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Non-linear dynamics
Phenomenology, applications and examples
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Summary of the 1st lecture
n Hamiltonian formalism provides the natural framework to 

analyse (linear and non-linear) beam dynamics
n Canonical (symplectic) transformations enable to move 

from variables describing a distorted phase space to 
something simpler (ideally circles)

n The generating functions passing from the old to the new 
variables are bounded to diverge in the vicinity of 
resonances (emergence of chaos, see 2nd lecture)

n Calculating this generating function with canonical 
perturbation theory becomes hopeless for higher orders

n Representing the accelerator (or beam line) like a 
composition of maps (through Lie transformations) enables 
derivation of the generating functions in an algorithmic 
way, in principle to arbitrary order
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Phase space dynamics
- Fixed point analysis
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Phase space dynamics
n Valuable description when examining 

trajectories in phase space 
n Existence of integral of motion imposes 

geometrical constraints on phase flow
n For the simple harmonic oscillator 

phase space curves are ellipses around  
the equilibrium point parameterized by 
the integral of motion Hamiltonian 
(energy)

n By simply changing the sign of the 
potential in the harmonic oscillator, the 
phase trajectories become hyperbolas, 
symmetric around the equilibrium point 
where two straight lines cross, moving 
towards and away from it

H =
1

2

�
p2u + !2

0u
2
�

(u, pu)
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Non-linear oscillators

n Conservative non-linear oscillators have Hamiltonian                                

with the potential being a general (polynomial) function of positions
n Equilibrium points are associated with extrema of the potential
n Considering three non-linear oscillators

q Quartic potential (left): two minima and one maximum
q Cubic potential (center): one minimum and one maximum
q Pendulum (right): periodic minima and maxima

H =
1

2
p2u � 1

2
u2 +

1

4
u4 H =

1

2
p2u � 1

2
u2 +

1

3
u3

H = E =
1

2
p2u + V (u)

H =

1

2

p2� � g

L
cos�
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Fixed point analysis
n Consider a general second order system 

n Equilibrium or “fixed” points                                            are 
determinant for topology of trajectories at their vicinity

n The linearized equations of motion at their vicinity are

n Fixed point nature is revealed by eigenvalues of         , i.e. 
solutions of the characteristic polynomial  

du

dt
= f1(u, pu)

dpu
dt

= f2(u, pu)

f1(u0, pu0) = f2(u0, pu0) = 0

d

dt


�u
�pu

�
= MJ


�u
�pu

�
=

2

64

@f1(u0, pu0)

@u

@f1(u0, pu0)

@pu
@f2(u0, pu0)

@u

@f2(u0, pu0)

@pu

3

75

�u
�pu

�

Jacobian matrix
MJ

det |MJ � �I| = 0
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Fixed point for conservative systems
n For conservative systems of 1 degree of freedom, the second 

order characteristic polynomial has two solutions:
q Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 
particles evolving clockwise or anti-clockwise

q Two real eigenvalues with opposite sign, corresponding to hyperbolic
(or saddle) fixed points. Flow described by two lines (or manifolds), 
incoming (stable) and outcoming (unstable)

elliptic hyperbolic
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Pendulum fixed point analysis
n The “fixed” points for a pendulum can be found at 

n The Jacobian matrix is 

n The eigenvalues are
n Two cases can be distinguished: 

q , for which
corresponding to elliptic fixed points 

q , for which
corresponding to hyperbolic fixed points

q The separatrix are the stable and unstable  
manifolds passing through the hyperbolic 
points, separating bounded librations and 
unbounded rotations


0 1

� g
L cos�n 0

�

�1,2 = ±i

r
g

L
cos�n

elliptic

hyperbolic

�1,2 = ±i

r
g

L

�1,2 = ±
r

g

L

�n = 2n⇡

�n = (2n+ 1)⇡

(�n, p�) = (±n⇡, 0) , n = 0, 1, 2 . . .
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Phase space for time-dependent systems
n Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

n Plotting the evolution in phase space, provides 
trajectories that intersect each other (top)

n The phase space has time as extra dimension, 
n By rescaling the time to become and 

considering every integer interval of the new 
time variable, the phase space looks like the 
one of the harmonic oscillator (middle) 

n This is the simplest version of a Poincaré
surface of section, which is useful for studying 
geometrically phase space of multi-dimensional 
systems

n The fixed point in the surface of section is now
a periodic orbit (bottom)

