
DB Tuning

Best Practices from a Developer's Perspective

Giuseppe Lo Presti (IT/DM)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Database Developers’ Workshop, CERN, July 8th, 2008

Outline

• Background and motivation
T l f DB t i• Tools for DB tuning
– Understanding execution plans
– Using indexes and hints
– Understanding statisticsg

• Looking for performance bottlenecks
Reading an AWR report– Reading an AWR report

• Conclusions

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 2

Background and motivation

• CASTOR, the Cern Advanced STORage
managermanager
– Handles all physics data at CERN and in 3 Tier 1s

(10s of PetaBytes)(y)
– Deals with magnetic tapes and a level of cache on disk

• DB centric system holding all its state in OracleDB centric system holding all its state in Oracle
databases
– Includes tape states, cache states, namespace, ...Includes tape states, cache states, namespace, ...

• Programmed in C++, uses heavily PL/SQL and
OCCI

Internet
Services

OCCI
• The CASTOR logic is PL/SQL code

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 3

Background and motivation

• As part of our development activities, we
daily face database tuning issuesdaily face database tuning issues

• What follows is a knowledge base for
developing and tuning database oriented
applications
– First more theoretical, then more practical, p
– The Case study will show many tricks in action
– Note that the developer’s perspective has been

Internet
Services

Note that the developer s perspective has been
largely influenced by DBAs’ ones!

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 4

The Theory: Tools for DB tuning

• Understanding Execution Plans
U i I d d Hi t• Using Indexes and Hints

• Understanding Statistics

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 5

Understanding Execution Plans

• Synopsis: exec plans are characterized by
Access Path– Access Path

• Full-table scan
• Row ID scanRow ID scan
• Cluster scan
• Index scan

– Join Order
– Join Method

• Nested-loop
• Hash

S t
Internet
Services

• Sort-merge
• Anti or Semi
• Cartesian

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 6

Cartesian

Access Paths (1)

• Full Table Scan (FTS)
– Small table (< 5K rows), no indexes, most rows to be

accessed anywayaccessed anyway
– Oracle optimizes FTSs using multiblock I/O
– Hint(!): FULL(Table)

• Row ID Scan
– Usually after index lookup

• Not always! If index already contains requested data noNot always! If index already contains requested data, no
table access is performed at all

– Using the rowID is the fastest way to retrieve a single row
• But not necessarily the fastest to retrieve multiple rows!But not necessarily the fastest to retrieve multiple rows!

– Hint: ROWID(Table)
• Cluster scan

F l t d t bl
Internet
Services

– For clustered tables
• Pairs of tables stored as permanently joined, replicating data

where needed

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 7

Access Paths (2)

• Index scan, when index(es) avaiable
• Indexes contain rowIDs which are used afterwards• Indexes contain rowIDs, which are used afterwards

to access the data via rowID scan
– Unique scanUnique scan

• When UNIQUE or PRIMARY KEY constraints

– Range scan [descending]
• Standard traversal of an index: data is returned in ascending

[descending] order of index columns
• NOT NULL constraints help choosing an index to satisfy anNOT NULL constraints help choosing an index to satisfy an

ORDER BY clause, thus avoiding further sorting
• Hint: INDEX(Table Index_name)

Internet
Services

– Skip scan
• For composite (or concatenated) indexes – more later
• Hint: INDEX SS(Table Index name)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 8

Hint: INDEX_SS(Table Index_name)

Access Paths (3)

• Index scan (continued)
– Fast full scan (FFS)()

• Using multiblock I/O (fast), not in order
• Hint: INDEX_FFS(Table Index_name)

Full scan– Full scan
• Preserves order, less efficient w.r.t. I/O than FFS

– Index joinj
• Hash join of several indexes that together contain all the table

columns referenced in the query
• Hint: INDEX JOINt _JO

– Bitmap join
• In case Bitmap indexes are defined (more later), or when

complex boolean operations are required: in such a case
Internet
Services

complex boolean operations are required: in such a case,
Oracle may build bitmaps on the fly

• Hint: INDEX_COMBINE (only to force usage of a bitmap index)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 9

Index Scan vs. Full Table Scan

• Index Scan = index access + table access via rowID
• Full Table Scan = table access via multiblock I/O• Full Table Scan = table access via multiblock I/O
• Which one is the fastest access?

