

con
 Summary of the

■ Hamiltonian formalism provides the natural framework to analyse (linear and non-linear) beam dynamics
■ Canonical (symplectic) transformations enable to move from variables describing a distorted phase space to something simpler (ideally circles)
■ The generating functions passing from the old to the new variables are bounded to diverge in the vicinity of resonances (emergence of chaos, see $2^{\text {nd }}$ lecture)

- Calculating this generating function with canonical perturbation theory becomes hopeless for higher orders
- Representing the accelerator (or beam line) like a composition of maps (through Lie transformations) enables derivation of the generating functions in an algorithmic way, in principle to arbitrary order

cód Phase space dymamice

■ Valuable description when examining trajectories in phase space $\left(u, p_{u}\right)$

- Existence of integral of motion imposes geometrical constraints on phase flow
- For the simple harmonic oscillator

$$
H=\frac{1}{2}\left(p_{u}^{2}+\omega_{0}^{2} u^{2}\right)
$$

phase space curves are ellipses around the equilibrium point parameterized by the integral of motion Hamiltonian (energy)

- By simply changing the sign of the potential in the harmonic oscillator, the phase trajectories become hyperbolas, symmetric around the equilibrium point where two straight lines cross, moving towards and away from it

Non-linear oscillators

$H=\frac{1}{2} p_{u}^{2}-\frac{1}{2} u^{2}+\frac{1}{4} u^{4}$

- Conservative non-linear oscillators have Hamiltonian

$$
H=E=\frac{1}{2} p_{u}^{2}+V(u)
$$

with the potential being a general (polynomial) function of positions

- Equilibrium points are associated with extrema of the potential
■ Considering three non-linear oscillators
\square Quartic potential (left): two minima and one maximum
\square Cubic potential (center): one minimum and one maximum
\square Pendulum (right): periodic minima and maxima

cop Fixed point analysis

- Consider a general second order system

$$
\begin{aligned}
\frac{d u}{d t} & =f_{1}\left(u, p_{u}\right) \\
\frac{d p_{u}}{d t} & =f_{2}\left(u, p_{u}\right)
\end{aligned}
$$

■ Equilibrium or "fixed" points $f_{1}\left(u_{0}, p_{u 0}\right)=f_{2}\left(u_{0}, p_{u 0}\right)=0$ are determinant for topology of trajectories at their vicinity

- The linearized equations of motion at their vicinity are

■ Fixed point nature is revealed by eigenvalues of \mathcal{M}_{J}, i.e. solutions of the characteristic polynomial $\operatorname{det}\left|\mathcal{M}_{J}-\lambda \mathbf{I}\right|=0$

■ For conservative systems of 1 degree of freedom, the second order characteristic polynomial has two solutions:
\square Two complex eigenvalues with opposite sign, corresponding to elliptic fixed points. Phase space flow is described by ellipses, with particles evolving clockwise or anti-clockwise
\square Two real eigenvalues with opposite sign, corresponding to hyperbolic (or saddle) fixed points. Flow described by two lines (or manifolds), incoming (stable) and outcoming (unstable)

cọ
 Pendulum fixed point analysis

■ The "fixed" points for a pendulum can be found at

$$
\left(\phi_{n}, p_{\phi}\right)=(\pm n \pi, 0), n=0,1,2 \ldots
$$

- The Jacobian matrix is $\left[\begin{array}{cc}0 & 1 \\ -\frac{g}{L} \cos \phi_{n} & 0\end{array}\right]$

■ The eigenvalues are $\lambda_{1,2}= \pm i \sqrt{\frac{g}{L}} \cos \phi_{n}$
■ Two cases can be distinguished:
$\square \phi_{n}=2 n \pi$, for which $\lambda_{1,2}= \pm i \sqrt{\frac{g}{L}}$ corresponding to elliptic fixed points

- $\phi_{n}=(2 n+1) \pi$, for which $\lambda_{1,2}= \pm \sqrt{\frac{g}{L}}$
\square The separatrix are the stable and unstable manifolds passing through the hyperbolic points, separating bounded librations and

con

Phase space for time-depencent systemis cern

Consider now a simple harmonicoscillator where the frequency is time-dependent

$$
H=\frac{1}{2}\left(p_{u}^{2}+\omega_{0}^{2}(t) u^{2}\right)
$$

- Plotting the evolution in phase space, provides trajectories that intersect each other (top)

