
COOL performance optimization
using Oracle hints

Andrea Valassi and Romain Basset (IT-DM)d ea a ass a d o a asset ()
With many thanks to Luca Canali for his help!

IT-DM Database Developers Workshop, 8th July 2008

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Outline

• COOL basics (only what is needed to understand the rest…)

D t d l b i– Data model basics
– Use case for this talk: MV tags (relational schema and SQL query)

P f l– Performance plots (how we define ‘good’ performance)

• Oracle performance optimization strategy
– Basic SQL optimization (fix indexes and joins)
– Execution plan instabilities (same SQL, different plans)

• Observe (causes: unreliable statistics, bind variable peeking)
• Analyze (10053 trace files and the BEGIN_OUTLINE block)
• Fix (rewrite queries to please the Optimizer; then add hints)

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 2

COOL – basics

• Conditions data
– Detector data that vary in time and may be versioned
– Several use cases (different schemas and SQL queries to optimize)

• Temperatures, voltages (measured – single version, SV)
• Calibration alignment (computed multiple versions MV)• Calibration, alignment (computed – multiple versions, MV)

• COOL conditions objects (“IOV”s – interval of validity)j
– Metadata: channel (c), IOV (tsince ,tuntil), version or tag (v)
– Data: user-defined “payload” (x1,x2,…)
– Typical query: retrieve the condition data payload X that was valid at

time T in channel C for tag V

• COOL relational implementation (based on CORAL)
– Several backends (Oracle, MySQL…); C++ only (no PL/SQL)

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 3

COOL – test case: MV tag retrieval

Query: fetch all IOVs in [T1,T2] in tag PROD in all channels

h l l

2. For each channel C, select IOVs in tag PROD in [T1, T2]
(this is a very large table – and the most delicate part of the query to optimize)

channelID

Index2

since

Index3

until

Index4

tagID
PK1
Index1

objectID
PK2

Index2 Index3 Index4Index1

join

pressure temperatureobjectID

3. For each IOV, fetch payloadjoin

channelNamechannelID

1. Loop over channels

pressure temperatureobjectID
PK

channelNamechannelID
PK

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 4

COOL – measuring performance

Is query time the same for all values of parameters T1, T2?
– It was not in the initial COOL releases (≤ COOL 2.3.0)()

• Query time is higher for more recent IOVs than for older IOVs

"tagId=PROD AND chId=C AND ((since ≤ T1< until) OR (T1 < since ≤ T2))"

IOVs valid at t=T1 :IOVs valid at t=T1 :
inefficient use of index for query
on two columns since and until
(scan all IOVs with since ≤ T1(scan all IOVs with since ≤ T1,

query time increases for high T1)

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 5

Basic optimization – better SQL

In tag PROD, in each channel at most one IOV is valid at T1
– Build a better SQL strategy from this constraint (unknown to Oracle)Q gy ()

• The constraint is enforced in the C++ code, not in the database

IOVs valid at t=T1 :IOVs valid at t T1 :
efficient use of index

(see reserve slides for details...)

Problem fixed (?)
(initial COOL231 candidate)

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 6

Execution plan instabilities

• So, we thought the job was done...
– Query time used to increase we managed to make it flat– Query time used to increase, we managed to make it flat

• But... every now and then our tests or our users
reported performance issues again (...?...)
– Example: different performance in ATLAS tests at CNAF and LYON

• Symptoms: same SQL, different execution plan
– In time, we identified two possible causes for this:, p

• Bind variable peeking
– Optimal exec plan for finding old IOVs and recent IOVs are different

P bl if ti l l f ld IOV i d f fi di t IOV– Problem if optimal plan for old IOVs is used for finding recent IOVs
• Missing or unreliable statistics

– Optimal exec plan is computed starting from wrong assumptions

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 7

Execution plan instabilities – plots

• Systematic study of 6 (2x3) cases
– 2 cases for b.v. peeking: peek "low" (old IOVs) or "high" (recent IOVs)p g p () g ()
– 3 cases for statistics: none, full, unreliable (empty tables)

Bad SQL
(COOL230) Same 'good' SQL (COOL231),

three different exec plans!

Good SQL (COOL231),
bad stats (empty tables).

Good SQL (COOL231) and stats,
peek 'low' (bad plan for 'high').

G d SQL (COOL231) d t t

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 8

Good SQL (COOL231) and stats,
peek 'high' (plan OK for all).

Good SQL (COOL231), NO stats.