Very selective query vs non selective one– Very selective query vs. non-selective one

• Imagine you have a table where a lot of DML activity
occurs - and the indexes become very fragmentedoccurs - and the indexes become very fragmented

• Index Clustering factor
When too high index access performances may drop– When too high, index access performances may drop

– And FTS may outperform index access!
– You need to rebuild the indexes or use different

Internet
Services

You need to rebuild the indexes, or use different
techniques…

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 10

Join Order

• Rule 1
– A single-row predicate (e.g. T.value = :1) forces its row s g e o p ed cate (e g . a ue :) o ces ts o

source to be placed firstfirst in the join order

• Rule 2
– For outer joins, the table with the outer-joined table must

come afterafter the other table in the join order for processing
the jointhe join

O d i b idd• Ordering can be overridden
– LEADING hint allows specifying a complete join order

• Example at the Case study session

Internet
Services

• Example at the Case study session

– If the suggested order violates rule 2, the hint is ignored

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 11

Join Methods (1)

• Nested Loop Joins
– Outer (or driving) table, inner tableOuter (or driving) table, inner table
– Basically:

for each (out table) // O(n) access
f h (i t bl) // O(*)for each (in table) // O(n*m) accesses
check for a match

– Usually for joining a small number of rows that have a goodUsually for joining a small number of rows that have a good
(= selective) driving condition

– Most powerful (and most expensive)
– Hint: USE_NL(Table1 Table2)

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 12

Join Methods (2)

• Hash Joins
– Only on equijoinsOnly on equijoins
– Used when most data from a table need to be joined
– The smaller of the two tables is scanned (FTS) to build a ()

hash table on the join key
– Then the larger one is scanned (FTS) probing the hash

table to find the joined rowstable to find the joined rows
– Better than sort-merge and NLs, but more expensive in

memory (PGA)y ()
– Hint: USE_HASH(Table1 Table2)

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 13

Join Methods (3)

• Sort-Merge joins
– The rows from each table are sorted on the join predicateThe rows from each table are sorted on the join predicate

columns
– The two sorted sources are then merged and returned
– It may be expensive due to the sorting operation, especially

if it is not performed all in memory
Used if no equijoin or if sorts are required for subsequent– Used if no equijoin, or if sorts are required for subsequent
operations

– Hint: USE_MERGE(Table1 Table2)

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 14

Join Methods (4)

• Antijoins
– Queries including a NOT IN subqueryQue es c ud g a O subque y

• Semijoins• Semijoins
– Queries with an EXISTS subquery

• Cartesian joins
J i ith t diti– Joins without condition

– Normally a programming mistake…

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 15

Digression: sorting

• Sorts are common operations in execution plans.
We can find the following sorts in execution plans:
– SORT UNIQUE: if query specifies a DISTINCT clause or if next

step requires unique values
– SORT AGGREGATE: not a real sort it’s used when aggregatesSORT AGGREGATE: not a real sort, it s used when aggregates

are computed across the whole set of rows (e.g. MIN())

– SORT GROUP BY: used on GROUP BY queries. The sort is
i d t t th irequired to separate the rows in groups

– SORT JOIN: during sort-merge joins
– SORT ORDER BY: if query specifies an ORDER BY clauseSORT ORDER BY: if query specifies an ORDER BY clause

• Other clauses which require sorting: UNION, MINUS,

Internet
Services

INTERSECT

– These are expensive operations!

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 16

Determining exec plans

• EXPLAIN PLAN command
– Theoretical plan that can be used by a stmt
– EXPLAIN PLAN SET statement_id = ‘myStmt’ FOR (<any

SQL query>);
SELECT PLAN_TABLE_OUTPUT FROM

TABLE(DBMS XPLAN DISPLAY())TABLE(DBMS_XPLAN.DISPLAY());

• VSQL_PLAN , VSQL_PLAN_STATISTICS_ALL views
– Actual plan being used by a running cursorActual plan being used by a running cursor
– SELECT PLAN_TABLE_OUTPUT FROM

TABLE(DBMS_XPLAN.DISPLAY_CURSOR(
<sql_id> [, <format>]));

– AWR reports can help here, as they provide the sql_id and
usage statistics of top activity cursors/queries

• More later

Internet
Services

More later

• SQL*Plus autotrace
– set autotrace on | traceonly [explain]

