
07/07/2008

1

Database DesignDatabase Design
Tips & Tricks

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services Database Developers' WorkshopDatabase Developers' Workshop

CERN, July 8CERN, July 8thth, 2008, 2008
Eva Dafonte Pérez, CERN ITEva Dafonte Pérez, CERN IT--DMDM
DB Design based on slides by Dawid WójcikDB Design based on slides by Dawid Wójcik

Outline

• Database design

• Tips & tricks

– Indexes

– Partitioning

– PL/SQL

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

• Writing robust applications

• Q&A

Database design

"It's a Database, Not a Data Dump"

D t b i i t t d ll ti f•Database is an integrated collection of
logically related data
•You need a database to:

– store data ...
– ... and be able to efficiently process it in order to

i / d i f i !

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

retrieve/produce information!

Database design – goals

"It's a Database, Not a Data Dump"

• Database design – define how to store data to:Database design define how to store data to:
avoid unnecessary redundancy

storage is not unlimited
redundant data is not logically related

retrieve information easily and efficiently
easily – does not necessarily mean with a simple query
efficiently – using built-in database features

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

be scalable for data and interfaces
performance is in the design!
will your design scale to predicted workload (thousands of
connections)?

07/07/2008

2

Conceptual design

• Process of constructing a model of the information
used in an enterprise

• Is a conceptual representation of the data
structures

• Is independent of all physical considerations

Database requirements

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Database Developers’ Workshop, CERN, July 2008 - 5

Conceptual model

Conceptual design – practice

• The Entity-Relationship model (ER) is most
common conceptual model for database design:

describes the data in a system and how data is related
describes data as entities, attributes, and relationships
can be easily translated into many database
implementations

Entity AttributeRelationship

Department Employee

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Department

id
* name
o location

Employee

id
* name
o age

composed of

assigned to

Modeling relationships - example

• Many – to – many (M:N)
• a student can be registered on any number of courses

(including zero)
• a course can be taken by any number of students (including• a course can be taken by any number of students (including

zero)

Student
student_id
* last_name
* first name

o date_of_birth

Course
course_id

* course_name
* start_date
* end_date

registered for

taken by

Student
student_id
* last_name
* first name

o date_of_birth

Course
course_id

* course_name
* start_date
* end_date

Course_enrollment
student_id
course_id

* enrollment_date

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Database Developers’ Workshop, CERN, July 2008 - 7

cannot be represented by the relational modelintersection or associative entities

Logical design

• Translate the conceptual representation into the
logical structure

• Logical model – normalized form

Conceptual Model (ERD)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Database Developers’ Workshop, CERN, July 2008 - 8

Relational model

07/07/2008

3

Normalization

• Objective – validate and improve a logical design,
satisfying constraints and avoiding duplication of
data

• Normalization is a process of decomposing
relations with anomalies to produce smaller well-
structured tables:
– First Normal Form (1NF)
– Second Normal Form (2NF)
– Third Normal Form (3NF)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

– Third Normal Form (3NF)

– Other: Boyce/Codd Normal Form (BCNF), 4NF ...

• Usually the 3NF is appropriate for real-world
applications

First Normal Form (1NF)

• All table attributes values must be atomic (multi-
values not allowed)
– eliminate duplicative columns from the same table
– create separate tables for each group of related data and

identify each row with a unique column (the primary key)

Manager Subordinates✗Manager Subordinate1 Subordinate2✗Manager ID Subordinate ID
763 6

763 3✓✓
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Manager Subordinates
Helen Smith John Doe, Marc Brown✗Manager Subordinate1 Subordinate2

Helen Smith John Doe Marc Brown✗763 3

Employee ID Name Surname
3 Marc Brown
6 John Doe

763 Helen Smith

✓✓
Second Normal Form (2NF)

• 1NF
• No attribute is dependent on only part of the

primary key, they must be dependent on the entire
primary key

• Example:
– partial dependency – an attribute is dependent on part of

the primary key, but not all of the primary key

OO Programming

Software Engineering

Database Management

CNAME

B

B

A

GRADE

M120Waters224

M122Waters224

M126Waters224

CIDSNAMESID

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Violation of the 2NF!

