
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

an Oracle – Castor storyan Oracle – Castor story
from simple code to working codefrom simple code to working code

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Outline
● Foreword

– what is CASTOR
– why do we use DB
– how do we use the DB

● A real life coding example
– debugging and optimization of the

selection of migration candidates

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

CASTOR
● is Cern Advanced STORage

– handles all physics data at CERN and in 3
Tier 1s (10s of petaBytes)

– deals with magnetic tapes and a level of
cache on disk

● is a DB centric system holding all its state in
ORACLE databases (namespace, cache,...)

– lots of PL/SQL interfaced via OCCI
● the CASTOR logic is PL/SQL code

– small DB (few GBs, ~15 main tables)

– very active DB (100s transactions/s)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Example : migrations

● Problem :
– find the best file to be migrated (i.e.

written to tape) for a given stream (to
a tape drive)

● Context :
– a tape is rotating

– more data is needed to keep its buffer
full (otherwise tape will stop)

– we need to find a file on the “best” file
system possible (load balancing)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

DB schema

CastorFile

TapeCopy

DiskCopy

FileSystem

DiskServer

Stream

n

n

n

n

n
1

1

1

1

1

100s

1000s

1 000 000s

10 000s

10s

Size (rows) Activity
(modifs/day)

1 000 000s

~1

~1

1 000 000s

100 000s

100s

100 000s

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Not so naïve SQL
● SELECT ... FROM

 (SELECT ...
 FROM DiskServer, FileSystem, DiskCopy,
 TapeCopy, Stream
 WHERE ... (primary-foreign keys)
 AND DiskCopy.status = CANBEMIGR
 AND Stream.id = <myinput>
 ORDER BY f(FileSystem))
WHERE rownum < 2;

● Note that ORDER BY + RowNum forces
the use of a nested select in ORACLE

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Concurrency problems

● Our SQL is not “thread safe”
– 2 streams asking concurrently for

the best file to migrate may get the
same one

– on top, the 2 decisions won't “see”
each other

● because each decision modifies the
ranking of the selected FileSystem

● We need to take a lock

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Locking granularity

● What is modified when a decision is
taken ?
– the weight of the selected file system
– the weight of the other file systems on

the same disk server

● So we need to lock all file systems
of the selected diskserver
– but this cannot be done atomically

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Examples of bad locking
● SELECT

 FROM Table1
WHERE ... <returns multiple rows>
FOR UPDATE

● SELECT
 FROM Table1, Table2
WHERE ... <returns a single row>
FOR UPDATE

● In both cases, the locks are not taken
atomically

– so running twice this concurrently will
create a dead lock for sure

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Proper locking
● In order to avoid bad locking of multiple

rows, we need to serialize the locking
code by taking first a “master” lock

● Natural solution : lock the DiskServer first

– but we need to agree across all the
software on the order of the locks

● otherwise some other code will lock
filesystem first and create dead locks

– this also limits concurrency at the
DiskServer level

● while we just need a master lock, we
may prevent other codes to run

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

LockTable
● Best choice is thus to implement a

dedicated “LockTable”

● Note that we don't need full serialization
when taking locks on the filesystems

– because we know that the locks will be
for those sharing a common disk server

● A master lock per DiskServer reduces the
granularity of the locks

– note that this implies 2 triggers to
fill/clean up the LockTable on
insertion/deletion of diskServers

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Locking SQL
● SELECT * FROM LockTable

WHERE id =
 (SELECT id FROM
 (SELECT DiskServer.id
 FROM DiskServer, FileSystem, DiskCopy,
 TapeCopy, Stream
 WHERE ... (primary-foreign keys)
 AND DiskCopy.status = CANBEMIGR
 AND Stream.id = <myinput>
 ORDER BY f(FileSystem))
 WHERE rownum < 2)
FOR UPDATE;

● And then select the FileSystem, and
finally the file to be migrated...