Analyze plans – 10053 trace files

• Look at the plan that was used for your query execution
– More reliable than 'explain plan' 'set autotrace' and other methods– More reliable than explain plan , set autotrace and other methods...

• Look at how and why the Optimizer chose this plan
– Bind variable values
– Alternative plans attempted
– Were user-supplied hints understood and used?

• The "Dumping Hints" section at the end

• Look at the Optimizer's outline for the chosen plan
– Get inspiration from the outline to prepare your user-supplied hints

• The "BEGIN_OUTLINE_DATA" section towards the end

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 9

Stabilize plans – add hints

• This is an iterative process! In summary:
1 E t f (k hi h/l)– 1. Execute your query for many cases (peek high/low...)

– 2. Get plan and outline for a case with good performance
Y t l t l k lik thi i th d f ll• You want your plan to look like this in the end for all cases

– 3. Do you need some query rewrite?
• Are query blocks not named? Add QB NAME and go to 1• Are query blocks not named? Add QB_NAME and go to 1.
• Is Oracle rewriting your query? Change SQL and go to 1.
• Is Oracle using a different join order? Change SQL and go to 1.g j g g

– 4. Is there a case with bad performance? Get its outline.
• What is different in 'good' outline? Add as a hint and go to 1.
• Was your hint not used or not useful? Try another and go to 1.

– 5. Do all cases have good performance? You made it!

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 10

10053 technicalities

• Generate a 10053 trace file 'myfile.trc'
– From SQL*Plus– From SQL Plus

• ALTER SESSION SET EVENTS
'10053 TRACE NAME CONTEXT FOREVER, LEVEL 1';
ALTER SESSION SET tracefile identifier 'myfile'• ALTER SESSION SET tracefile_identifier='myfile'

– From CORAL:
• export CORAL_ORA_SQL_TRACE_ON="10053"
• export CORAL_ORA_SQL_TRACE_IDENTIFIER="myfile"

Retrie e the trace file• Retrieve the trace file
– Ask your friendly DBA to get it from the server's udump...
– But please avoid generating (and asking for) trace files unless youBut please avoid generating (and asking for) trace files unless you

need them... ;-)

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 11

10053 technicalities – exec plan flush

• You should invalidate existing exec plans between tests
– To remove the effect of bind variable peeking (e g when testing the– To remove the effect of bind variable peeking (e.g. when testing the

effect of different bind variable values)
– To make sure that execution plans are recomputed and ORA-10053

trace files are as complete as possible

• To invalidate existing execution plans you may:• To invalidate existing execution plans you may:
– Flush the shared pool (DBA only – affects the whole DB)
– Simpler hack: alter a relevant table in a dummy waySimpler hack: alter a relevant table in a dummy way

• e.g. “ALTER TABLE mytable LOGGING;”

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 12

Query rewrite – are you in control?

• Master your query blocks
– Name your query blocks – syntax is “/*+ QB NAME(xxx) */”– Name your query blocks – syntax is / + QB_NAME(xxx) /

• Else the Optimizer will name them for you (e.g. “SEL$1”)
– The Optimizer rewrites your query blocks? Do it yourself!

• Symptoms: query block names like “SEL$3F979EFD”, keywords like
“MERGE” (remove inline views) or “CONCAT” (expand as union all)

• Solution: do what the Optimizer would do (e.g. remove MERGE by p (g y
expanding subqueries in WHERE clause into normal joins)

Master the order of o r joins• Master the order of your joins
– The Optimizer reorders your joins? Do it yourself!

• Copy the Optimizer’s favorite order from the “LEADING” keywordCopy the Optimizer s favorite order from the LEADING keyword

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 13

Stabilized plan – results

Default hints added in COOL 2.3.1 release
– Stable good plans in all 6 cases (2 bind var peeking x 3 statistics)

Bad SQL
(COOL230)

Good SQL (COOL231) and stats,
peek 'low' (bad plan for 'high')

Good SQL (COOL231),

peek low (bad plan for high).