H =
1

2

�
p2u + !2

0(t)u
2
�

⌧ = !0t
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n Record the particle coordinates at one 
location (BPM)
n Unperturbed motion lies on a circle in 
normalized coordinates (simple rotation)

n Resonance condition corresponds to a 
periodic orbit or in fixed points in phase 
space 
n For a nonliner kick, the radius will 
change by and the particles stop 
lying on circles

Poincaré Section in practice

U

U '

φ

Poincaré Section:

y

x

s

U

U '

2πν0

U

U '

turnφΔ

3

12p
2J

p
2J + �(

p
2J)

�(
p
2J)

x

p
x
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Motion close to a 
resonance
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Secular perturbation theory
n The vicinity of a resonance , can be 

studied through secular perturbation theory (see appendix)
n A canonical transformation is applied such that the new 

variables are in a frame remaining on top of the resonance
n If one frequency is slow, one can average the motion and 

remain only with a 1 degree of freedom Hamiltonian 
n Finding the location of the fixed points                  (i.e. periodic 

orbits) in phase space                and defining a new action
, the resonant Hamiltonian is 

n This is a pendulum where the frequency and the resonance 
half width are

n1!1 + n2!2 = 0

(J10,�10)
(J1,�1)

�J1 = J1 � J10

Hr(�J1,�1) =
@2H0(J)

@J1
2

����
J1=J10

(�J1)
2

2

+ 2" ¯Hn1,�n2(J) cos'1

!1 =

 
2"Hn1,�n2(J)

@2H0(J)

@J1
2

����
J1=J10

!1/2
�J1 max = 2

0

BBB@
2"Hn1,�n2(J)

@2H0(J)
@J1

2

����
J1=J10

1

CCCA

1/2
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Secular perturbation theory for the 3rd

order resonance
n We first introduce the distance to the resonance

n It is convenient then to eliminate the “time” dependence by 
passing on a “1-turn” frame, using the generating function 

with the new angle   providing the Hamiltonian

n The perturbation can be expanded in a Fourier series, where 
only the resonant term is kept or, 

in the rotating frame on top of the resonance

F2(�, J1, s) = �J1 + J1

✓
2⇡⌫s

C
�
Z s

0

ds0

�(s0)

◆
= (�+ �(s))J1

H1 =

⌫

R
J1 +

2

p
2

3

Ks(s)(J1�)
3/2

cos

3
( 1 + �(s))

 1 = �� �(s)

⌫ =
p

3
+ � , � << 1

ˆH1 = ⌫J1 + J
3/2
1 A3p cos(3 1 � p✓)

ˆH2 = �J2 + J
3/2
2 A3p cos(3 2)
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Fixed points for 3rd order resonance
n By setting the Hamilton’s 

equations equal to zero, three 
fixed points can be found at

n For all three points are 
unstable

n Close to the elliptic one at          
the motion in phase 

space is described by circles 
that they get more and more 
distorted to end up in the 
“triangular” separatrix uniting 
the unstable fixed points 

n The tune separation from the 
resonance (stop-band width) is 

 20 =
⇡

3
,

3⇡

3
,

5⇡

3
, J20 =

✓
2�

3A3p

◆2

�

A3p
> 0

 20 = 0

� =
3A3p

2
J1/2
20

 20 =
⇡

3
,

3⇡

3
,

5⇡

3
, J20 =

✓
2�

3A3p

◆2

 20 =
⇡

3
,

3⇡

3
,

5⇡

3
, J20 =

✓
2�

3A3p

◆2



8

N
on

-li
ne

ar
 d

yn
am

ics
, C

ER
N

 A
cc

el
era

to
r S

ch
oo

l, O
cto

be
r 2

01
5

15

Fixed points for general multi-pole
n For any polynomial perturbation of the form the 

“resonant” Hamiltonian is written as

n Note now that in contrast to the sextupole there is a non-
linear detuning term 

n The conditions for the fixed points are

n There are fixed points for which and the 
fixed points are stable (elliptic). They are surrounded by 
ellipses

n There are also fixed points for which and 
the fixed points are unstable (hyperbolic). The trajectories are 
hyperbolas 

x

k

ˆH2 = �J2 + ↵(J2) + J
k/2
2 Akp cos(k 2)

k
cos(k 20) = �1

cos(k 20) = 1

↵(J2)

sin(k 2) = 0 , � +
@↵(J2)