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 17

The Theory: Tools for DB tuning

• Understanding Execution Plans
U i I d d Hi t• Using Indexes and Hints

• Understanding Statistics

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 18

Indexes and Hints

• Synopsis: indexes can be
– Unique vs. nonuniqueq q
– Composite
– Bitmap
– Bitmap join
– Function based

• Storage: B*tree• Storage: B tree
– Normal
– Reverse keyReverse key
– Function based

• Index data is usually separated from table data

Internet
Services

y p
– Index-organized tables (IOT) have data stored

within an index

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 19

Effect of DML queries

• INSERT, UPDATE, DELETE clauses

• Inserts result in the insertion of an index entry in the
appropriate blockpp p
– Block splits might occur

• Deletes result in a deletion of the index entryy
– Empty blocks become available

• Updates to the key columns result in a logical delete p y g
+ insert to the index

Internet
Services

• After heavy DML activity, it is adviced to reorganize
(rebuild) B*tree indexes

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 20

()

Indexes and constraints

• Primary or Unique key constraints implicitly create an
index

• FKs don’t have implicit indexes
– But are welcome…But are welcome…

• With FKs, when deleting or updating parent rows
– All matching child rows need to be located to make sureAll matching child rows need to be located to make sure

there are no dependents (otherwise => FK violation)
– Without an index, this results in a FTS of the child table

Internet
Services

Parent Child
id_parent *

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 21

Composite indexes

• Indexes on more than one column
– Better selectivityBetter selectivity
– If all columns selected by a query are in a composite index,

no access is performed on the table (cf. IOTs later)

• Guidelines
– Column order should match WHERE clauses
– Most queried columns -> leading part of the index

• Partial match on the leading part fine as well

Most restrictive column > leading part of the index?– Most restrictive column -> leading part of the index?
• Oracle can use Index Skip Scanning access on a composite

index when the index prefix column is not part of the predicate

Internet
Services

• …but this common sense guideline is actually a myth!
• Index compressibility arguments make the opposite choice

preferable – and performance-wise there’s no difference
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 22

preferable and performance wise there s no difference

Bitmap indexes

• Designed for low cardinality columns
– For each distinct value of the column, a bitmap “stripe” is p p

created, with size = #rows in the table
– Very storage efficient, each stripe is compressed and stored

in a B*tree structurein a B tree structure

• Pros
– Complex WHERE clauses and group functions (e.g. COUNT p g p (g

and SUM) are resolved with bitwise operations
– Large tables benefit wrt standard index

• Breakeven point: #different values <= 1% #rows• Breakeven point: #different values <= 1% #rows

• Cons
– Adding/removing values in the indexed column(s) makes

Internet
Services

Adding/removing values in the indexed column(s) makes
new stripes to be built/old ones to be dropped

– Hence high DML activity kills performances…

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 23

Table Partitioning

• Not really an indexing technique…
• When you have a low cardinality columnWhen you have a low cardinality column

– And Bitmap indexes are out of the game because of the
DML activity
Pl t t b bl t h i k li t bl– Plus you want to be able to shrink online your table

• Then consider list partitioning on that column
You can choose to make indexes on other columns local to– You can choose to make indexes on other columns local to
the partitions, or global (default)

• Pros
– Queries accessing one or few values will concentrate only

on the involved partition(s)
The underlying table can have ROW MOVEMENT enabled for

Internet
Services

– The underlying table can have ROW MOVEMENT enabled for
shrinking

• Cons
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

– A bit more complex to handle?
Giuseppe Lo Presti, DB Tuning - 24

Bitmap join indexes

• Bitmap index on the join of two or more tables
– Kind of denormalization (cf. Clustered tables) but at indexKind of denormalization (cf. Clustered tables) but at index

level: key in one table, value (= rowID) on another one

• Pros
– Queries on that join often don’t need to access the table

data
S ffi i– Space efficient

• Cons
– Only one table can be updated concurrently by different

transactions: a table update effectively takes a lock on the
indexed values

Internet
Services

– Cannot be (re)built online

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 25

Function-based indexes

• Index on expressions (virtual columns)
• Can be created as bitmap index• Can be created as bitmap index
• Pros

Queries with complex expressions as conditions may benefit– Queries with complex expressions as conditions may benefit
from a FB index on that expression

• ConsCons
– The underlying table cannot have ROW MOVEMENT enabled,

thus online shrinking not permitted

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 26

Index Organized Tables

• Equivalent to a table with a Composite index on all
of its columns
– Based on a B*tree on the PK of the table
– Index values directly contain all other data, not rowIDs

