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B Hamiltonian formalism provides the natural framework to
analyse (linear and non-linear) beam dynamics

B Canonical (symplectic) transformationsenable to move
from variables describing a distorted phase space to
something simpler (ideally circles)

The generating functions passing from the old to the new
variables are bounded to diverge in the vicinity of
resonances (emergence of chaos, see 2"¢ lecture)

Calculating this generating function with canonical
perturbation theory becomes hopeless for higher orders

Representing the accelerator (or beam line) like a
composition of maps (through Lie transformations) enables
derivation of the generating functions in an algorithmic
way, in principle to arbitrary order
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Phase space dynamics

- Fixed point analysis

&
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Valuable description when examining
trajectories in phase space (u, Py, )

Existence of integral of motion imposes
geometrical constraints on phase flow

For the simple harmonic oscillator

1 2 2 2
phase space curves are ellipses around
the equilibrium point parameterized by
the integral of motion Hamiltonian
(energy)
By simply changing the sign of the
potential in the harmonicoscillator, the
phase trajectories become hyperbolas,
symmetric around the equilibrium point
where two straight lines cross, moving
towards and away from it
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B Conservative non-linear oscillators have Hamiltonian

H=E=;p,+V(u)

with the potential being a general (polynomial) function of positions

Equilibrium points are associated with extrema of the potential

Considering three non-linear oscillators
Quartic potential (left): two minima and one maximum
Cubic potential (center): one minimum and one maximum
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Pendulum (right): periodic minima and maxima 5

&

du

. df = fl (ua pu)
B Consider a general second order system p t
Pu

E = f2 (’U,, pu)

B Equilibrium or “fixed” points fi(uo,puo) = f2(uo,puo) = 0 are
determinant for topology of trajectories at their vicinity

= M The linearized equations of motion at their vicinity are
2
s df1(uo,puo)  Of1(uo,Puo)
i ou | M ou | ou Iy, ou
dt [0pu| — 77 10pu| T | 0f2(u0,pu0)  Of2(uo, puo) | |Opu
ou Opy,
\ Y J
Jacobian matrix

B Fixed point nature is revealed by eigenvalues of M j, i.e.
solutions of the characteristic polynomial det My — M| =0
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B For conservative systems of 1 degree of freedom, the second
order characteristic polynomial has two solutions:

Two complex eigenvalues with opposite sign, corresponding to
elliptic fixed points. Phase space flow is described by ellipses, with
particles evolving clockwise or anti-clockwise
Two real eigenvalues with opposite sign, corresponding to hyperbolic
(or saddle) fixed points. Flow described by two lines (or manifolds),
incoming (stable) and outcoming (unstable)

ellin e “ ~\\\hyperbolic Y
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B The “fixed” points for a pendulum can be found at

o] Penc @

(Pn,pp) = (Enm,0), n=0,1,2...

B The Jacobian matrixis | 0 1
—7coso, 0

B The eigenvalues are \, , = +i, /%Cos On

B Two cases can be distinguished: [ elliptic

¢n = 2nm , for which )\, 5 = iiﬁ | \
ts )

corresponding to elliptic fixed poi

¢7‘L — (2n + 1)7[' , fOr Whldl )\172 =4 g

corresponding to hyperbolic fixed points

The separatrix are the stable and unstable I\
manifolds passing through the hyperbolic }ép e i)bl’ié \
points, separating bounded librations and 2o

unbounded rotations 8




Nonrlinear dynamics, CERN Acelerator School, October2015

C
i

he CERN Accelerator School

B Consider now a simple harmonic oscillator

where the frequency is time-dependent

H = % (p2 + wi (t)u?)

Plotting the evolution in phase space, provides
trajectories that intersect each other (top)

The phase space has time as extra dimension,
By rescaling the time to become 7 = wqt and
considering every integer interval of the new
time variable, the phase space looks like the
one of the harmonic oscillator (middle)

This is the simplest version of a Poincaré
surface of section, which is useful for studying
geometrically phase space of multi-dimensional
systems

The fixed point in the surface of section is now
a periodic orbit (bottom)

he CERN Accelerator School

B Record the particle coordinates at one
location (BPM)

B Unperturbed motion lies on a circle in
normalized coordinates (simple rotation)
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B Resonance condition corresponds to a
periodic orbit orin fixed points in phase
space

M For a nonliner kick, the radius will
change by 0 ( v2J ) and the particles stop
lying on circles
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Motion close to a
resonance
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B The vicinity of a resonance  njw; + nows = Pcan be

studied through secular perturbation theory (see appendix)
B A canonical transformationis applied such that the new

variables are in a frame remaining on top of the resonance
B If one frequency is slow, one can average the motion and

remain only with a 1 degree of freedom Hamiltonian

B Finding the location of the fixed points (J1¢, ¢10) (i.e. periodic
orbits) in phase space (J1,¢1) and defining a new action

2

2

S

:

::;AJl =J, — Jio, ghe resonant Hamﬂt%nian is

B 8 HO J AJl —

S H.(AJ,¢1) = —(2) (an)” +2eHp, —ny(J) cos pr
é 91 Ji=J1o

g

£ M This is a pendulum where the frequency and the resonance
5 half width are v
5 1/2 % H,, (3

£ 2 ATy mas = 2 | 22Tz
Eow = (251{”1,_”2(.1)8 HO(QJ ) > ' 02 Ho(3)

Z (9.]1 Ji=J1o dJ1 T 12
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B We first introduce the distance to the resonance
y="L +0, d<<1
B [t is convenient then to eliminate the “time” dependence by
passing ona “1-turn” frame, using the generating function
27U ® ds

Fs(¢,J1,8) = ¢J1 + 1 (T - ; ﬁ(s’)) = (o +x(s)) 1

with the new angle 1); = ¢ — x(s) providing the Hamiltonian

H, = }%h + 2—\3/§Ks(8)(u715)3/2 cos® (11 + x(s))

B The perturbation can be expanded in a Fourier series, where
only the resonant term is kept or,

H =vJ, + Jf’/2A3p cos(3y, — pb)

in the rotating frame on top of the resonance

Hy = 8.0y + J§/2A3p cos(32) 5
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B By setting the Hamilton’s
equations equal to zero, three

fixed points can be found at y,, = % 2% 5T 5 (20
3 343,

W For - > all three points are

/ll;’f Separatrix
unstable
B Close to the elliptic one at Unstable '/
. . fixed points ,
120 = 0the motion in phase retabio
space is described by circles ™
that they get more and more Y0 =3

distorted to end up in the
“triangular” separatrix uniting
the unstable fixed points

§

The tune separation from the
resonance (stop-band width) is ¢ = —5 a0
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B Forany polynomial perturbation of the form z* the
“resonant” Hamiltonian is written as

2 k/2
H2 == 5J2 —+ Od(JQ) —+ J2 / Akp COS(k¢2)
B Note now that in contrast to the sextupole there is a non-
linear detuning term cv(.J2)

B The conditions for thg fixed poi]?ts are
J: _
sin(kio) =0, 6+ % + 5 k/2 1Akp cos(ko) =0
2

W There are f; fixed points for which cog(kipy0) = —1 and the
fixed points are stable (elliptic). They are surrounded by
ellipses

B There are also  fixed points for which cos(ko) = 1 and

the fixed points are unstable (hyperbolic). The trajectories are
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B The resonant Hamiltonian close to the 4th order resonance is
written as

& 2 2
Hy = 6Js + ¢J5 + J5 Ay cos(4)z)
B The fixed points are found by taking the derivative over the
two variables and setting them to zero, i.e.

Sin(4’¢2) =0 , ) + 2&]2 + 2J2Akp COS(4¢2) =0

B The fixed points are at
'1' TN\ ,',7'('\‘\ ',3 v N ™ I’I

P e A e A A e R e A T

w \\4 A 2 ’ ‘\4 'I’ ‘\/,’ ‘\4/.' ’ LN ,/', .‘\4 /’ /.

B For half ofthem,There is a minimdm in the potential as
Cos(419) = —1»and they. are elliptic and half of them they

~ - = mEEELD
~~ - - ~
N

__________
________

~
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-
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B Regularmotion nearthe
center, with curves getting more
deformed towards a rectangular

shape SFR -
B The separatrix passes through
4 unstable fixed points, but

motion seems well contained

B Four stable fixed points exist
and they are surrounded by
stable motion (islands of
stability)

BQuestion: Can the central
fixed point become hyperbolic
(answer in the appendix)

Nonrlinear dynamics, CERN Acelerator School, October2015

17

Onset of chaos
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B When perturbation becomes higher, motion around the
separatrix becomes chaotic (producing tongues or splitting
of the separatrix)

B Unstable fixed points are indeed the source of chaos
when a perturbation is added
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B Poincare-Birkhoff theorem states that
under perturbation of a resonance only an
even number of fixed points survives (half
stable and the other half unstable)

B Themselves get destroyed when
perturbation gets higher, etc. (self-similar
fixed points)

B Resonance islands grow and resonances
can overlap allowing diffusion of particles

2e-06 1e-06 g

1.5e-06
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B When perturbation grows, the resonance island width grows

B Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit diffusion

. . 2 (5 - o)
B The distance between two resonances is ;j,, , — _\ufme  mitm)

92 Ao (3)

B The simple overlap criterion is o5
1

Ajn maz T Ajn’ max 2 6jn,n’
B Considering the width of chaotic layer and secondary islands, the “two
thirds" rl'ﬂe apply Ajn maz + Ajn’ max 2 g(sjn,n'

Ji=Jo

B The main limitation is the geometrical nature of the criterion (difficulty to

f T T
00 02 04 06 08g10
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B Computing /measuring dynamic aperture (DA) or
particle survival