@J2
+

k

2

Jk/2�1
2 Akp cos(k 2) = 0

k

N
on

-li
ne

ar
 d

yn
am

ics
, C

ER
N

 A
cc

el
era

to
r S

ch
oo

l, O
cto

be
r 2

01
5

16

Fixed points for an octupole
n The resonant Hamiltonian close to the 4th order resonance is 

written as 

n The fixed points are found by taking the derivative over the 
two variables and setting them to zero, i.e.

n The fixed points are at

n For half of them, there is a minimum in the potential as
and they are elliptic and half of them they 

are hyperbolic as

ˆH2 = �J2 + cJ2
2 + J2

2Akp cos(4 2)

sin(4 2) = 0 , � + 2cJ2 + 2J2Akp cos(4 2) = 0

 20 =
⇡

4
,
⇡

2
,

3⇡

4
, ⇡ ,

5⇡

4
,

3⇡

2
,

7⇡

4
, 2⇡

cos(4 20) = 1

cos(4 20) = �1
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Topology of an octupole resonance
n Regular motion near the 
center, with curves getting more 
deformed towards a rectangular 
shape 
n The separatrix passes through 
4 unstable fixed points, but 
motion seems well contained
n Four stable fixed points exist 
and they are surrounded by 
stable motion (islands of 
stability)
nQuestion: Can the central 
fixed point become hyperbolic
(answer in the appendix)

SFP

UFP
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Onset of chaos
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Path to chaos
nWhen perturbation becomes higher, motion around the 
separatrix becomes chaotic (producing tongues or splitting 
of the separatrix)
n Unstable fixed points are indeed the source of chaos 
when a perturbation is added
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Chaotic motion
n Poincare-Birkhoff theorem states that 
under perturbation of a resonance only an 
even number of fixed points survives (half 
stable and the other half unstable)
n Themselves get destroyed when 
perturbation gets higher, etc. (self-similar 
fixed points)
n Resonance islands grow and resonances 
can overlap allowing diffusion of particles
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Resonance overlap criterion
n When perturbation grows, the resonance island width grows
n Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

n The distance between two resonances is
n The simple overlap criterion is

n Considering the width of chaotic layer and secondary islands, the “two 
thirds” rule apply

n The main limitation is the geometrical nature of the criterion (difficulty to 
be extended for > 2 degrees of freedom)

�Ĵ1 n,n0 =
2
⇣

1
n1+n2

� 1
n0
1+n0

2

⌘

�����
@2H̄0(Ĵ)

@Ĵ 2
1

����
Ĵ1=Ĵ10

�����
�Ĵ

n max

+�Ĵ
n

0
max

� �Ĵ
n,n

0

�Ĵ
n max

+�Ĵ
n

0
max

� 2

3
�Ĵ

n,n

0

N
on

-li
ne

ar
 d

yn
am

ics
, C

ER
N

 A
cc

el
era

to
r S

ch
oo

l, O
cto

be
r 2

01
5

22

Chaos detection methods
n Computing/measuring dynamic aperture (DA) or 

particle survival

n Computation of Lyapunov exponents

n Variance of unperturbed action (a la Chirikov)

n Fokker-Planck diffusion coefficient in actions

n Frequency map analysis

A. Chao et al., PRL 61, 24, 2752, 1988;
F. Willeke, PAC95, 24, 109, 1989.

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;
M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979 
J. Tennyson, SSC-155, 1988;
J. Irwin, SSC-233, 1989

T. Sen and J.A. Elisson, PRL 77, 1051, 1996
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Dynamic aperture
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Dynamic Aperture
n The most direct way to evaluate the non-linear dynamics 

performance of a ring is the computation of Dynamics 
Aperture

n Particle motion due to multi-pole errors is generally non-
bounded, so chaotic particles can escape to infinity

n This is not true for all non-linearities (e.g. the beam-beam 
force)

n Need a symplectic tracking code to follow particle trajectories 
(a lot of initial conditions) for a number of turns (depending 
on the given problem) until the particles start getting lost

n As multi-pole errors may not be completely known, one has to 
track through several machine models built by random 
distribution of these errors

n One could start with 4D (only transverse) tracking but 
certainly needs to simulate 5D (constant energy deviation) 
and finally 6D (synchrotron motion included)
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Dynamic Aperture plots
n Dynamic aperture plots show the maximum initial 

values of stable trajectories in x-y coordinate space at a 
particular point in the lattice, for a range of energy 
errors.
q The beam size (injected or equilibrium) can be shown on the 

same plot.
q Generally, the goal is to allow some significant margin in the 

design - the measured dynamic aperture is often smaller than 
the predicted dynamic aperture.