Student(Student(SID, CIDSID, CID, SNAME, CNAME, GRADE), SNAME, CNAME, GRADE)

Distributed Systems

Software Engineering

Database Management

OO Programming

B

A

B

B

M120Smith421

M125Smith421

M122Smith421

M126Waters224

Normalization to 2NF
• For each attribute in the primary key that is involved

in partial dependency – create a new table

• All attributes that are partially dependent on that p y p
attribute should be moved to the new table

Student(Student(SID, CIDSID, CID, SNAME, CNAME, GRADE), SNAME, CNAME, GRADE)

Student(Student(SIDSID, SNAME), SNAME) Class(Class(CIDCID, CNAME), CNAME)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

07/07/2008

4

Third Normal Form (3NF)

• 2NF
• No transitive dependency for non-key attributes

– any non-key attribute cannot be dependent on another
non-key attribute

Class(Class(CIDCID, CNAME, CLEVEL, ROOM, CAPACITY), CNAME, CLEVEL, ROOM, CAPACITY)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Violation of the 3NF!Violation of the 3NF!

Normalization to 3NF
• For each non-key attribute that is transitive

dependent on a non-key attribute, create a table

Class(Class(CIDCID, CNAME, CLEVEL, ROOM, CAPACITY), CNAME, CLEVEL, ROOM, CAPACITY)

Class(Class(CIDCID, CNAME, CLEVEL, ROOMID), CNAME, CLEVEL, ROOMID)
((OOOO C C)C C)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Room(Room(ROOMIDROOMID, CAPACITY), CAPACITY)

Integrity constraints - PK

• Primary keys (PK)
– enforce entity integrity

attribute or set of attributes that uniquely identifies each– attribute or set of attributes that uniquely identifies each
record in the table

– every entity in the data model must have a primary key
that:

• is a non-null value
• is unique
• it does not change or become null during the table life time

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

(time invariant)

Integrity constraints - FK

• Foreign keys (FK)
– maintains consistency between two tables with a relation

must have a value that matches a primary key in the other– must have a value that matches a primary key in the other
table or be null

– an attribute in a table that serves as primary key of another
table

– use foreign keys!
• foreign keys with indexes on them improve performance of

selects, but also inserts, updates and deletes

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

, , p

07/07/2008

5

Schema design – best practices

• Use generic structures
– whenever there's a need of higher flexibility
– do not use it to model “everything”

Object
object_id

* object_type_id
o object_name

Parameter
parameter_id

* parameter_type_id
* object_id

o value

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Object_type
object_type_id

o type_name

Parameter_type
parameter_type_id
o parameter_name

Schema design – best practices

• Column types and sizing columns
– VARCHAR2(4000) is not the universal column type

• high memory usage on the client
• it makes data dump, not database
• you cannot index a key longer than ≈6400 bytes
• use proper data types

– “nullable” columns at the end of the table

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

Schema design – best practices

• Estimate future workload
– read intensive?
– write intensive?
– transaction intensive?
– mixture? – estimate the amount of each type

• Design indexes knowing the workload
– what will users query for?

• minimize number of indexes using proper column order in the
indexes

t i t d d (PL/SQL) t t i th

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

• create views, stored procedures (PL/SQL) to retrieve the
data in the most efficient way – easier to tune in a running
system

– what is the update/insert/delete pattern?
• create indexes on foreign keys

Tips & tricks

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

07/07/2008

6

Indexes – tips & tricks

• Selective indexes
– suppose we have huge table with jobs, most of them

already processed (processed_flag = 'Y'), we want only to
index non processed jobsindex non-processed jobs

• use bitmap index – very bad idea on frequently updated
tables

• create selective view

• create function based index:
create index my_indx on tbl_t1 (
case when processed_flag = 'N' then 'N'

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

else NULL
end);

• save index space, improve queries performance

Indexes – tips & tricks

• Reversed indexes
– suppose we have many concurrent programs that insert

into the same table
th t bl h i k l l t d b– the table has a primary key column populated by an
increasing sequence

– no range scans on that column
– data is deleted from time to time according to some rules

which leave some old data undeleted in the table
• create reversed index:
alter index index_name rebuild reverse;

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

• reversed index decreases contention on the index, especially
in RAC environment – improves insert/update performance

• you can no longer make range scans using reversed index

Partitioning – tips & tricks

• Investigate partitioning your application
– partitioning by time, subdetector, subsytem, etc

– benefits:– benefits:
• increased availability – in case of loosing one

tablespace/partition
• easier administration – moving smaller objects if necessary,

easier deletion of history, easier online operations on data
(ALTER TABLE ... EXCHANGE PARTITION)

• increased performance – use of local and global indexes,
less contention in RAC environment