- The phase space has time as extra dimension,
- By rescaling the time to become $\tau=\omega_{0} t$ and considering every integer interval of the new time variable, the phase space looks like the one of the harmonic oscillator (middle)
- This is the simplest version of a Poincaré surface of section, which is useful for studying geometrically phase space of multi-dimensional systems
- The fixed point in the surface of section is now a periodic orbit (bottom)

con Sceular perturbation theor

The vicinity of a resonance $\quad n_{1} \omega_{1}+n_{2} \omega_{2}=\emptyset$ can be studied through secular perturbation theory (see appendix)

- A canonical transformation is applied such that the new variables are in a frame remaining on top of the resonance
- If one frequency is slow, one can average the motion and remain only with a 1 degree of freedom Hamiltonian
- Finding the location of the fixed points $\left(J_{10}, \phi_{10}\right)$ (i.e. periodic orbits) in phase space (J_{1}, ϕ_{1}) and defining a new action
$\Delta J_{1}=J_{1}-J_{10}$, the resonant Hamiltonian is
$H_{r}\left(\Delta J_{1}, \phi_{1}\right)=\left.\frac{\partial^{2} H_{0}(\mathbf{J})}{\partial J_{1}{ }^{2}}\right|_{J_{1}=J_{10}} \frac{\left(\Delta J_{1}\right)^{2}}{2}+2 \varepsilon \bar{H}_{n_{1},-n_{2}}(\mathbf{J}) \cos \varphi_{1}$
- This is a pendulum where the frequency and the resonance half width are
$\omega_{1}=\left(\left.2 \varepsilon H_{n_{1},-n_{2}}(\mathbf{J}) \frac{\partial^{2} H_{0}(\mathbf{J})}{\partial J_{1}^{2}}\right|_{J_{1}=J_{10}}\right)^{1 / 2} \Delta J_{1 \max }=2\left(\frac{2 \varepsilon H_{n_{1},-n_{2}}(\mathbf{J})}{\left.\frac{\partial^{2} H_{0}(\mathbf{J})}{\partial J_{1}{ }^{2}}\right|_{J_{1}=J_{10}}}\right)_{12}$

Secular perturbation theory for the order resonance

■ We first introduce the distance to the resonance

$$
\nu=\frac{p}{3}+\delta, \quad \delta \ll 1
$$

- It is convenient then to eliminate the "time" dependence by passing on a " 1 -turn" frame, using the generating function

$$
F_{2}\left(\phi, J_{1}, s\right)=\phi J_{1}+J_{1}\left(\frac{2 \pi \nu s}{C}-\int_{0}^{s} \frac{d s^{\prime}}{\beta\left(s^{\prime}\right)}\right)=(\phi+\chi(s)) J_{1}
$$ with the new angle $\psi_{1}=\phi-\chi(s)$ providing the Hamiltonian

$$
H_{1}=\frac{\nu}{R} J_{1}+\frac{2 \sqrt{2}}{3} K_{s}(s)\left(J_{1} \beta\right)^{3 / 2} \cos ^{3}\left(\psi_{1}+\chi(s)\right)
$$

- The perturbation can be expanded in a Fourier series, where only the resonant term is kept or,

$$
\hat{H}_{1}=\nu J_{1}+J_{1}^{3 / 2} A_{3 p} \cos \left(3 \psi_{1}-p \theta\right)
$$

in the rotating frame on top of the resonance

$$
\hat{H}_{2}=\delta J_{2}+J_{2}^{3 / 2} A_{3 p} \cos \left(3 \psi_{2}\right)
$$

Fixed points for $3^{\text {rd }}$ order resonand

- By setting the Hamilton's equations equal to zero, three fixed points can be found at
$\psi_{20}=\frac{\pi}{3}, \frac{3 \pi}{3}, \frac{5 \pi}{3}, \quad J_{20}=\left(\frac{2 \delta}{3 A_{3 p}}\right)$
- For $\frac{\delta}{A_{3 p}}>0$ all three points are unstable
- Close to the elliptic one at $\psi_{20}=0$ the motion in phase space is described by circles that they get more and more distorted to end up in the "triangular" separatrix uniting the unstable fixed points
- The tune separation from the resonance (stop-band width) is $\delta=\frac{3 A_{3 p}}{2} J_{20}^{1 / 2}$

cos Fixed points for general multi-pole (xa)

- For any polynomial perturbation of the form x^{k} the "resonant" Hamiltonian is written as

$$
\hat{H}_{2}=\delta J_{2}+\alpha\left(J_{2}\right)+J_{2}^{k / 2} A_{k p} \cos \left(k \psi_{2}\right)
$$