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 14

()
good/missing/bad stats,

peek 'low' or ‘high’

Optimal query
and hintsand hints

Good plan
with hintswith hints
(peek low)

Bad plan
(peek low)

Good planGood plan
with hints
(peek low) Bad plan

(peek low)

Good plan
with hints
(peek low)

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 15

(peek low)

CORAL workarounds

• No support for hints
– Implemented in COOL queries using SQL injection– Implemented in COOL queries using SQL injection

• Prepend the hint "/*+...*/" to the 1st item in the SELECT list
– This hack does not work for UPDATE, INSERT, DELETE
– CORAL support request sr #103420

N t f b i i WHERE l• No support for subqueries in WHERE clause
– Implemented in COOL queries using SQL injection

• CORAL receives a WHERE clause that explicitly contains a fully• CORAL receives a WHERE clause that explicitly contains a fully
qualified "(SELECT ... FROM ...) " subquery

• COOL needs to know if it is talking to Oracle or MySQL (quotes)
CORAL t t #103547– CORAL support request sr #103547

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 16

COOL performance – in progress

• Handle all use cases consistently in C++ code
– SV, MV tags (~CVS tags) or 'user tags' (~CVS branches)
– Goal: same performance optimization in all use cases

• Share a single C++ method to define the general SQL strategy (with
internal switches for use-case-dependent SQL fragments)internal switches for use case dependent SQL fragments)

• So far each use case was optimized separately

• Evaluate Oracle partitioning• Evaluate Oracle partitioning
– Goal: ease data management (long-term archiving)

• Partitioned tables with partitioned (local) indexesp ()
– Evaluate impact (benefits?) for performance too

• Performance for non-Oracle backends• Performance for non-Oracle backends
– Using the same SQL is not always possible

• MySQL performance is bad with subqueries

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 17

– Lower priority

Summary

COOL strategy for optimizing Oracle performance
B i SQL ti i ti (fi i d d j i)– Basic SQL optimization (fix indexes and joins)

– Execution plan instabilities (same SQL, different plans)
Ob (li bl t ti ti bi d i bl ki)• Observe (causes: unreliable statistics, bind variable peeking)

• Analyze (10053 trace files and the BEGIN_OUTLINE block)
• Fix (rewrite queries to please the Optimizer; then add hints)Fix (rewrite queries to please the Optimizer; then add hints)

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 18

Reserve slides

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 19

COOL – relational schema (simplified)

• Metadata (green)
– System-controlled– System-controlled
– Different sets of tables for different versioning modes (here: MV tags)

• Data payload (red)Data payload (red)
– User-defined schema
– Different sets of tables for different data channel categories ('folders')

channelID since untiltagID objectID
IOV2TAG table

Index2 Index3 Index4
PK1
Index1

PK2

pressure temperatureobjectID
IOV table CHANNELS table

FK FK

channelNamechannelID

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 20

p pj
PK PK

COOL – test case: MV tag retrieval

• Query: fetch all IOVs in [T1,T2] in tag PROD in all channels
– 1. Loop over all channels in table CHANNELSp
– 2. For each channel, select IOVs from table IOV2TAG

• In tag PROD in [T1, T2] – this is the most complex part of the query
• Simplest (suboptimal): "(since ≤ T1< until) OR (T1 < since ≤ T2)"

– 3. For each selected IOV, fetch payload from table IOV

channelID since untiltagID objectID
2. For each channel, select IOVs from IOV2TAG

Index2 Index3 Index4
PK1
Index1

PK2

pressure temperatureobjectID
3. For each IOV, fetch payload

join

channelNamechannelID

join
1. Loop over CHANNELS

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 21

p pj
PK PK

COOL – measuring performance

•
Is query time the same for all values of parameters T1, T2?

• Not in releases ≤ COOL 2.3.0 : query time increases for more recent IOVs
• Simplest (suboptimal):
"tagId=PROD AND chId=C AND ((since ≤ T1< until) OR (T1 < since ≤ T2))"

q y

IOVs valid fromIOVs valid from
t>T1 to t ≤ T2 :

efficient use of indexIOVs valid at t=T1 :
inefficient use of index for query

t l i d tilon two columns since and until
(scan all IOVs with since ≤ T1,

query time increases for high T1)

channelID since untiltagID
PK1

objectID
PK2

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 22

Index2 Index3 Index4Index1

Basic optimization – better SQL

In tag PROD, in each channel
at most one IOV is valid at T1
– General definition of MV tags

• This constraint is enforced in the
C++ code not in the databaseC++ code, not in the database

– Find sMAX = MAX(s) WHERE s<T1
in tag PROD and the loop channel

• Accept (s = sMAX OR T1 < s ≤ T2)
• Remove 'OR' using 'COALESCE'

DB Workshop – 8th July 2008 A. Valassi – ORACLE Hints in COOL - 23