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Comments
● We have to do the full join for the

selection of the diskserver because we
need one with a file on it in the proper
stream

● This join has to be executed very cleverly
in order to not kill the DB

– discussion about this point is coming
● We have to use 2 levels of nested selects

– This actually triggers and ORACLE bug
:-((

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

ORACLE bug
● Take this code :

SELECT id INTO tid FROM Table1 WHERE id =
 (SELECT * FROM
 (SELECT id FROM Table1
 WHERE status = 1 ORDER BY ...)
 WHERE RowNum < 2)
FOR UPDATE;
UPDATE Table1 SET status = 2 WHERE id = tid;

● Oracle will execute the nested selects first and
potentially in parallel for several queries

● The top select will not be parallelized (lock)

– but on commit, Oracle should revalidate the
nested selects before restarting the second
query

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

ORACLE bug (2)
● Oracle does revalidate the first nested select

– but forgets about the second level one
(probably because it is inside a pure select
and thus does not need revalidation if you
don't look upward)

● This allows to return the same result twice if
you run this query twice concurrently !

– the locking is still serialized however
● Hopefully for us, an update will work properly

– so SELECT FROM LockTable FOR UPDATE
becomes UPDATE LockTable SET id = id

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Back to optimization
● Take

SELECT max(gcWeight)
 FROM DiskCopy d, CastorFile c
WHERE d.castorfile = c.id;

● DiskCopy is indexed by gcWeight and the
proper foreign key is defined

● Here is the execution plan :

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

What is happening ?
● Aggregate operations (max, order) are

only applied after the selection is done

– the selection part includes joins
● which become full joins....

– simple SELECT MAX(...) FROM Table
does the same, even with a dedicated
index !

● We found no way in Oracle to select the
“best” candidate without full table scan

– So we need to do it manually... and on
a much more complex query...

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Efficient query
● order filesystems

– that only implies FileSystem and
DiskServer tables (~1000 rows)

● loop on best filesystems
– find a diskcopy in proper status

● use index on status & filesystem

– and check the link to the stream
● 2 index lookups in Tapecopy & Stream

– probability to be linked to right stream
is ~20-50% -> very efficient

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Implementation
● the loop on filesystem is actually a problem

– it would lead to lock several of them...
causing dead locks (first bad locking case)

● So we need to select straight the best
filesystem having candidates for migration
without doing the full join !

– denormalization is used
● the NbTapeCopiesInFS table is defined
● holding the number of candidates for a

given FileSystem and Stream
● we keep it up to date via 7 triggers...

– yes, a real pain, took years to debug !

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Final SQL ?
● UPDATE LockTable SET id = id

WHERE id =
 (SELECT id FROM
 (SELECT DiskServer.id
 FROM DiskServer, FileSystem,
 NbTapeCopiesInFS n
 WHERE ... (primary-foreign keys)
 AND n.Stream = <myinput>
 ORDER BY f(FileSystem))
 WHERE rownum < 2)
FOR UPDATE;

● And then select the FileSystem, and
finally the file to be migrated...

● And have an extra 9 triggers...

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

And there was more
● The “final” statement worked for some

time... and then changed execution plan

● This is something very usual in CASTOR

– typical change is to not use anymore an
index and go for full table scan

– this kills the DB and CASTOR in general
● We detect it using AWR reports and add

hints to our statements

● Here we have
SELECT /*+ FIRST_ROWS(1) LEADING(D T ST) */ ...
FROM DiskCopy D, TapeCopy T,
 Stream2TapeCopy ST

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

And there was more(2)
● Optimization of the scanning of DiskCopy

table was necessary as very few rows are in
the proper status (~.5%)

– function based indexes were used
● Some table could grow on particular

situations (exceptional load) and did not
shrink automatically

– regular table shrinking was added

– this collides with function based indexes

– So we switched to partitioning on status
and went back to regular indexes

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Sebastien Ponce, Database Developer's Workshop, July 8th 2008

Lessons
● even Oracle may have simple bugs...
● concurrent queries need careful locking

– no atomicity when taking several locks

– lock ordering and “master” locks may help

● many queries need “manual” optimization

– most of the time using simple hints

– or denormalization and triggers (cumbersome)

● In our case, shrinking tables is mandatory

● At the end, ORACLE is extremely efficient !

– it is just not as simple to use as one may think