5σinj

5σinj
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Dynamic aperture including damping
0.12 ms 0.6 ms 1.2 ms

1.8 ms 2.4 ms 3 ms

3.6 ms 4.2 ms 4.8 ms

n Including radiation damping and 
excitation shows that 0.7% of the 
particles are lost during the damping

n Certain particles seem to damp away 
from the beam core, on resonance 
islands
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Genetic Algorithms for lattice optimisation
n MOGA –Multi 

Objective Genetic 
Algorithms are being 
recently used to 
optimise linear but also 
non-linear dynamics of 
electron low emittance
storage rings

n Use knobs quadrupole
strengths, chromaticity 
sextupoles and 
correctors with some 
constraints

n Target ultra-low 
horizontal emittance, 
increased lifetime and 
high dynamic aperture
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Measuring Dynamic Aperture
n During LHC design phase, 

DA target was 2x higher 
than collimator position, 
due to statistical 
fluctuation, finite mesh, 
linear imperfections, short 
tracking time, multi-pole 
time dependence, ripple 
and a 20% safety margin

n Better knowledge of the 
model led to good 
agreement between 
measurements and 
simulations for actual LHC

n Necessity to build an 
accurate magnetic model 
(from beam based 
measurements)
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Frequency Map Analysis
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Frequency map analysis
n Frequency Map Analysis (FMA) is a numerical method 

which springs from the studies of J. Laskar (Paris 
Observatory) putting in evidence the

n chaotic motion in the Solar Systems 
n FMA was successively applied to several dynamical 

systems
q Stability of Earth Obliquity and climate stabilization (Laskar, 

Robutel, 1993)
q 4D maps (Laskar 1993)
q Galactic Dynamics (Y.P and Laskar, 1996 and 1998)
q Accelerator beam dynamics: lepton and hadron rings (Dumas, 

Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and 
Laskar 2001)
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Motion on torus
n Consider an integrable Hamiltonian system of the usual form

n Hamilton’s equations give

n The actions define the surface of an invariant torus
n In complex coordinates the motion is described by

n For a non-degenerate system
there is a one-to-one correspondence between the actions and 
the frequency, a frequency map
can be defined parameterizing 
the tori in the frequency space

H(J ,', ✓) = H0(J) + ✏H1(J ,', ✓) +O(✏2)
˙�j =

@H0(J)

@Jj
= !j(J) ) �j = !j(J)t+ �j0

˙Jj = �@H0(J)

@�j
= 0 ) Jj = const.

⇣j(t) = Jj(0)e
i!jt = zj0e

i!jt

det

����
@!(J)

@J

���� = det

����
@2H0(J)

@J2

���� 6= 0

F : (I) �! (!)
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Quasi-periodic motion
n If a transformation is made to some new variables

n The system is still integrable but the tori are distorted
n The motion is then described by 

i.e. a quasi-periodic function of time, with

n For a non-integrable Hamiltonian, it 
and especially if the perturbation is small, most tori persist 
(KAM theory)

n In that case, the motion is still quasi-periodic and a 
frequency map can be built

n The regularity (or not) of the map reveals stable (or chaotic) 
motion

⇣j(t) = zj0e
i!jt +

X

m

amei (m·!) t

⇣j = Ije
i✓jt = zj + ✏Gj(z) = zj + ✏

X

m

cmzm1
1 zm2

2 . . . zmn
n

am = ✏ cmzm1
10 zm2

20 . . . zmn
n0 and m · ! = m1!1 +m2!2 + · · ·+mn!n

H(I, ✓) = H0(I) + ✏H 0(I, ✓)
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Building the frequency map
n When a quasi-periodic function in 

the complex domain is given numerically, it is 
possible to recover a quasi-periodic approximation 

in a very precise way over a finite time span      
several orders of magnitude more precisely than 
simple Fourier techniques

n This approximation is provided by the Numerical 
Analysis of Fundamental Frequencies – NAFF
algorithm

n The frequencies and complex amplitudes  are 
computed through an iterative scheme. 