A. Chao et al., PRL 61, 24, 2752, 1988;
F. Willeke, PAC95, 24, 109, 1989.

B Computation of Lyapunov exponents

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991,
M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B Variance of unperturbed action (a la Chirikov)
B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979

J. Tennyson, SSC-155, 1988;
J. Irwin, SSC-233, 1989

B Fokker-Planck diffusion coefficient in actions

T. Sen and J.A. Elisson, PRL 77, 1051, 1996

B Frequency map analysis
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Dynamic aperture
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B The mostdirect way to evaluate the non-linear dynamics
performance of a ring is the computation of Dynamics
Aperture

B Particle motion due to multi-pole errorsis generally non-
bounded, so chaotic particles can escape to infinity

B This is not true for all non-linearities (e.g. the beam-beam
force)

B Need a symplectic tracking code to follow particle trajectories
(a lot of initial conditions) for a number of turns (depending
on the given problem) until the particles start getting lost

B As multi-pole errors may not be completely known, one has to
track through several machine models built by random
distribution of these errors

B One could start with 4D (only transverse) tracking but
certainly needs to simulate 5D (constant energy deviation)
and finally 6D (synchrotron motion included)

Nonrlinear dynamics, CERN Acelerator School, October2015
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B Dynamic aperture plots show the maximum initial

Y (mm)

Y (mm)

values of stable trajectories in x-y coordinate space at a
particular point in the lattice, for a range of energy

) The beam size (injected or equilibrium) can be shown on the
same plot.

2 Generally, the goal is to allow some significant margin in the
design - the measured dynamic aperture is often smaller than
the predicted dynamic aperture.

&

5qnj

T

25
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Qx=70.1277 Qz=3B.41B2

g_l

Including radiation damping and
excitation shows that 0.7% of the
particles are lost during the damping
Certain particles seem to damp away
from the beam core, on resonance

islands

X, mm

26
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B MOGA -Multi
Objective Genetic

Algorithms arebeing

recently used to
optimise linear but also_**
non-linear dynamics of
electron low emittance
storage rings

B Use knobs quadrupole
strengths, chromaticity
sextupoles and 0s
correctors with some
constraints

B Target ultra-low
horizontal emittance,
increased lifetime and
high dynamic aperture

2

1.5

1

Dynamics aperture area (m
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2 2.5 3 3.5 4 4.5
Horizontal emittance €, (mm-mrad)
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B During LHC design phase
DA tar%et was2xhigher .
than collimator position,
dueto statistic 12-
fluctuation, finite mesh,
linearimperfections, short 10-
tracking time, multi-pole %
time dependence, ripple § 8+
and a20% safety margin 3.

B Better knowledge of the

6_

agreementbetween

simulations for actual LH(
B Necessity tobuild an
accuratemagneticmodel
(from beam based
measurements)
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model led to good 4-

measurements and 2~/

&

DA inferred from measured loss data

Simulations: IC:I=2>(10§ =
IC1=4x10" =

2 4 6 8 10 12 14
Oy [Onominall

28
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Frequency Map Analysis
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B Frequency Map Analysis (FMA) is a numerical method
which springs from the studies of J. Laskar (Paris
Observatory) putting in evidence the

B chaoticmotion in the Solar Systems

B FMA was successively applied to several dynamical
systems

Stability of Earth Obliquity and climate stabilization (Laskar,
Robutel, 1993)

4D maps (Laskar1993)
Galactic Dynamics (Y.P and Laskar, 1996 and 1998)

Accelerator beam dynamics: leptonand hadron rings (Dumas,
Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and
Laskar2001)
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B Consider an integrable Hamiltonian system of the usual form
H(J7 P 9) = HO(‘;)

. . . Ho(J)

B Hamilton’s equationsgive %= ~5;~ = w;i(J) = ¢ = w; ()t + djo
jj = _6}8[3)(-‘]) = 0= J; = const.
J

B The actions define the surface of an invariant torus
B In complex coordinates the motionis described by

_ wwit twit

Cj(t) = JJ(O)e 7T = Zjo€ J )
B Fora non-degenerate system det | 22| — qet|ZH0lD]
& y aJ 92

there is a one-to-one correspondence between the actions and
the frequency, a frequency map
can be defined parameterizing
the toriin the frequency space

F: (I — (w)

cccccccccccccccccccccc
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B If a transformation is made to some new variables
T 05t ) — . mi  ma m
¢ = Ie"™ —Zj—I—EG](Z)—ZJ—l—EE Cm?] ‘29 .. 20

B The system is still integrable but the tori are distorted
B The motionis then described by

G(t) = zjoe™ "+ ame’ )

m
i.e. a quasi-periodic function of time, with

Am = € Cm210 290" - - - Zpg" and m - w = mywy + Maws + -+ - + Mpwy,

B For a non-integrable Hamiltonian, H (I, 0) = Ho(I) + eH'(1ib)
and especially if the perturbationis small, most tori persist
(KAM theory)