\square Note now that in contrast to the sextupole there is a nonlinear detuning term $\alpha\left(J_{2}\right)$
\square The conditions for the fixed points are
$\sin \left(k \psi_{2}\right)=0, \quad \delta+\frac{\partial \alpha\left(J_{2}\right)}{\partial J_{2}}+\frac{k}{2} J_{2}^{k / 2-1} A_{k p} \cos \left(k \psi_{2}\right)=0$

- There are k fixed points for which $\cos \left(k \psi_{20}\right)=-1$ and the fixed points are stable (elliptic). They are surrounded by ellipses
- There are also k fixed points for which $\cos \left(k \psi_{20}\right)=1$ and the fixed points are unstable (hyperbolic). The trajectories are hyperbolas

cop Fixed points for an octupole

- The resonant Hamiltonian close to the $4^{\text {th }}$ order resonance is written as

$$
\hat{H}_{2}=\delta J_{2}+c J_{2}^{2}+J_{2}^{2} A_{k p} \cos \left(4 \psi_{2}\right)
$$

■ The fixed points are found by taking the derivative over the two variables and setting them to zero, i.e.
$\sin \left(4 \psi_{2}\right)=0, \delta+2 c J_{2}+2 J_{2} A_{k p} \cos \left(4 \psi_{2}\right)=0$

- The fixed points are at
$\psi_{20}=\frac{\pi}{4}, \frac{5 \pi}{2}, \frac{5 \pi}{2}, \frac{4 \pi}{4}, 2 \pi$
- For hàlf of them, there is a minimúm in the pòtential as cos $\left(4 \psi_{20}\right)=-1$ and they are elliptic and half of them they are hyperbolic as

Có Path to chaos

■ When perturbation becomes higher, motion around the separatrix becomes chaotic (producing tongues or splitting of the separatrix)
Unstable fixed points are indeed the source of chaos when a perturbation is added

cón Chaotic motion

- Poincare-Birkhoff theorem states that under perturbation of a resonance only an even number of fixed points survives (half stable and the other half unstable)
- Themselves get destroyed when perturbation gets higher, etc. (self-similar fixed points)
- Resonance islands grow and resonances
 can overlap allowing diffusion of particles

Resonance overlap criterion

- When perturbation grows, the resonance island width grows
- Chirikov $(1960,1979)$ proposed a criterion for the overlap of two neighboring resonances and the onset of orbit diffusion
- The distance between two resonances is $\delta \hat{J}_{1, n^{\prime}}=\frac{2\left(\frac{1}{n_{1}+n_{2}}-\frac{1}{n_{1}^{\prime}+n_{2}^{\prime}}\right)}{\left.\left|\frac{\partial^{2} \hat{H}_{1}(\hat{J})}{\left.\partial \hat{J}_{1}^{2}\right)}\right|_{\hat{J}_{1}=\hat{J}_{10}} \right\rvert\,}$ $\Delta \hat{J}_{n \text { max }}+\Delta \hat{J}_{n^{\prime} \max } \geq \delta \hat{J}_{n, n^{\prime}}$

■ Considering the width of chaotic layer and secondary islands, the "two thirds" rule apply $\Delta \hat{J}_{n \max }+\Delta \hat{J}_{n^{\prime} \max } \geq \frac{2}{3} \delta \hat{J}_{n, n^{\prime}}$

- The main limitation is the geometrical nature of the criterion (difficulty to

Cón Chaos detection methods

Computing / measuring dynamic aperture (DA) or particle survival
A. Chao et al., PRL 61, 24, 2752, 1988;
F. Willeke, PAC95, 24, 109, 1989.

- Computation of Lyapunov exponents

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;
M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

■ Variance of unperturbed action (a la Chirikov)
B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979
J. Tennyson, SSC-155, 1988;
J. Irwin, SSC-233, 1989

■ Fokker-Planck diffusion coefficient in actions
T. Sen and J.A. Elisson, PRL 77, 1051, 1996

Frequency map analysis

Cón Dynamic Aperture

The most direct way to evaluate the non-linear dynamics performance of a ring is the computation of Dynamics Aperture

- Particle motion due to multi-pole errors is generally nonbounded, so chaotic particles can escape to infinity
- This is not true for all non-linearities (e.g. the beam-beam force)
- Need a symplectic tracking code to follow particle trajectories (a lot of initial conditions) for a number of turns (depending on the given problem) until the particles start getting lost
- As multi-pole errors may not be completely known, one has to track through several machine models built by random distribution of these errors
- One could start with 4D (only transverse) tracking but certainly needs to simulate 5D (constant energy deviation) and finally 6 D (synchrotron motion included)