f(t) = q(t) + ip(t)

[�T, T ]

f 0(t) =
NX

k=1

a0ke
i!0

kt

!0
k a0k
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The NAFF algorithm
n The first frequency       is found by the location of the 

maximum of 

where            is a weight function
n In most of the cases the Hanning window filter is 

used
n Once the first term is found, its complex 

amplitude       is obtained and the process is restarted 
on the remaining part of the function 

n The procedure is continued for the number of desired 
terms, or until a required precision is reached

!0
1

�(�) = hf(t), ei�ti = 1

2T

Z T

�T
f(t)e�i�t�(t)dt

�(t)

�1(t) = 1 + cos(⇡t/T )
ei!

0
1t

a01

f1(t) = f(t)� a01e
i!0

1t
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Frequency determination
n The accuracy of a simple FFT even for a simple 

sinusoidal signal is not better than
n Calculating the Fourier integral explicitly

shows that the 
maximum lies in between the main picks of the FFT

|⌫ � ⌫T | =
1

T
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Frequency determination

n A more complicated 
signal with two 
frequencies 

shifts slightly the 
maximum with 
respect to its real 
location

f(t) = a1e
i!1t + a2e

i!2t
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Window function
n A window function like the Hanning filter 

kills side-lobs and 
allows a very accurate determination of the 
frequency  

�1(t) = 1 + cos(⇡t/T )
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Precision of NAFF
n For a general window function of order

Laskar (1996) proved a theorem  stating that the 
solution provided by the NAFF algorithm
converges asymptotically towards the real KAM 
quasi-periodic solution with precision

n In particular, for no filter (i.e. )  the precision 
is , whereas for the Hanning filter ( ), the 
precision is of the order of 

�p(t) =
2

p
(p!)2

(2p)!
(1 + cos⇡t)p

p

⌫1 � ⌫T1 / 1

T 2p+2

p = 0
1

T 2
p = 1

1

T 4
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Aspects of the frequency map
n In the vicinity of a resonance the system behaves like a 

pendulum
n Passing through the elliptic point for a fixed angle, a fixed 

frequency (or rotation number) is observed
n Passing through the hyperbolic point, a frequency jump is 

oberved
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Diffusion in frequency space
n For a 2 degrees of freedom Hamiltonian system, the 

frequency space is a line, the tori are dots on this lines, and 
the chaotic zones are confined by the existing KAM tori

n For a system with 3 or more 
degrees of freedom, KAM 
tori are still represented by 
dots but do not prevent 
chaotic trajectories to diffuse

n This topological possibility 
of particles diffusing is 
called Arnold diffusion

n This diffusion is supposed 
to be extremely small in 
their vicinity, as tori act as 
effective barriers 
(Nechoroshev theory)
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Building the frequency map
n Choose initial conditions with 
n Numerically integrate trajectories for sufficient number of 
turns
n Compute through NAFF after sufficient number 
of turns
n Plot them in the tune diagram

(xi, yi) (p
x;i, py;i)

(Q
x;i, Qy;i)

(xi, yi)

(xi, yi)

(Q
x;i, Qy;i)

(Q
x;i, Qy;i)
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Frequency maps for the LHC

n Frequency maps for the target error table (left) and an 
increased random skew octupole error in the super-
conducting dipoles (right)
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Diffusion Maps
§ Calculate frequencies for two equal and successive time 
spans and compute frequency diffusion vector:

§ Plot the initial condition space color-coded with the norm 
of the diffusion vector
§ Compute a diffusion quality factor by averaging all 
diffusion coefficients normalized with the initial conditions 
radius

D|t=� = �|t�(0,�/2] � �|t�(�/2,� ]

DQF =
� |D|

(I2
x0 + I2

y0)1/2

⇥
R
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Diffusion maps for the LHC