L (h LOB fi ld t) b– Large rows (e.g. when LOB fields are present) may be
stored in other segments, to preserve the dense storage of
the B*tree structure

– Fragmentation may occur as result of incremental updates.
ALTER TABLE TabName MOVE [OVERFLOW]
rebuilds the IOT (cf. index rebuilding)

• Pros
– Fast, key-based access for queries involving exact match or

range searches on the PK
Internet
Services

range searches on the PK

• Cons
– Not suitable for queries that do not use the PK in a predicate

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 27

– Not suitable for queries that do not use the PK in a predicate

Other miscellaneous hints

• On top of the mentioned hints to suggest access
paths / indexes, other recognized hints are:
– For access paths

• NO_INDEX: disallows using (a set of) indexes
• AND EQUAL(Table Idx1 IdxN): merges the scans on• AND_EQUAL(Table Idx1..IdxN): merges the scans on

several single-column indexes; 2 <= N <= 5
– For query transformations

d / i i d• USE_CONCAT: expands/rewrites OR into UNION ALL, and
OR-expands all IN-lists.

• NO_EXPAND: prevents this expansion
– Others

• ALL_ROWS | FIRST_ROWS(n): for overall query optimization
• APPEND | NO APPEND: for direct-path INSERTs

Internet
Services

• APPEND | NO_APPEND: for direct path INSERTs
• ORDERED_PREDICATES: forces predicate evaluation order
• DYNAMIC_SAMPLING(n): more on Statistics

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 28

The Theory: Tools for DB tuning

• Understanding Execution Plans
U i I d d Hi t• Using Indexes and Hints

• Understanding Statistics

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 29

Understanding Statistics

• Statistics: information used by the Optimizer to
estimate
– Selectivity of predicates
– Cost of each execution plan

A d j i th d– Access and join method
– CPU and I/O costs

• Types of statistics• Types of statistics
– Objects: Table (e.g. avg row length), Column (# of distinct

values, histogram), Index
– System: I/O performance, CPU performance

• Object (not System) stats automatically gathered

Internet
Services

– Scheduled job ‘GATHER_STATS_JOB’
– Manual gathering possible via DBMS_STATS package

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 30

Gathering statistics

• Oracle uses a DML monitoring facility to track objects
for stale or missing statistics
– Enabled by default when STATISTICS_LEVEL is set to
TYPICAL or ALL

– The user tab modifications view can be used to seeThe user_tab_modifications view can be used to see
information about changes to tables

– To force regathering of stale statistics:
DBMS STATS GATHER DATABASE STATSDBMS_STATS.GATHER_DATABASE_STATS
(options => GATHER_STALE);

• Statistics gathering relies on samplingg g p g
– estimate_percent is an argument of
GATHER_DATABASE_STATS() to help steering the
sampling percentage

Internet
Services

sampling percentage
• AUTO_SAMPLE_SIZE value maximizes performance while

achieving necessary statistical accuracy

St ti ti b l k d
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 31

• Statistics can be locked

Histograms

• Provide improved selectivity estimates in the
presence of data skew
– Values with large variations in the number of duplicates

• Can be created on demand
– DBMS_STATS.GATHER_TABLE_STATS

(userName, tableName, method_opt =>
‘for columns size g column_name’);

– g is the granularity, i.e. the number of buckets
• Default value is 75, max is 254, auto may be specified too
• Oracle never creates more buckets than # of distinct values• Oracle never creates more buckets than # of distinct values

• Guidelines
– Do not use them unless they substantially improve

Internet
Services

Do not use them unless they substantially improve
performances

• Storage and CPU costs

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 32

Dynamic sampling

• Used to automatically collect statistics when
– Cost of collecting stats is minimal compared to exec timeCost of collecting stats is minimal compared to exec time
– Query is executed many times

• The OPTIMIZER DYNAMIC SAMPLING parameter e O _ C_S G pa a ete
enables dynamic sampling. Values:
– 0: disabled
– 1: enabled when the optimizer determines that a Full Table

Scan is required due to non-existent statistics
2 10 l i thi i th lik lih d th t– 2..10: any value in this range increases the likelihood that
dynamic sampling is an option

– Hint: DYNAMIC SAMPLING(n)

Internet
Services

Hint: DYNAMIC_SAMPLING(n)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 33