Frequency Map Analysis

Frequency map analysis

- Frequency Map Analysis (FMA) is a numerical method which springs from the studies of J. Laskar (Paris Observatory) putting in evidence the
- chaotic motion in the Solar Systems
- FMA was successively applied to several dynamical systems
\square Stability of Earth Obliquity and climate stabilization(Laskar, Robutel, 1993)
\square 4D maps (Laskar 1993)
\square Galactic Dynamics (Y.P and Laskar, 1996 and 1998)
\square Accelerator beam dynamics: lepton and hadron rings (Dumas, Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and Laskar 2001)

Motion on torus

Consider an integrable Hamiltonian system of the usual form

$$
H(\boldsymbol{J}, \boldsymbol{\varphi}, \theta)=H_{0}(\mathbf{J})
$$

- Hamilton's equations give $\quad \dot{\phi}_{j}=\frac{\partial H_{0}(\mathbf{J})}{\partial J_{j}}=\omega_{j}(\mathbf{J}) \Rightarrow \phi_{j}=\omega_{j}(\mathbf{J}) t+\phi_{j 0}$

$$
\dot{J}_{j}=-\frac{\partial H_{0}(\mathbf{J})}{\partial \phi_{j}}=0 \Rightarrow J_{j}=\text { const. }
$$

■ The actions define the surface of an invariant torus

- In complex coordinates the motion is described by
$\zeta_{j}(t)=J_{j}(0) e^{i \omega_{j} t}=z_{j 0} e^{i \omega_{j} t}$
■ For a non-degenerate system $\operatorname{det}\left|\frac{\partial \omega(J)}{\partial J}\right|=\operatorname{det}\left|\frac{\partial^{2} H_{0}(J)}{\partial J^{2}}\right| \neq 0$
there is a one-to-one correspondence between the actions and the frequency, a frequency map can be defined parameterizing the tori in the frequency space

$$
F: \quad(\mathbf{I}) \longrightarrow(\omega)
$$

cos Quasi-periodic motion

- If a transformation is made to some new variables

$$
\zeta_{j}=I_{j} e^{i \theta_{j} t}=z_{j}+\epsilon G_{j}(\mathbf{z})=z_{j}+\epsilon \sum_{\mathbf{m}} c_{\mathbf{m}} z_{1}^{m_{1}} z_{2}^{m_{2}} \ldots z_{n}^{m_{n}}
$$

■ The system is still integrable but the tori are distorted
\square The motion is then described by

$$
\zeta_{j}(t)=z_{j 0} e^{i \omega_{j} t}+\sum_{\mathbf{m}} a_{\mathbf{m}} e^{i(\mathbf{m} \cdot \omega) t}
$$

i.e. a quasi-periodic function of time, with
$a_{\mathbf{m}}=\epsilon c_{\mathbf{m}} z_{10}^{m_{1}} z_{20}^{m_{2}} \ldots z_{n 0}^{m_{n}}$ and $\mathbf{m} \cdot \omega=m_{1} \omega_{1}+m_{2} \omega_{2}+\cdots+m_{n} \omega_{n}$
■ For a non-integrable Hamiltonian, $H(\mathbf{I}, \theta)=H_{0}(\mathbf{I})+\epsilon H^{\prime}(\mathbf{I}, \boldsymbol{i} \theta)$ and especially if the perturbation is small, most tori persist (KAM theory)
■ In that case, the motion is still quasi-periodic and a frequency map can be built

- The regularity (or not) of the map reveals stable (or chaotic) motion

cón Building the frequency map

When a quasi-periodic function $f(t)=q(t)+i p(t)$ in the complex domain is given numerically, it is possible to recover a quasi-periodic approximation

$$
f^{\prime}(t)=\sum_{k=1}^{N} a_{k}^{\prime} e^{i \omega_{k}^{\prime} t}
$$

in a very precise way over a finite time span $[-T, T]$ several orders of magnitude more precisely than simple Fourier techniques

- This approximation is provided by the Numerical Analysis of Fundamental Frequencies - NAFF algorithm
■ The frequencies ω_{k}^{\prime} and complex amplitudes a_{k}^{\prime} are computed through an iterative scheme.