B In that case, the motionis still quasi-periodic and a
frequency map can be built

B The regularity (or not) of the map reveals stable (or chaotic)
motion 32

16



" B When a quasi-periodic function f(t) = q(t) + ip(t) in
the complex domain is given numerically, it is

possible to recover a quasi-periodic approximation

N
f'(t) =) ajetit
k=1

in a very precise way over a finite time span [—T,T]
several orders of magnitude more precisely than
simple Fourier techniques

B This approximation is provided by the Numerical
Analysis of Fundamental Frequencies - NAFF
algorithm

B The frequencies wj, and complex amplitudes aj, are
computed through an iterative scheme. »
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%) The @

* W The first frequency «/ is found by the location of the
maximum of

o0) = (70,67 = 57 [ ro "t

where y(¢) isa weight function

B In most of the cases the Hanning window filter is
used x1(t) =1+ cos(mt/T)

W Once the first term 1! is found, its complex

amplitude a’l is obtained and the process is restarted
on the remaining part of the function

. /t
fi(t) = f(t) = aje’
B The procedure is continued for the number of desired
terms, or until a required precision is reached
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B The accuracy of a simple FFT even for a simple

sinusoidal signal is not better than v —vp| =

B Calculating the Fourier integral explicitly

. 1 /T -
_ jwt —iwt
d(w) =< (1), €' >= T/o e dt chows that the

1

&

el
¥ maximum lies in between the main picks of the FFT
B
S
,_E ‘ L T T T : ]
y(t) = sin(v1) o)) = sine” T
- 1 08 - 2 4
g
2 0~2 06 | .
& oo oa | g
g o
el 02 | W .
: . A 1Y ——
:'_.é' 0 2 4 6 8 10{ -1 0 1 2 3 4 w 5
2 t / w 1 R
1F ,"/‘-\\ | 7
0.8 |- ‘\\ ,/’ i
. 06 | .
B A more complicated
. . 04 - _
signal with two
frequencies %21 ]

f(t) = alei“’lt + a2€iw2t % 0 1 \2 3

g

:

S

& shifts slightly the 105}

£ maximum with _

¢ respect to its real 'r ™

9 location

g 0.95 |-

£

§ 0.9 ; 5
'T?s.' 0.9 0.95 1 1.05
Z

36

18



Nonrlinear dynamics, CERN Acelerator School, October2015

B A window function like the Hanning filter
X1(t) = 1 + cos(mt/T) kills side-lobs and
allows a very accurate determination of the

frequency

1+ ¥o(z)
p1(z)
08
06
04
02
0l A A\
02} 1
-10 5 0 5 10

37
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B For a general window function of order p
) = 2P 1 1 cos iy
T )
Laskar (1996) proved a theorem stating that the
solution provided by the NAFF algorithm
converges asymptotically towards the real KAM
quasi-periodic solution with precision
. 1
Vy —rp X W
W [n particular, for no filter (i.e.p = ()) the precision

1S

1 , whereas for the Hanning filter (p — 1), the
12 . . 1
precision is of the order of I

38
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pendulum

oberved
s b T T T -
== ~

02 b —

0
0 /

04

v)*1.09

(v-

@
| | | | L

0506 0508 051 0512 0514
(1-I0)*1.D6 — 246

023 0232 0234 0236 0.238 024
(I-Io)*1.08 — 250

B In the vicinity of a resonance the system behaveslike a

B Passing through the elliptic point for a fixed angle, a fixed
frequency (or rotation number)is observed
B Passing through the hyperbolic point, a frequency jump is

&

.4-;ozt 39
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For a 2 degrees of freedom Hamiltonian system, the
frequency space is a line, the toriare dots on this lines, and
the chaotic zones are confined by the existing KAM tori

For a system with 3 or more
degrees of freedom, KAM
tori are still represented by
dots but do not prevent
chaotic trajectories to diffuse
This topological possibility ekt
of particles diffusing is

called Arnold diffusion

This diffusion is supposed
to be extremely small in
their vicinity, as tori act as
effective barriers
(Nechoroshev theory)

&

V2 /Vl
e ®
% e s, S e
® o0 04 0 o
® @& ® o o
o 20 ee
o %0 - -~ o °
° o.:___ Py o ® L4
0e® .- ) ®
o 9 .: e :: °
¢ o L2 e L )
D)
V2 /VI
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B Choose initial conditions (xi7 yi)with (pa:;z' , py;i)
B Numerically integrate trajectories for sufficient number of

turns

i

B Compute through NAFF (Q.;;, Qy::)after sufficient number

of turns

B Plot them in the tune diagram

YT T Qsm — T —TEgg
ys— - Yyor |
r -1 817 = —
7_ T - 4
6 %3 = 3168 — |
s A e |
! ] MAP s |
4 & —_— &
3 %2 = el p |
sl ] L i
- %5 - S i
g2 *

i = |- Phos |
OfF %1 %4 %6 *7 = 8§16 — If 1
o ol oot e o B | S ; :