Diffusion maps for the target error table (left) and an increased random 
skew octupole error in the super-conducting dipoles (right)
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Numerical Applications
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Correction schemes efficiency

n Comparison of correction schemes for b4 and b5 errors 
in the LHC dipoles

n Frequency maps, resonance analysis, tune diffusion 
estimates, survival plots and short term tracking, 
proved that only half of the correctors are needed

n“Chosen” scheme
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n Long range beam-beam interaction 
represented by a 4D kick-map 

with

Beam-Beam interaction

�x = � npar
2rpNb

�

�
x⇥ + ⇥c

⇥2
t

⇤
1� e

� �2
t

2�2
x,y

⌅

� 1
⇥c

⇤
1� e

� �2
c

2�2
x,y

⌅ ⇥

�y = � npar
2rpNb

�

y⇥

⇥2
t

⇤
1� e

� �2
t

2�2
x,y

⌅

�t �
�
(x� + �c)2 + y�2

⇥1/2
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Head-on vs Long range interaction

n Proved dominant effect of long range beam-beam effect
n Dynamics dominated by the 1/r part of the force, reproduced by 

electrical wire, which was proposed for correcting the effect
n Experimental verification in SPS and installation to the LHC IPs

Head-on Long range
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Action variance vs. frequency diffusion

n Very good agreement of diffusive aperture boundary (action 
variance) with frequency variation (loss boundary 
corresponding to around 1 integer unit change in 107 turns)
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Magnet fringe fields
• Up to now we considered only 
transverse fields
• Magnet fringe field is the 
longitudinal dependence of the 
field at the magnet edges
• Important when magnet aspect 
ratios  and/or emittances are big
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Quadrupole fringe field
N
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Magnet fringe fields
n From the hard-edge Hamiltonian

the first order shift of the frequencies 
with amplitude can be computed 
analytically

with the ”anharmonicity” coefficients 
(torsion) 

H
f

= ±Q

12B⇢(1+�p
p )

(y3p
y

� x3p
x

+ 3x2yp
y

� 3y2xp
x

),

✓
�⌫

x

�⌫
y

◆
=

✓
a
hh

a
hv

a
hv

a
vv

◆✓
2J

x

2J
y

◆
, Realistic

Hard-edge

a
hh

= �1
16⇡B⇢

P
i

±Q
i

�
xi

↵
xi

a
hv

= 1
16⇡B⇢

P
i

±Q
i

(�
xi

↵
yi

� �
yi

↵
xi

)
avv = 1

16⇡B⇢

P
i ±Qi�yi↵yi

Tune footprint for the 
SNS based on hard-
edge (red) and realistic 
(blue) quadrupole 
fringe-field



27

N
on

-li
ne

ar
 d

yn
am

ics
, C

ER
N

 A
cc

el
era

to
r S

ch
oo

l, O
cto

be
r 2

01
5

53

Off-momentum frequency 
maps
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Tune Diffusion quality factor

Choice of the SNS ring working point

Chosen Working Point
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Global Working point choice
n Figure of merit for 

choosing best working 
point is sum of diffusion 
rates with a constant 
added for every lost 
particle

n Each point is produced 
after tracking 100 
particles

n Nominal working point 
had to be moved 
towards “blue” area
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Advanced symplectic integration schemes
n Symplectic integrators with positive steps for Hamiltonian 

systems with both     and      integrable were 
proposed by McLachan (1995). 

n Laskar and Robutel (2001) derived all orders of  such 
integrators

n Consider the formal solution of  the Hamiltonian system 
written in the Lie representation

n A symplectic integrator of  order     from     to               
consists of  approximating the Lie map 
by products of  and which 
integrate exactly and over the time-spans       and 

n The constants      and are chosen to reduce the error

A B

n

A B
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SABA2 integrator
n The SABA2 integrator is written as

with
n When  is integrable,  e.g. when A is quadratic in 

momenta and B depends only in positions, the accuracy of  
the  integrator is  improved by two small negative kicks    

with
with

n The accuracy of  SABA2C is one 
order of  magnitude higher than then than 
the Forest-Ruth 4th order scheme

n The usual “drift-kick” scheme 
corresponds to the 2nd order integrator of  this class
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Application of the SABA2C integrator

1-kick

10-kick

1-kick

SABA2C SABA2C

n The one kick integrator reveals a completely different dynamics then the 
10-kick

n SABA2C integrator captures the correct dynamics
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Sextupole scheme optimization

n Comparing different chromaticity sextupole 
correction schemes and working point optimization 
using normal form analysis, frequency maps and 
finally particle tracking

n Finding the adequate sextupole strengths through 
the tune diffusion coefficient
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Experimental methods
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n Frequency analysis of turn-
by-turn data of beam 
oscillations produced by a 
fast kicker magnet and 
recorded on a Beam Position 
Monitors

n Reproduction of the non-
linear model of the 
Advanced Light Source 
storage ring and working 
point optimization for 
increasing beam lifetime