The NAFF algorithm

- The first frequency ω_{1}^{\prime} is found by the location of the maximum of

$$
\phi(\sigma)=\left\langle f(t), e^{i \sigma t}\right\rangle=\frac{1}{2 T} \int_{-T}^{T} f(t) e^{-i \sigma t} \chi(t) d t
$$

where $\chi(t)$ is a weight function

- In most of the cases the Hanning window filter is used $\quad \chi_{1}(t)=1+\cos (\pi t / T)$
■ Once the first term $e^{i \omega_{1}^{\prime} t}$ is found, its complex amplitude a_{1}^{\prime} is obtained and the process is restarted on the remaining part of the function

$$
f_{1}(t)=f(t)-a_{1}^{\prime} e^{i \omega_{1}^{\prime} t}
$$

- The procedure is continued for the number of desired terms, or until a required precision is reached
- The accuracy of a simple FFT even for a simple sinusoidal signal is not better than $\left|\nu-\nu_{T}\right|=\frac{1}{T}$
- Calculating the Fourier integral explicitly

$$
\phi(\omega)=<f(t), e^{i \omega t}>=\frac{1}{T} \int_{0}^{T} f(t) e^{-i \omega t} d t \quad \text { shows that the }
$$ maximum lies in between the main picks of the FFT

cóo Frequency determination

- A more complicated signal with two frequencies $f(t)=a_{1} e^{i \omega_{1} t}+a_{2} e^{i \omega_{2} t}$
 shifts slightly the maximum with respect to its real location

Window function

A window function like the Hanning filter $\chi_{1}(t)=1+\cos (\pi t / T)$ kills side-lobs and allows a very accurate determination of the frequency

cón Precision of NAFF

$■$ For a general window function of order p

$$
\chi_{p}(t)=\frac{2^{p}(p!)^{2}}{(2 p)!}(1+\cos \pi t)^{p}
$$

Laskar (1996) proved a theorem stating that the solution provided by the NAFF algorithm converges asymptotically towards the real KAM quasi-periodic solution with precision

$$
\nu_{1}-\nu_{1}^{T} \propto \frac{1}{T^{2 p+2}}
$$

■ In particular, for no filter (i.e. $p=0$) the precision is $\frac{1}{T^{2}}$, whereas for the Hanning filter $(p=1)$, the precision is of the order of $\frac{1}{T^{4}}$

Con Dififusion in ficquency space

- For a 2 degrees of freedom Hamiltonian system, the frequency space is a line, the toriare dots on this lines, and the chaotic zones are confined by the existing KAM tori
- For a system with 3 or more degrees of freedom, KAM
 tori are still represented by dots but do not prevent chaotic trajectories to diffuse
- This topological possibility of particles diffusing is called Arnold diffusion
- This diffusion is supposed to be extremely small in their vicinity, as tori act as effective barriers
 (Nechoroshev theory)

cå

Choose initial conditions $\left(x_{i}, y_{i}\right)$ with $\left(p_{x ; i}, p_{y ; i}\right)$

- Numerically integrate trajectories for sufficient number of turns
■ Compute through NAFF $\left(Q_{x ; i}, Q_{y ; i}\right)$ after sufficient number of turns
- Plot them in the tune diagram

- Calculate frequencies for two equal and successive time spans and compute frequency diffusion vector:

$$
\left.\boldsymbol{D}\right|_{t=\tau}=\left.\boldsymbol{\nu}\right|_{t \in(0, \tau / 2]}-\left.\boldsymbol{\nu}\right|_{t \in(\tau / 2, \tau]}
$$

- Plot the initial condition space color-coded with the norm of the diffusion vector
- Compute a diffusion quality factor by averaging all diffusion coefficients normalized with the initial conditions radius

$$
D_{Q F}=\left\langle\frac{|\boldsymbol{D}|}{\left(I_{x 0}^{2}+I_{y 0}^{2}\right)^{1 / 2}}\right\rangle_{R}
$$

Numerical Applications

- Comparison of correction schemes for b_{4} and b_{5} errors in the LHC dipoles
- Frequency maps, resonance analysis, tune diffusion estimates, survival plots and short term tracking, proved that only half of the correctors are needed

Cós Head-on vs Long range interaction

- Proved dominant effect of long range beam-beam effect
- Dynamics dominated by the $1 / \mathrm{r}$ part of the force, reproduced by electrical wire, which was proposed for correcting the effect
- Experimental verification in SPS and installation to the LHC IPs

