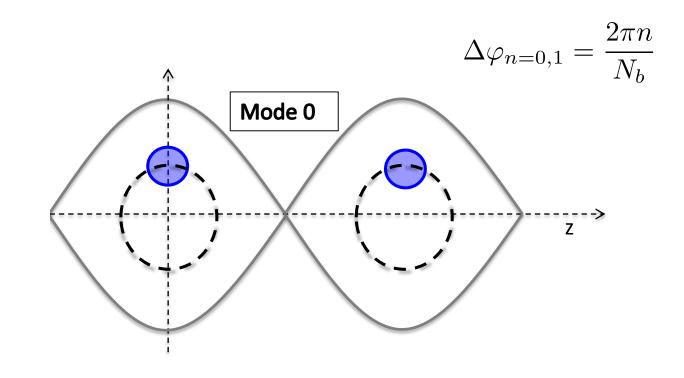
- ⇒ Other types of impedances can also cause instabilities through the Robinson mechanism
- \Rightarrow However, a smooth broad-band impedance with no narrow structures on the ω_0 scale cannot give rise to an instability
 - \checkmark Physically, this is clear, because the absence of structure on ω_0 scale in the spectrum implies that the wake has fully decayed in one turn time and the driving term in the equation of motion also vanishes

$$\sum_{n=-\infty}^{\infty} (p\omega_0 + \omega_s) \operatorname{Re} Z_{\parallel}(p\omega_0 + \omega_s) \to \frac{1}{\omega_0} \int_{-\infty}^{\infty} \omega \operatorname{Re} Z_{\parallel}(\omega) d\omega \to 0$$

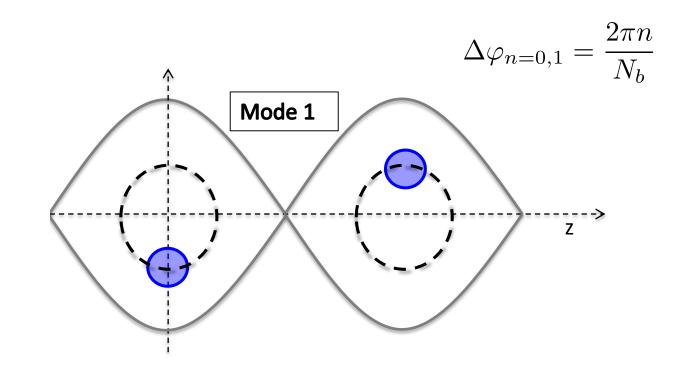
Other longitudinal instabilities

- The Robinson instability occurs for a single bunch under the action of a multi-turn wake field
 - It contains a term of coherent synchrotron tune shift
 - It results into an unstable rigid bunch dipole oscillation
 - It does not involve higher order moments of the bunch longitudinal phase space distribution
- Other important collective effects can affect a bunch in a beam
 - Potential well distortion (resulting in synchronous phase shift, bunch lengthening or shortening, synchrotron tune shift/spread)
 - Coupled bunch instabilities
 - High intensity single bunch instabilities (e.g. microwave instability)
 - Coasting beam instabilities (e.g. negative mass instability)
- To be able to study these effects we would need to resort to a more detailed description of the bunch(es)
 - Vlasov equation (kinetic model)
 - Macroparticle simulations

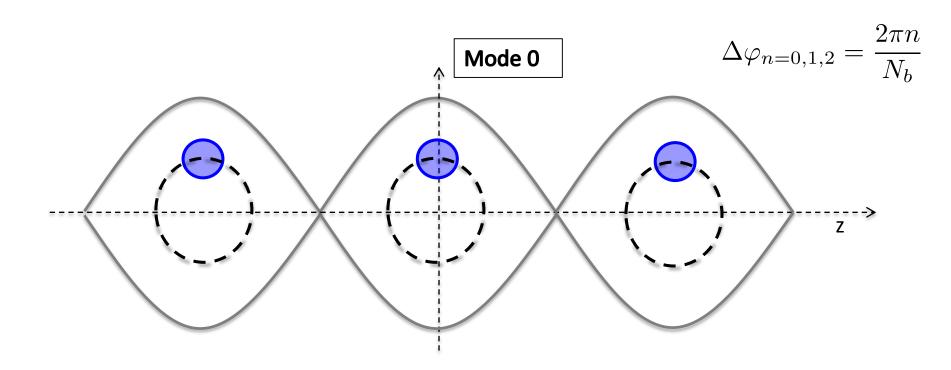
 M bunches can exhibit M different modes of coupled rigid bunch oscillations in the longitudinal plane