"14 031 334856 7TE 9 :'E 20379 W™ 20381 20382 20,83

20,384 Q $ 41
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0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295

Horizontal Tune

m Frequency maps for the targeterror table (left) and an
increased random skew octupole error in the super-

conducting dipoles (right)
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® Calculate frequencies for two equal and successive time
spans and compute frequency diffusion vector:

D|i—. = V‘te(O,T/Z] o V’tG(T/Zﬁ]

® Plot the initial condition space color-coded with the norm
of the diffusion vector

Odober2015

® Compute a diffusion quality factor by averaging all
diffusion coefficients normalized with the initial conditions

radius
| D|
Dor =
o =@ g

Non-linear dynamics, CERN Accelerator School,
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T T T T T T T T
|D| < 1077 ] 16 | |D| =107 1
+ 1077 < |D| < 1070 0107 < |D| < 10°%
210 < [D| <10 ©10°° <|D| <107°
e 105 < |D| < 10+ | 0 107° < |D| <107 |
21074 < |D| < 109 010" <|D| <1078
0 107% < [D| <102
102 <|D|

« 107 < |D| < 1072
<102 < |D|

Vertical Position (o)
o

Vertical Position (o)
(o3

(I] é 4‘& é é ‘I‘O 1‘2 1‘4 1‘6 6 é 4 é é ‘I‘O 1‘2 1‘4 1‘6
Horizontal Position (0) Horizontal Position (o)
Diffusion maps for the target error table (left) and an increased random

skew octupole error in the super-conducting dipoles (right) m
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Numerical Applications

&
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Type 0

Type |

Type ll

Type lll

Type IV

m Comparison of correction schemes for b, and bs errors

in the LHC dipoles

m Frequency maps, resonance analysis, tune diffusion

<

;\

Frequency variation

;‘

&

;\

;u

3\

@ @®no correction

® ®Typel . .
® oyl «—a“Chosen” scheme o
® ®Typell ]
Type I '
®  ®TypelV pe .
|
.
] L]
. L ]
o2
L] L . L ] o ®
[ ; oo ® P
° (& = il
LN ] : ’
0 5 10 15
Position (o)

estimates, survival plots and short term tracking,
proved that only half of the correctors are needed
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Cee, Beam-

Variable Symbol Value

Beam energy E 7 TeV
Particle species protons
Full crossing angle 0, 300 prad
rms beam divergence ol 31.7 prad
rms beam size oy 159 pm
Normalized transv.

rms emittance ye 3.75 um
IP beta function B’ 0.5m
Bunch charge Ny (1 X 10'"=2 x 10"?)
Betatron tune Qo 0.31

\PACMAN bunch

long-range
collisons

V 4
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head-on

PACMAN bu?

V4

N G S
| ]
' d AN

“

long-range
collisions

m [ong range beam-beam interaction

represented by a 4D kick-map

Az = — nNpar

vy 67

2,N, o/ —
Ay = — npar TpVo Y <1—6 262

with b, = ((m’ +6.)% + y'2>

Ny [ 2/ 46 (| st
v 07

1/2

&
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Jelel Headon:

0325

0.320

0.315

Vertical Tune

©0-50
*5-100

0310

[Head-on

e

0.285 0.290
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0.295 0.300 0.305 0.310

Horizontal Tune

0325

Long rangef. «;

0.320

Vertical Tune

o315t -7

*0-50
*5-106 .7

030} -7

0.285 0.290 0.295 0.300 0.305
Horizontal Tune

m Proved dominant effect of long range beam-beam effect

m Dynamics dominated by the 1/r part of the force, reproduced by
electrical wire, which was proposed for correcting the effect

m Experimental verification in SPS and installation to the LHC IPs

0.310

48
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m Very good agreement of diffusive aperture boundary (action
variance) with frequency variation (loss boundary
corresponding to around 1 integer unit change in 107 turns)

§ * head on 1
O 4oL s h.o.+lr. 1
é ! —4+ | Loss boundar
K 1 10
c . I
El s +l.r.+tr.e 1
L0 +tunemod 'y s
s : o h.o.+l.r.+trerr. ¥/ £ 10
o - . . / = .
I L i / 2 ecision boundary,
X <o +Moebius twist A4 3 Precision bound:
g ° v 3
"‘ o o .
E it headon (h.d)
! 10 ¥ head on + Idngrange (1r.)
£ ! 107° Lr. + KEK thiplet errors (trer.) ]
2 LW | ho.+1r.+ KEK trer.
B 1 ho.+1r.+ FNAL trer.
g A % | —— KEKtrer. | (a)
10k . . ' .
z 5 5 " l 5 TS 0.0 20 40 6.0 80 100
o amplitude x,y (0,,) amplitude x,y (0)
g
S
o
5
<
£
Z
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« Up to now we considered only
transverse fields