Cóo Quadrupole fringe field

General field expansion for a quadrupole magnet:

$$
\begin{aligned}
& B_{x}=\sum_{m, n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^{m} x^{2 n} y^{2 m+1}}{(2 n)!(2 m+1)!}\binom{m}{l} b_{2 n+2 m+1-2 l}^{[2 l]} \\
& B_{y}=\sum_{m, n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^{m} x^{2 n+1} y^{2 m}}{(2 n+1)!(2 m)!}\binom{m}{l} b_{2 n+2 m+1-2 l}^{[2 l]} . \\
& B_{z}=\sum_{m, n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^{m} x^{2 n+1} y^{2 m+1}}{(2 n+1)!(2 m+1)!}\binom{m}{l} b_{2 n+2 m+1-2 l}^{[2 l+1]}
\end{aligned}
$$

and to leading order

$$
\begin{aligned}
B_{x} & =y\left[b_{1}-\frac{1}{12}\left(3 x^{2}+y^{2}\right) b_{1}^{[2]}\right]+O(5) \\
B_{y} & =x\left[b_{1}-\frac{1}{12}\left(3 y^{2}+x^{2}\right) b_{1}^{[2]}\right]+O(5) \\
B_{z} & =x y b_{1}^{[1]}+O(4)
\end{aligned}
$$

The quadrupole fringe to leading order has an octupole-like effect

cọ Magnet fringe fields

- From the hard-edge Hamiltonian

COS Advanced symplectic integration schemes

■ Symplectic integrators with positive steps for Hamiltonian systems $H=A+\epsilon B$ with both A and B integrable were proposed by McLachan (1995).
■ Laskar and Robutel (2001) derived all orders of such integrators

- Consider the formal solution of the Hamiltonian system written in the Lie representation

$$
\vec{x}(t)=\sum_{n \geq 0} \frac{t^{n}}{n!} L_{H}^{n} \vec{x}(0)=e^{t L_{H}} \vec{x}(0)
$$

- A symplectic integrator of order n from t to $t+\tau$ consists of approximating the Lie map $e^{\tau L_{H}}=e^{\tau\left(L_{A}+L_{\epsilon B}\right)}$ by products of $e^{c_{i} \tau L_{A}}$ and $e^{d_{i} \tau L_{\epsilon B}}, i=1, \ldots, n$ which integrate exactly A and B over the time-spans $c_{i} \tau$ and $d_{i} \tau$
\square The constants c_{i} and d_{i} are chosen to reduce the error

Cón SABA_{2} integrator

The SABA_{2} integrator is written as

$$
\begin{aligned}
\mathrm{SABA}_{2} & =e^{c_{1} \tau L_{A}} e^{d_{1} \tau L_{\epsilon B}} e^{c_{2} \tau L_{A}} e^{d_{1} \tau L_{\epsilon B}} e^{c_{1} \tau L_{A}} \\
\text { with } c_{1} & =\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}\right), c_{2}=\frac{1}{\sqrt{3}}, \quad d_{1}=\frac{1}{2} .
\end{aligned}
$$

- When $\{\{A, B\}, B\}$ is integrable, e.g. when A is quadratic in momenta and B depends only in positions, the accuracy of the integrator is improved by two small negative kicks
$\mathrm{SABA}_{2} \mathrm{C}=e^{-\tau^{3} \epsilon^{2} \frac{c}{2} L_{\{\{A, B\}, B\}}}\left(\mathrm{SABA}_{2}\right) e^{-\tau^{3} \epsilon^{2} \frac{c}{2} L_{\{\{A, B\}, B\}}}$ with $\quad c=(2-\sqrt{3}) / 24$
- The accuracy of $\mathrm{SABA}_{2} \mathrm{C}$ is one order of magnitude higher than the Forest-Ruth $4^{\text {th }}$ order schem $\epsilon \frac{\text { 응 }}{0}$
■ The usual "drift-kick" scheme corresponds to the $2^{\text {nd }}$ order inte
$\mathrm{SABA}_{1}=e^{\frac{\tau}{2} L_{A}} e^{\tau L_{\epsilon B}} e^{\frac{\tau}{2} L_{A}}$,

CaP Application of the SABA C integrator

- The one kick integrator reveals a completely different dynamics then the 10-kick
- $\mathrm{SABA}_{2} \mathrm{C}$ integrator captures the correct dynamics

Experimental Methods - Tune scans

Study the resonance behavior around different working points
\square Strength of individual resonance lines can be identified from the beam loss rate, i.e. the derivative of the beam intensity at the moment of crossing the resonance
\square Vertical tune is scanned from about 0.45 down to 0.05 during a period (3s) along the flat bottom
\square Horizontal tune is constant during the same period
\square Tunes are continuously monitored using tune monitor (tune postprocessed with NAFF) and the beam intensity is recorded with a beam current transformer

cón Summary

■ Resonances (stable and unstable fixed points) are responsible for the onset of chaos
■ Dynamic aperture by brute force tracking (with symplectic numericalintegrators) is the usual quality criterion for evaluating non-linear dynamics performance of a machine