Experimental frequency maps
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Experimental Methods – Tune scans
q Study the resonance behavior around different working points
q Strength of individual resonance lines can be identified from the 

beam loss rate, i.e. the derivative of the beam intensity at the 
moment of crossing the resonance

q Vertical tune is scanned from about 0.45 down to 0.05 during a 
period (3s) along the flat bottom

q Horizontal tune is constant during the same period
q Tunes are continuously monitored using tune monitor (tune post-

processed with NAFF) and the beam intensity is recorded with a 
beam current transformer
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Tune Scans from the SPS
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Nominal Optics
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n Plot the tunes color-coded with the amount 
of loss

n Identify the dangerous resonances
nCompare between two different optics
n Try to refine the machine model 
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Summary
n Resonances (stable and unstable fixed points) are 

responsible for the onset of chaos
n Dynamic aperture by brute force tracking (with 

symplectic numerical integrators) is the usual quality 
criterion for evaluating non-linear dynamics 
performance of a machine

n Frequency Map Analysis is a numerical tool that 
enables to study in a global way the dynamics, by 
identifying the excited resonances and the extent of 
chaotic regions

n It can be directly applied to tracking but also 
experimental data

n A combination of these modern methods enable a 
thorough analysis of non-linear dynamics and lead to a 
robust design
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Appendix
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The pendulum
n An important non-linear equation which can be 

integrated is the one of the pendulum, for a string of 
length L and gravitational constant g

n For small displacements it reduces to an harmonic 

oscillator with frequency
n The integral of motion (scaled energy) is

and the quadrature is written as
assuming that for

d2�

dt2
+

g

L
sin� = 0

!0 =

r
g

L

1

2

✓
d�

dt

◆2

� g

L
cos� = I1 = E0

t =

Z
d�p

2(I1 +
g
L cos�)t = 0 , � = 0
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Solution for the pendulum
n Using the substitutions with

, the integral is 

and can be solved using 

Jacobi elliptic functions:
n For recovering the period, the integration is 

performed between the two extrema, i.e.               and 
, corresponding to and          

, for which

i.e. the complete elliptic integral multiplied by four 
times the period of the harmonic oscillator

cos� = 1� 2k2 sin2 ✓
k =

p
1/2(1 + I1L/g)

t =

s
L

g

Z ✓

0

d✓p
1� k2 sin2 ✓

�(t) = 2 arcsin


k sn

✓
t

r
g

L
, k

◆�

� = arccos(�I1L/g)
� = 0

✓ = 0
✓ = ⇡/2

T = 4

s
L

g

Z ⇡/2

0

d✓p
1� k2 sin2 ✓

= 4

s
L

g
F(⇡/2, k)
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Secular perturbation theory
n Consider a general two degrees of freedom Hamiltonian:

with the perturbed part periodic in angles:

n The resonance prevents the convergence 
of the series

n A canonical transformation can be applied  for eliminating 
one action: using the generating function 

n The relationships between new and old variables are

n This transformation put us in a rotating frame where the 
rate of change measures the deviation 
from resonance 

H(J,') = H0(J) + "H1(J,')

H1(J,') =
P

k1,k1
Hk1,k2(J1, J2) exp[i(k1'1 + k2'2)]

n1!1 + n2!2 = 0

(J,') 7�! (Ĵ, '̂)
Fr(Ĵ,') = (n1'1 � n2'2)Ĵ1 + '2Ĵ2

J1 = n1Ĵ1 , J2 = Ĵ2 � n2Ĵ1

'̂1 = n1'1 � n2'2 , '̂2 = '2

˙̂'1 = n1'̇1 � n2'̇2
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Secular perturbation theory
n The transformed Hamiltonian is

with the perturbation written as a Fourier series

n This transformation assumes that is the slow 
frequency and we can average the Hamiltonian over the 
corresponding angle to obtain 

with and 

n The averaging eliminated one angle and thus 
is an invariant of motion

n This means that the Hamiltonian has effectively only one 
degree of freedom and it is integrable