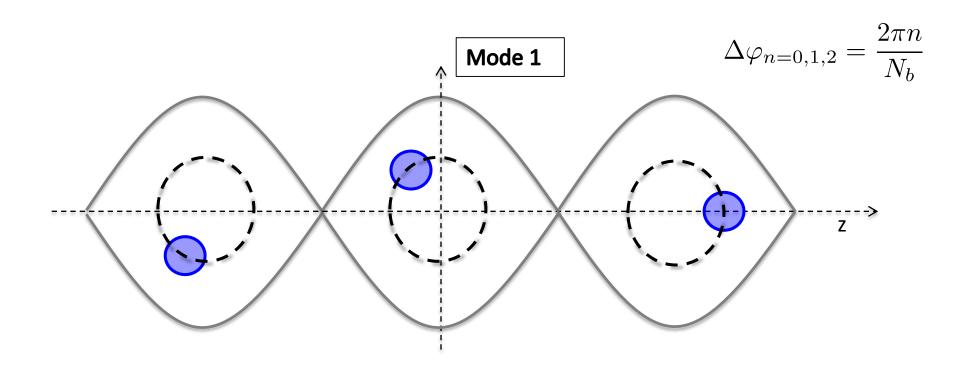
 M bunches can exhibit M different modes of coupled rigid bunch oscillations in the longitudinal plane



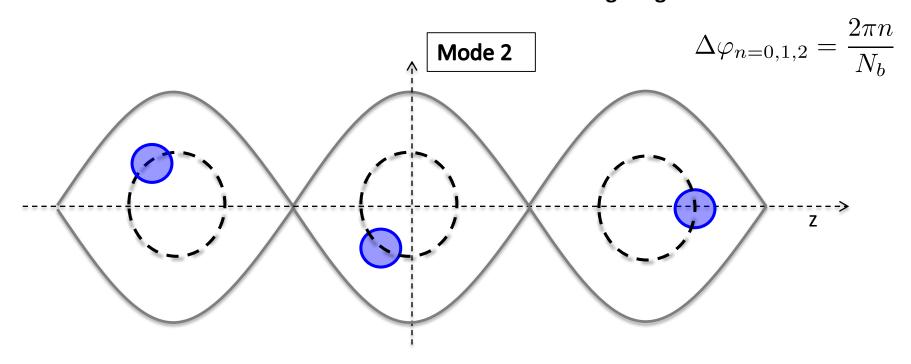
- M bunches can exhibit M different modes of coupled rigid bunch oscillations in the longitudinal plane
- Any rigid coupled bunch oscillation can be decomposed into a combination of these basic modes



- M bunches can exhibit M different modes of coupled rigid bunch oscillations in the longitudinal plane
- Any rigid coupled bunch oscillation can be decomposed into a combination of these basic modes



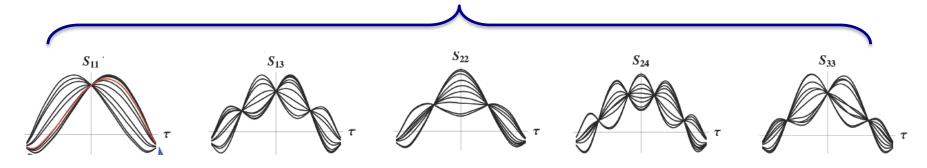
- M bunches can exhibit M different modes of coupled rigid bunch oscillations in the longitudinal plane
- Any rigid coupled bunch oscillation can be decomposed into a combination of these basic modes
- ⇒ This modes can become unstable under the effect of long range wake fields



Single bunch modes

- In a similar fashion, a single bunch exhibits a double infinity of natural modes of oscillation, with rather complicated phase space portraits.
- Whatever perturbation on the bunch phase space distribution can be expanded as a series of these modes

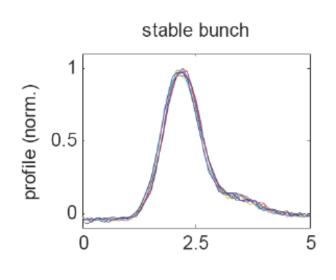
Oscillation modes as observed at a wall current monitor

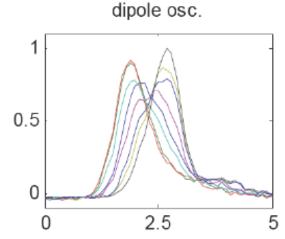


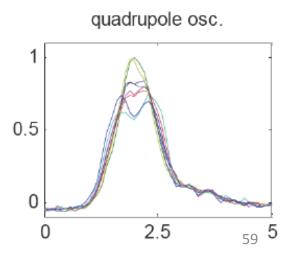
Single bunch modes

- In a similar fashion, a single bunch exhibits a double infinity of natural modes of oscillation, with rather complicated phase space portraits.
- Whatever perturbation on the bunch phase space distribution can be expanded as a series of these modes
- One of these modes or a combination of them can become unstable under the effect of a short range wake field
- In particular, the frequencies of these modes shift with intensity, and two
 of the modes can merge above a certain threshold, causing a microwave
 instability!