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

PL/SQL – tips & tricks

• Query parse types
– Hard parse

• optimizing execution plan of a query
• high CPU consumption

– Soft parse
• reusing previous execution plan
• low CPU consumption, faster execution

• Reduce the number of hard parses
– put top executed queries in PL/SQL

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

p p q Q
packages/procedures/functions

– put most common queries in views
– it also makes easier to tune bad queries in case of

problems

07/07/2008

7

PL/SQL – tips & tricks

• Reduce the number of hard parses
– use bind variables

• instead of:
select ... from users where user_id=12345

• use:
select ... from users where user_id=:uid

• using bind variables protects from sql injection:
– before:

sql = “select count(*) from users where
username='”+user+”' and password='”+pass+”'”

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

user=”hacker” pass=”aaa' or 1=1”

– after:
sql = “select count(*) from users where username=:user

and password=:pass”

PL/SQL – tips & tricks

• Beware of bind variables peeking
– optimizer peeks at bind variable values before hard

parsing for the first time

– suppose we have huge table with jobs, most of them
already processed (processed_flag = 'Y’)

• using bind variable on processed_flag may change query
behavior, depending on which query is processed first after
DB startup (with bind variable set to 'Y' or 'N')

– on a low cardinality column which distribution can
significantl ar in time do not se bind ariable onl if

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

significantly vary in time – do not use bind variable only if
doing so will result in just a few different queries, otherwise
use bind variables

PL/SQL – tips & tricks

• Reduce the number of hard parses
– Prepare once, execute many

• use prepared statements
• dynamic SQL executed thousands of times – consider

dbms_sql package instead of execute immediate
• use bulk inserts whenever possible

• Use fully qualified names
• instead of:
select ... from table1 ...

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

• use:
select ... from schema_name.table1 ...

– known bugs – execution in a wrong schema

Writing robust applications

• Use different level of account privileges
– application owner (full DDL and DML)

– writer account (grant read/write rights to specific objects)writer account (grant read/write rights to specific objects)

– reader account (grant read rights)

– directly grant object rights or use roles
• caution – roles are switched off in PL/SQL code, one must

set them explicitly

– passwords in code get exposed very easily
• exposing reader password may result in DoS attacks

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

exposing reader password may result in DoS attacks
• exposing other accounts' passwords may result in data loss

07/07/2008

8

Writing robust applications

• Use connection pooling
– connect once and keep a specific number of connections

to be used by several client threads (pconnect in OCI)

– test if the connection is still open before using it, otherwise
try reconnecting

– log connection errors, it may help DBAs to resolve any
potential connection issues

• Connection management
– handle server or network failures

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

– in case of server failure (or rolling patch), connection
should be automatically moved to an available server

– other errors might happen – review documentation/wiki

Writing robust applications

• Error logging and retrying
– trap errors
– check transactions for errors, try to repeat failed

t ti l (i l di SQL th t f il d dtransactions, log any errors (including SQL that failed and
application status – it might help to resolve the issue)

– some parts of a transaction (bulk insert) may fail –
consider using error logging clause:
• CREATE TABLE raises (emp_id NUMBER, sal NUMBER CONSTRAINT check_sal

CHECK(sal > 8000));

• EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('raises', 'errlog');

• INSERT INTO raises SELECT employee_id, salary*1.1 FROM employees
WHERE commission_pct > .2 LOG ERRORS INTO errlog ('my_bad') REJECT
LIMIT 10

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

LIMIT 10;

• SELECT ORA_ERR_MESG$, ORA_ERR_TAG$, emp_id, sal FROM errlog;

ORA_ERR_MESG$ ORA_ERR_TAG$ EMP_ID SAL
--------------------------- -------------------- ------ -------
ORA-02290: check constraint my_bad 161 7700
(HR.SYS_C004266) violated

Writing robust applications

• Design, test, design, test ...

• Try to prepare a testbed system – workload
generators etcgenerators, etc

• Do NOT test changes on a live production system

• IT-DM provides test and integration system
(preproduction) with the same Oracle setup as on
production clusters
– contact PhyDB.Support to obtain accounts and ask for

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

imports/exports

Q & AQ & AQ & AQ & A
htt //t iki h/t iki/bi / i /PSSG /G lAd i

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

https://twiki.cern.ch/twiki/bin/view/PSSGroup/ConnectionManagement

https://twiki.cern.ch/twiki/bin/view/PSSGroup/GeneralAdvices