Ĥ(Ĵ, '̂) = Ĥ0(Ĵ) + "Ĥ1(Ĵ, '̂)

ˆH1(Ĵ, ˆ') =
X

k1,k2

Hk1,k2(Ĵ) exp

⇢
i

n1
[k1'̂1 + (k1n2 + k2n1)'̂1]

�

'̇2

H̄(Ĵ, '̂) = H̄0(Ĵ) + "H̄1(Ĵ, '̂1) H̄0(Ĵ) = Ĥ0(Ĵ)

¯H1(Ĵ, '̂1) = h ˆH1(Ĵ, '̂1)i'̂2 =

+1X

p=�1
H�pn1,pn2(Ĵ) exp(�ip'̂1)

Ĵ2 = J2 + J1
n2

n1
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Secular perturbation theory
n Assuming that the dominant Fourier harmonics for        

the Hamiltonian is written as

n Fixed points                  (i.e. periodic orbits) in phase space                        
are defined by

n Move the reference on fixed point     
and expand             around 

n Hamiltonian describing motion near a resonance:

n Motion near a typical resonance is like the one of the 
pendulum!!! The frequency and the resonance half width 
are

p = 0,±1

�Ĵ1 = Ĵ1 � Ĵ10H̄(Ĵ)

!̂1 =

 
2"H̄n1,�n2(Ĵ)

@2H̄0(Ĵ)

@Ĵ 2
1

����
Ĵ1=Ĵ10

!1/2

�Ĵ1 max = 2

0

BBB@
2"H̄n1,�n2(Ĵ)

@2H̄0(Ĵ)

@Ĵ 2
1

����
Ĵ1=Ĵ10

1

CCCA

1/2

(Ĵ10, �̂10)
(Ĵ1, �̂1) @H̄

@Ĵ1
= 0 ,

@H̄

@�̂1

= 0

¯Hr(�
ˆJ1, ˆ�1) =

@2
¯H0(Ĵ)

@ ˆJ 2
1

����
Ĵ1=Ĵ10

(�

ˆJ1)
2

2

+ 2" ¯Hn1,�n2(Ĵ) cos '̂1

¯H(Ĵ , �̂1) =
¯H0(Ĵ) + " ¯H0,0(Ĵ) + 2" ¯Hn1,�n2(Ĵ) cos '̂1
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Octupole with hyperbolic central fixed point

n Now, if the solution for the action is
n So there is no minima in the potential, i.e. the central fixed 

point is hyperbolic

c = 0 J20 = 0
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Experimental non-linear dynamics at ESRF
n 3 regions:

¨ Small 
amplitudes: 
regular motion

¨ Medium 
amplitudes: 5th

order 
resonance 
crossing

¨ Large 
amplitudes: 
losses due to 
3rd order 
resonance 
crossing

n Excitation of 3rd

order resonance 
and correction 
with sextupole 
correctors

Nominal   correction Detuned  correction

Improved   sextupole   correction
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Resonance free lattice for CLIC PDR
n Non linear 

optimization based 
on phase advance 
scan for minimization 
of resonance driving 
terms and tune-shift 
with amplitude

eip(nxµx ,c+nyµy,c )
p=0

Nc−1

∑ =
1− cos Nc (nxµx,c + nyµy,c )#$ %&
1− cos(nxµx,c + nyµy,c )

= 0

Nc (nxµx,c + nyµy,c ) = 2kπ
nxµx,c + nyµy,c ≠ 2 "k π
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Space charge frequency scan

ΔQx/ΔQy ~	  0.10/0.18
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Vertical

20 20.1 20.2 20.3 20.4 20.5
20
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Q
y

Lossless	  blow-‐up	  
of	  beam	  core

“no	  blow-‐up”	  
for	  Qx>20.14

n Injecting high bunch density beam into the SPS 
n Space charge effect quite strong with (linear) 

tune-shifts of 
nChanging horizontal/vertical frequency and 

measuring emittance (action) blow-up
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Lossless	  blow-‐up	  
of	  beam	  core

”no	  blow-‐up”	  
for	  Qy>20.20

Space charge frequency scan

ΔQx/ΔQy ~	  0.10/0.18

n Injecting high bunch density beam into the SPS 
n Space charge effect quite strong with (linear) tune-

shifts of 
n Changing horizontal/vertical frequency and 

measuring emittance (action) blow-up