1:222 | . » Magnet fringe field is the
8000 | "' longitudinal dependence of the
7000 | ’ field at the magnet edges
% 3 6000 . * Important when magnet aspect
Se oo . ratios and/or emittances are big
LR :
*g 3000 - 3 -
- 2000 1 H B
% 1000 - g o
g 0 : ‘ o
E 0 50 100 150
g z (cm) “’”:
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General field expansion for a quadrupole magnet:

o ( 1)m$2n 2m—+1
By = Z Z (2n)!(2m+1)! (1)6[2275]—i-2m+1—2l

m,n=01[=0

m (_1)mx2n+1 2m

oo y m
Bu= 2, 2 (2n + 1)!(2m)! (z)b[22ff]+2m+1—2l

B oo m (_1)m$2n+1y2‘m+1 my | [2041]
B _mz 2 (2n + 1)!1(2m + 1)! (1)b2n+2m+1—2l

and to leading order

1
By = y [bl — 5 (3a% + yz)b[f]] +0(5)
By = = [bl - i(3y2 + m2)b[12]} +0(5)
B, = a:yb +04)

The quadrupole fringe to leading order has an octupole-like effect

51
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&

a From the hard- -edge Hamiltonian

+
Hyp = Wi%)(y%y — 2%py + 32%yp, — 3y*ap,),

the first order shift of the frequencies
with amplitude can be computed
analytically

ovg\  (Qhh  Gho 2.7\ -
vy ) \an  Guo 27,
with the “anharmonicity” coefficients
j (torsion) i
Ahh = 167{Bp Z iQ@Bﬂ:lamz
167TBp Z :th (Baczayz — /Byiaa:i) 5.81
167er > EQiByiay

S
>
S

| |

<
S
S]
| |

SNS based on hard-

Tune footprint for the

edge (red) and realistic

(blue) quadrupole
fringe-field

2 Realistic

Hard-edge Lll

Ox

6.30 6.31 6.32 6.33 6.34
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Vertical Tune

he CERN Accelerator School

SNS Working Point (Qx,Qy)=(6.4,6.3)

Sp/p=[2%,-2%] @ 480 T mm mrad

Vertical Tune

N
N
2

N
3

| -
637 53
/ 648 6.49 os 651
Horizo‘ntalTune .
Sp/p=-1.0%
0.08 T e 0 1077 < |D| < 107C
il e 107 < |D| < 107"
i l ll e 1077 < |D| < 10~
Pl lﬂ i 0107 < |D| < 10°°
0.06 . .
- H 01073 < |D| < 102
\ e 1072 < |D|
£
:3_ 0.04
/0 v =
& | £
< -
2 g 0.02 m—
= R
3 —
i
e D o
6.3 64 6.5 0 0.02 0.04 0.06 0.08 53

Hnri;(mlal Tune
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Tune diffusion coef.

Choice of 1

he CERN Accelerator School

0.014

0.012 o

0.01

0.008 4

0.006 1

Tune Diffusion quality factor

DQF:<(

PN ERIERE

D|

A\(6.23,5.24)
<(6.4,6.3)

Chosen Working Point

5
>
S
=

0.002 4

L)
-2 -1.5 -1 -0.5 0 0.5 1
Momentum spread [%]

54

Horizontal Position |[m
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m Figure of merit for
choosing best working
point is sum of diffusion
rates with a constant

064

added for every lost R °
particle on: WA O :

m Each pointis produced .., M | 1
after tracking 100 e o
particles s ]

m Nominal working point
had to be moved
towards “blue” area

eD _ (Vz,l - V:c,2)2 + (Vy,l - Vy,2)2
N/2

053 054 055 056 057 058 059 06 061 062
V.
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WPS = 0.1Npet + Z el

55

systems H = A + ¢B with both A and B integrable were
proposed by McLachan (1995).

® Laskar and Robutel (2001) derived all orders of such

integrators

® Consider the formal solution of the Hamiltonian system
written in the Lie representation
Ft)=)_ — L #(0) = el (0).

n>0
B A symplectic integrator of order 1y trom¢ to ¢ 4+ 7

consists of approximating the Lie map e7lH = ¢7 (La+Len)
by products of e®™Faand edi7leB § =1 ... nwhich
integrate exactly A and B over the time-spans ¢;Tand d;T

Nonrlinear dynamics, CERN Acelerator School, October2015

B The constants ¢; and d; are chosen to reduce the error 56
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&

8 The SABA, integrator is written as

SABA — ClTLA leLeBeCQTLAeleLeBe(31TLA,

1 1 1 1
Wlt}lcl 2 1-— 762:%ad1:_

m When{{A, B}, B} }?mtegrable e.g when A is quadratic in
momenta and B depends only in positions, the accuracy of
the integrator is improved by two small negative kicks
SABA20 — e~ 5L(a,B).B) (SABAg) —m**$L((a,B},B)
with =(2-V3)/24