System statistics

• Statistics on CPU and I/O costs
• Only for DBAs• Only for DBAs
• When generated, already existing execution plans

don’t get invalidateddon t get invalidated
• Automatic gathering controlled by
DBMS STATS.GATHER SYSTEM STATS()DBMS_STATS.GATHER_SYSTEM_STATS()

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 34

Outline

• Background and motivation
T l f DB t i• Tools for DB tuning
– Understanding execution plans
– Using indexes and hints
– Understanding statisticsg

• Looking for performance bottlenecks
Reading an AWR report– Reading an AWR report

• Conclusions

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 35

Looking for performance bottlenecks

• A practical method is proposed here, based on the
AWR, to help finding high-load SQL queries
– See also Luca’s presentation

• The AWR (Automatic Workload Repository) is a
it f t ti ti th d b O lrepository of statistics gathered by Oracle

– Automatically, e.g. every 20 minutes
– On demand:– On demand:

DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT(‘ALL’);

• Detailed reports can be extracted about the database
ti it d kl d b t t h tactivity and workload between two snapshots

– This is the whole activity: if more users share an Oracle
instance, they will all appear in the report

Internet
Services

instance, they will all appear in the report
– SQL> @awrrpt

– Give at least 5 minutes between the two snapshots
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 36

Reading an AWR Report

• Header
– Db time vs clock timeDb time vs clock time
– When the ratio is > (or >>) 1, there may be a problem. E.g.:

• Main Report

Internet
Services

– Look for SQL Statistics, in particular SQL ordered by
Elapsed Time table
Then look for the most consuming query

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 37

– Then look for the most consuming query

Reading an AWR Report

• Reading info about cache hits/misses
– Db block gets and Physical reads are ‘cache miss’, realDb block gets and Physical reads are cache miss , real

disk I/O operations
– Consistent gets include all gets both from memory cache

d f di kand from disk

• E.g. first two queries are reading a lot from disk:

Internet
Services – Why?
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

y

Giuseppe Lo Presti, DB Tuning - 38

Finding what’s wrong

• In this case, the putStart() PL/SQL procedure
contains a query which is badly performing:q y y p g
– UPDATE CastorFile

SET lastKnownFileName = ...
WHERE <some nested criteria with joins>;WHERE <some nested criteria with joins>;

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 39

Explaining the problem

• The execution plan indicates that a Full Table Scan
is performed on CastorFile, with O(800K) rowsp , ()
– The problem is that Oracle thinks 337K entries must be

retrieved from CastorFile (the cardinality value on the right)
• But we know from the application perspective that it might be 1, if any!
• So an index access on the lastKnownFileName field is sufficient here!

– In fact, statistics were getting stale on the relevant index…

• Possible action
– Update statistics:

Internet
Services

Update statistics:
exec dbms_stats.gather_table_stats(
ownname=>'castor_stager', tabname=>'CastorFile');

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 40

Going further

• It might be not enough to recompute statistics
– E.g. all indexes involved in the query are properly updatedE.g. all indexes involved in the query are properly updated

• The theoretical plan may look good
– But you want to know why your query is following a bad planBut you want to know why your query is following a bad plan

at runtime (i.e. on the real data)

• Then you can use the v$sql_plan_statistics_all y q _p _ _
system view
– You first need to enable full statistics for a while:

SQL lt t t t ti ti l l 'ALL'SQL> alter system set statistics_level='ALL' scope=memory;

– The view contains data about expected vs. actual #rows
read by each step of the execution plan

Internet
Services

– Usually gives good hints about unexpected data
distributions, which may have led to the bad plan

A i YOU k th “ d” d t di t ib ti !
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

• Again, YOU know the “good” data distribution!

Giuseppe Lo Presti, DB Tuning - 41

Conclusions

• We have shown a number of tools and
techniques for DB tuningtechniques for DB tuning
– Indexes and hints

U f AWR t– Usage of AWR report

• But don’t forget that no matter what Oracle
provides, the best optimizer is theprovides, the best optimizer is the
developer!

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 42

Acknowledgments

• Most of the presented material comes from
an Oracle course on advanced SQL tuningan Oracle course on advanced SQL tuning

• Many thanks to IT/DM and IT/DES DBAs for
th i d itheir advices

• Questions?

Internet
Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it Giuseppe Lo Presti, DB Tuning - 43