Observations in the CERN SPS in 2007

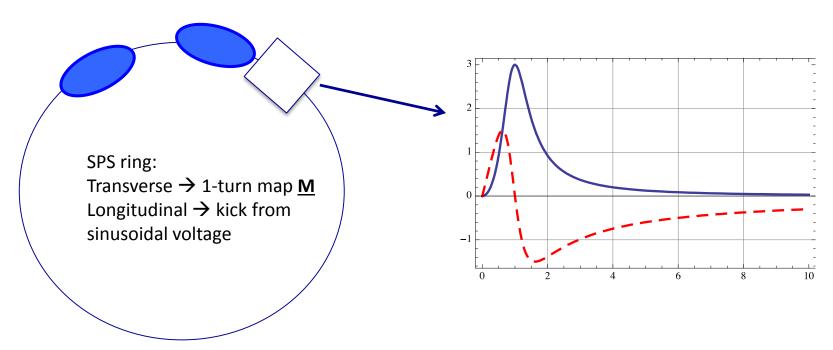






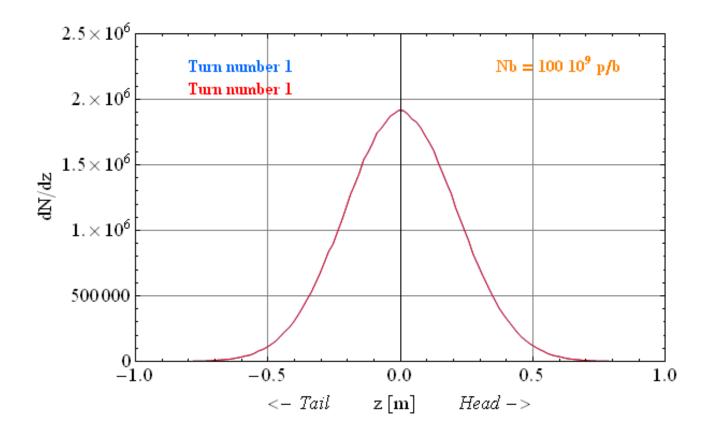
Macroparticle simulation

 We have simulated the evolution of an SPS bunch under the effect of a longitudinal broad band impedance lumped in one point of the ring



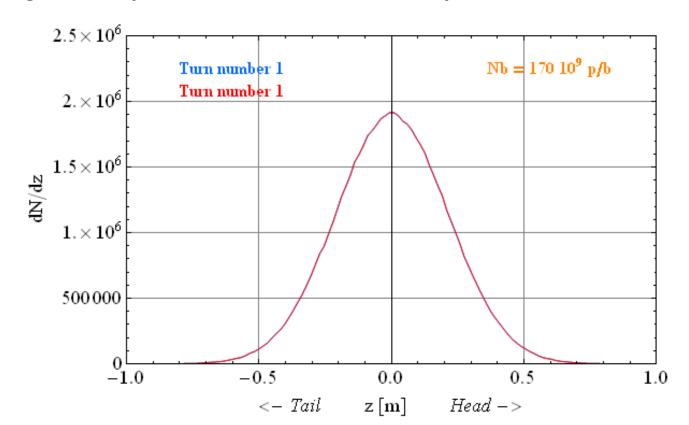
Macroparticle simulation

- We have simulated the evolution of an SPS bunch under the effect of a longitudinal broad band impedance lumped in one point of the ring
- Two different intensity values have been simulated
 - Low intensity → below instability threshold, but potential well distortion is visible in terms of stable phase shift and bunch lengthening



Macroparticle simulation

- We have simulated the evolution of an SPS bunch under the effect of a longitudinal broad band impedance lumped in one point of the ring
- Two different intensity values have been simulated
 - Low intensity → below instability threshold, but potential well distortion is visible in terms of stable phase shift and bunch lengthening
 - High intensity → above microwave instability threshold



Conclusions (part I)

- Beam instability
 - Manifests itself like an exponential coherent motion resulting in beam loss or emittance blow up
 - Can be caused by self induced EM fields
 - Can be described in the framework of wake fields/beam coupling impedances
- Longitudinal effects
 - Energy loss
 - Dipole instability (Robinson), excitation of coupled bunch & single bunch modes
- Tomorrow

 transverse wake fields/beam coupling impedances and instabilities