B The accuracy of SABA,C is one
order of magnitude higher than
the Forest-Ruth 4™ order scheme

B The usual “drift-kick” scheme

corresponds to the 2" order inte ol 1i2 '1 (;8 1 Oiz !
SABAl = €2 La €TLGB €2 La . log10(s)

log10(AE/E)

Nonrlinear dynamics, CERN Acelerator School, October2015

Application @

m The one kick integrator reveals a completely different dynamics then the
10-kick
m SABA,C integrator captures the correct dynamics

0 0.005 0.01 0.015 0.02

o
@
&
T

Nonrlinear dynamics, CERN Acelerator School, October2015
&
T

0 0.005 0.01 0.015 0.02
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Normallzed diffusion sum (Q =11.78,Q,=6.7) Hamiltonian driving terms up to 4" order
70 T T r T T r T T T T T T T
025 014 [ 1near attice minge fields n
02 ’ SOF | - 2 ramies 7
- [ 2 ramilies extendsd
0.15 0.12 501 A
[_J4ramiles extended
—~ o1 L 4
o 01 4
£ 005
< o 30} -
¢ 008
= _0.05 L i
= 20
< 006
10 I | E
-0.15
0.04
02 0
h3000 h2100 11020 N1011 h1002 N4000 h3100 N2020 h2011 h2002 N1120 hOO4O hOOG1
-0. 25 002

k2MS1

] Comparing different chromaticity sextupole
correction schemes and working point optimization
using normal form analysis, frequency maps and
finally particle tracking

m Finding the adequate sextupole strengths through
the tune diffusion coefficient

Nonrlinear dynamics, CERN Acelerator Sthool. October2015
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Experimental methods

Nonrlinear dynamics, CERN Acelerator School, October2015
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M

m Frequency analysis of turn- .,

Nonrlinear dynamics, CERN Acelerator School, October2015

by-turn data of beam
oscillations produced by a
fast kicker magnet and
recorded on a Beam Position
Monitors

Reproduction of the non- T
linear model of the R g
Advanced Light Source
storage ring and working ..
point optimization for
increasing beam lifetime ne

y ampltude [mm]

8

1422 1423 1424 1425 1426 1427 1428
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Study the resonance behavior around different working points

Strength of individual resonance lines can be identified from the
beam loss rate, i.e. the derivative of the beam intensity at the
moment of crossing the resonance

Vertical tuneis scanned from about 0.45 downto 0.05 during a
period (3s) along the flat bottom

Horizontal tuneis constant during the same period

Tunes are continuously monitored using tune monitor (tune post-
Erocessed with NAFF) and the beam intensity is recorded with a
eam current transformer

62
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B Plot the tunes color-coded with the amount

B Identify the dangerous resonances
B Compare between two different optics
B Try to refine the machine model

of loss

Low v, optics Nominal Optics
0.01
7 D
Y A/ 3P P\ N, \
7N VARY AN // \ 7 \ 0.009
f , A AR S R
’ \ / \ / \ , \ 0.008
20.8 26.8 \ \ ,
,
, 5 N K 0.007
[ I g R N _ [ N e N "
Ny N 3 v 0.006
20.6 -, S 26.6 < )
- N \
= o 2 o ; ~ 0.005
SN A
20.4 ;< 26.4 / 0.004
L RN 5 N - Lk RN % U
) 0.003
20.2 26.2
\ . / A / 0.002
\ N 2 \ / AN 2
P P gy o ‘
20 26 0.001
) A a\ ‘ / 7
N A 0
20 20.2 204 _ 206 208 21 26 262 264 _ 266 268 27

m @
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B Resonances (stable and unstable fixed points) are

responsible for the onset of chaos

Dynamic aperture by brute force tracking (with
symplectic numericalintegrators)is the usual quality
criterion for evaluating non-linear dynamics
performance ofa machine

Frequency Map Analysis is a numerical tool that
enables tostudy in a global way the dynamics, by
identifying the excited resonances and the extent of
chaoticregions

It can be directly applied to trackingbutalso
experimental data

A combination of these modern methods enable a
thorough analysis of non-linear dynamics and lead toa
robust design o
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Thanks to F.Antoniou,

H.Bartosik, W.Herr, J.Laskar,
S.Liuzzo, L.Nadolski,D.Robin,
C.Skokos, C.Steier, F.Schmidt,

A.Wolski, F.Zimmermann

&
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Appendix
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1 @
Aecelrstor s:m - A

B An important non-linear equation which can be
integrated is the one of the pendulum, for a string of
length L and gravitational constant g

¢ g .
W—FESlngb:O

B For small displacements it reduces to an harmonic
. . g
oscillator with frequencyw, = \/Z
B The integral of motion (scaled energy) is
L(do\" g
=) —=cos¢p=1, =FE
2 ( di ) [ese=h

and the quadrature is written as¢ —

d¢
assuming thatfor t =0, ¢ =0 / V2 + g cosg)