- Frequency Map Analysis is a numerical tool that enables to study in a global way the dynamics, by identifying the excited resonances and the extent of chaotic regions
- It can be directly applied to tracking but also experimental data
- A combination of these modern methods enable a thorough analysis of non-linear dynamics and lead to a robust design

The pendulum

■ An important non-linear equation which can be integrated is the one of the pendulum, for a string of length L and gravitational constant g

$$
\frac{d^{2} \phi}{d t^{2}}+\frac{g}{L} \sin \phi=0
$$

■ For small displacements it reduces to an harmonic oscillator with frequency $\omega_{0}=\sqrt{\frac{g}{L}}$
\square The integral of motion (scaled energy) is

$$
\frac{1}{2}\left(\frac{d \phi}{d t}\right)^{2}-\frac{g}{L} \cos \phi=I_{1}=E^{\prime}
$$

and the quadrature is written as $t=\int \frac{d \phi}{\sqrt{2\left(I_{1}+\frac{g}{L} \cos \phi\right)_{6 q}}}$
assuming that for $t=0, \quad \phi=0$

cop Solution for the pendulum

■ Using the substitutions $\cos \phi=1-2 k^{2} \sin ^{2} \theta$ with $k=\sqrt{1 / 2\left(1+I_{1} L / g\right)}$, the integral is $t=\sqrt{\frac{L}{g}} \int_{0}^{\theta} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}$ and can be solved using
Jacobi elliptic functions: $\phi(t)=2 \arcsin \left[k \operatorname{sn}\left(t \sqrt{\frac{g}{L}}, k\right)\right]$
\square For recovering the period, the integration is performed between the two extrema, i.e. $\phi=0$ and $\phi=\arccos \left(-I_{1} L / g\right)$, corresponding to $\theta=0$ and $\theta=\pi / 2$, for which

$$
T=4 \sqrt{\frac{L}{g}} \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}=4 \sqrt{\frac{L}{g}} \mathcal{F}(\pi / 2, k)
$$

i.e. the complete elliptic integral multiplied by four times the period of the harmonic oscillator

cón
 Secular perturbation theory

Consider a general two degrees of freedom Hamiltonian:

$$
H(\mathbf{J}, \boldsymbol{\varphi})=H_{0}(\mathbf{J})+\varepsilon H_{1}(\mathbf{J}, \boldsymbol{\varphi})
$$

with the perturbed part periodic in angles:
$H_{1}(\mathbf{J}, \boldsymbol{\varphi})=\sum_{k_{1}, k_{1}} H_{k_{1}, k_{2}}\left(J_{1}, J_{2}\right) \exp \left[i\left(k_{1} \varphi_{1}+k_{2} \varphi_{2}\right)\right]$
■ The resonance $n_{1} \omega_{1}+n_{2} \omega_{2}=0$ prevents the convergence of the series

- A canonical transformation can be applied for eliminating one action: $(\mathbf{J}, \varphi) \longmapsto(\hat{\mathbf{J}}, \hat{\varphi})$ using the generating function $F_{r}(\hat{\mathbf{J}}, \varphi)=\left(n_{1} \varphi_{1}-n_{2} \varphi_{2}\right) \hat{J}_{1}+\varphi_{2} \hat{J}_{2}$
- The relationships between new and old variables are

$$
\begin{array}{rll}
J_{1}=n_{1} \hat{J}_{1} \quad, & J_{2}=\hat{J}_{2}-n_{2} \hat{J}_{1} \\
\hat{\varphi}_{1}=n_{1} \varphi_{1}-n_{2} \varphi_{2} \quad, & \hat{\varphi}_{2}=\varphi_{2}
\end{array}
$$

- This transformation put us in a rotating frame where the rate of change $\dot{\hat{\varphi}}_{1}=n_{1} \dot{\varphi}_{1}-n_{2} \dot{\varphi}_{2}$ measures the deviation from resonance Secular perturbation theory

■ The transformed Hamiltonian is $\hat{H}(\hat{\mathbf{J}}, \hat{\varphi})=\hat{H}_{0}(\hat{\mathbf{J}})+\varepsilon \hat{H}_{1}(\hat{\mathbf{J}}, \hat{\boldsymbol{\varphi}})$ with the perturbation written as a Fourier series

$$
\hat{H}_{1}(\hat{\mathbf{J}}, \hat{\boldsymbol{\varphi}})=\sum_{k_{1}, k_{2}} H_{k_{1}, k_{2}}(\hat{\mathbf{J}}) \exp \left\{\frac{i}{n_{1}}\left[k_{1} \hat{\varphi}_{1}+\left(k_{1} n_{2}+k_{2} n_{1}\right) \hat{\varphi}_{1}\right]\right\}
$$