Nonrlinear dynamics, CERN Acelerator School, October2015

B Using the substitutions cos ¢ = 1 — 2k?sin? ) with
k=+/1/20+1,L/g) s the integral is

L [ do .
t= .= and can be solved using
9 Jo /1—k2sin%0

g
k sn (t\/; , k>]
B For recovering the period, the integration is

performed between the two extrema, i.e.¢ =0 and

¢ = arccos(—I1L/g), corresponding to g — () and

0 = /2, for which

/
A (. N X NS
9 Jo 1 — k2sin® 0 g

i.e. the complete elliptic integral multiplied by four

times the period of the harmonic oscillator 68

Jacobi elliptic functions: ¢(t) = 2arcsin
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B Considera general two degrees of freedom Hamiltonian:

H(J7 (70) — HO(J) +eH, (J7 90)
with the perturbed part periodic in angles:
Hi(J,0) =>4, k) Hi ko (J1, J2) expli(k1p1 + ko)
B The resonance njw; + nowy = 0 prevents the convergence
of the series
B A canonical transformation can be applied for eliminating
one action: (J,¢) — (J,¢) using the generating function
Fr(J, ) = (mp1 — nawa) i + 2
B The relationships between new and old variables are

Jo=niJ; | Jy = Jo —naJy

Y1 = n1p1 —naps P2 = P2
B This transformation put us in a rotating frame where the
rate of change ¢, = n;¢; — nyy, measuresthe deviation
from resonance 6

Nonrlinear dynamics, CERN Acelerator School, October2015

B The transformed Hamiltonian is HJ, ) = Ho(3) +cH, (3, 9)
with the perturbation written as a Fourier series

i - .
Z Hk17k2 ) exp { (k161 + (k12 + /<?2711)901]}
k1,k2

B This transformation assumes that ¢, is the slow
frequency and we can average the Hamiltonian over the
corresponding angle to obtain X

HJ, ) = Ho(J) —I—eﬁl(j 1) with Ho(J) = Ho(J) and
Hi(3,¢1) = (H:(J, = Z H_pny pna (3) exp(—ip1)

B The averaging eliminated one angle and thus J, = Jy + Jlg
is an invariant of motion "

B This means that the Hamiltonian has effectively only one
degree of freedom and it is integrable

70
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are 1/2
. 1/2 _ .
2 . 2¢H,, _
= 2 H (j)a HO(J) AJl max =2 e, nz(J)
w1 = Elln,,—ny 29 92Hy(3)
8Jl Ji=J1o 272 71

&

B Assuming that the dominant Fourier harmonics forp = 0, %1
the Hamﬂtonian is written as

H(J, ¢1) = Ho(J) + eHoo(J) +2eHpy —n, () cos o1
u F1xed points (j,o, é,,) (i-e. periodic orbits)in phase space

(J1,¢1)aredefmedby 5H 0 oH 0

)

961
B Move the reference on f1xed point

and expandH(J) around  AJ; = J; — Jig
B Hamiltonian describing motionnear a resonance:
0*H,(J) (AJy)?
0J2 lj—j, 2
B Motion near a typical resonance is like the one of the
pendulum!!! The frequency and the resonance half width

H.(AJy, 1) = +2eHyp, —py () cos ¢

Ji=J1o

Nonrlinear dynamics, CERN Acelerator School, October2015

B Now, if ¢ = () the solution for the action is Jog =0

&

B So there is no minima in the potential, i.e. the central fixed
point is hyperbolic

0.8 T T T T T T T

0.6 |-
04
a 0 |
-0.2
-04

-06 |-

.08 1 1 1 1 1 1 | ‘

X 72
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B Injecting high bunch density beam into the SPS
B Space charge effect quite strong with (linear)

B Changing horizontal/ vertical frequency and

tune-shifts of

measuring emittance (action) blow-up

AQ,(/AQy ~0.10/0.18
4
—+— Horizontal
’ Lossless blow-up
3 of beam ‘core
25 “no blow-up”.
for Q,>20.14
? h&
1.5
1
0.5

20 20.05 20.1 2%.15 202 20.25
X

20.3

20.5

20.4

203f

20.2

20.

20 20.1 20.2

&

\
20.3 20.4 20.5)
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B Space charge effect quite strong with (linear) tune-

B Changing horizontal/vertical frequency and

shifts of

B Injecting high bunch density beam into the SPS

measuring emittance (action) blow-up

AQ,/AQ, ~ 0.10/0.18
4
—+— Horizontal
3.5 Lossless blow-up
of beam core

3
25 "no blow-up”

5 forQ,>20.20 |
1.5

1
0.5

20 20.05 201 2(()].15 202 2025 203

Yy

&

,,,,,,,,

204 205
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