■ This transformation assumes that $\dot{\varphi}_{2}$ is the slow frequency and we can average the Hamiltonian over the corresponding angle to obtain
$\bar{H}(\hat{\mathbf{J}}, \hat{\boldsymbol{\varphi}})=\bar{H}_{0}(\hat{\mathbf{J}})+\varepsilon \bar{H}_{1}\left(\hat{\mathbf{J}}, \hat{\varphi}_{1}\right)$ with $\bar{H}_{0}(\hat{\mathbf{J}})=\hat{H}_{0}(\hat{\mathbf{J}})$ and $\bar{H}_{1}\left(\hat{\mathbf{J}}, \hat{\varphi}_{1}\right)=\left\langle\hat{H}_{1}\left(\hat{\mathbf{J}}, \hat{\varphi}_{1}\right)\right\rangle_{\hat{\varphi}_{2}}=\sum_{p=-\infty}^{+\infty} H_{-p n_{1}, p n_{2}}(\hat{\mathbf{J}}) \exp \left(-i p \hat{\varphi}_{1}\right)$

- The averaging eliminated one angle and thus $\hat{J}_{2}=J_{2}+J_{1} \frac{n_{2}}{n_{1}}$ is an invariant of motion
- This means that the Hamiltonian has effectively only one degree of freedom and it is integrable

Assuming that the dominant Fourier harmonics for $p=0, \pm 1$ the Hamiltonian is written as
$\bar{H}\left(\hat{\boldsymbol{J}}, \hat{\phi}_{\mathbf{1}}\right)=\bar{H}_{0}(\hat{\mathbf{J}})+\varepsilon \bar{H}_{0,0}(\hat{\mathbf{J}})+2 \varepsilon \bar{H}_{n_{1},-n_{2}}(\hat{\mathbf{J}}) \cos \hat{\varphi}_{1}$

- Fixed points ($\hat{J}_{10}, \hat{\phi}_{10}$) (i.e. periodic orbits) in phase space $\left(\hat{J}_{1}, \hat{\phi}_{1}\right)$ are defined by $\frac{\partial \bar{H}}{\partial \hat{J}_{1}}=0, \frac{\partial \bar{H}}{\partial \hat{\phi}_{1}}=0$
- Move the reference on fixed point and expand $\bar{H}(\hat{\mathbf{J}})$ around $\Delta \hat{J}_{1}=\hat{J}_{1}-\hat{J}_{10}$
- Hamiltonian describing motion near a resonance:

$$
\bar{H}_{r}\left(\Delta \hat{J}_{1}, \hat{\phi}_{1}\right)=\left.\frac{\partial^{2} \bar{H}_{0}(\hat{\mathbf{J}})}{\partial \hat{J}_{1}^{2}}\right|_{\hat{J}_{1}=\hat{J}_{10}} \frac{\left(\Delta \hat{J}_{1}\right)^{2}}{2}+2 \varepsilon \bar{H}_{n_{1},-n_{2}}(\hat{\mathbf{J}}) \cos \hat{\varphi}_{1}
$$

■ Motion near a typical resonance is like the one of the pendulum!!! The frequency and the resonance half width

$$
\begin{gathered}
\text { are } \\
\hat{\omega}_{1}=\left(\left.2 \varepsilon \bar{H}_{n_{1},-n_{2}}(\hat{\mathbf{J}}) \frac{\partial^{2} \bar{H}_{0}(\hat{\mathbf{J}})}{\partial \hat{J}_{1}^{2}}\right|_{\hat{J}_{1}=\hat{J}_{10}}\right)^{1 / 2} \Delta \hat{J}_{1 \max }=2\left(\frac{2 \varepsilon \bar{H}_{n_{1},-n_{2}}(\hat{\mathbf{J}})}{\left.\frac{\partial^{2} \bar{H}_{0}(\hat{\mathbf{J}})}{\partial \hat{J}_{1}^{2}}\right|_{\hat{J}_{1}=\hat{J}_{10}}}\right)^{1 / 2} \\
\end{gathered}
$$

09 Octupole with hyperbolic central fixed point (RR)

■ Now, if $c=0$ the solution for the action is $J_{20}=0$
■ So there is no minima in the potential, i.e. the central fixed point is hyperbolic

con Space charge frequency scan

\square Injecting high bunch density beam into the SPS
■ Space charge effect quite strong with (linear) tuneshifts of
■ Changing horizontal/vertical frequency and measuring emittance (action) blow-up
$\Delta Q_{x} / \Delta Q_{y} \sim 0.10 / 0.18$

