

CTEQ pdf parametrization*

J. Huston

Michigan State University

and

IPPP Durham

*not an expert on this subject, just filling in, so this will be brief

CTEQ parametrization

- PDF's (f_a(x,Q)) are parametrized with a flexible form motivated by physics considerations (Regge behavior, spectator counting, for example) at fixed small Q_o (1.3 GeV for CTEQ) and then evolved for Q>Q_o by DGLAP
 - assume for most of the general analyses that the c and b distributions are zero at scales below their masses and are generated by QCD evolution above
- Parametrization of parton distributions at Q_o used to obtain the CTEQ5 and CTEQ6 parton distributions contained 5 shape parameters (apart from normalization) for each flavor
 - global analysis data sets not sufficiently constraining to determine all of the parameters, so a number are frozen at some particular (motivated) values
 - ◆ 20 free parameters for CTEQ6.1/6.5 (22 for CTEQ6.6 (see next slide))
- For CTEQ6.5/6.6, adopt a simpler form with 4 shape parameters for the valence quarks $u_v(x)$, $d_v(x)$ and the gluon g(x)

$$f(x) = a_o x^{a_1} (1 - x)^{a_2} e^{a_3 x + a_4 x^2}$$

a reasonable generalization of the conventional minimal form

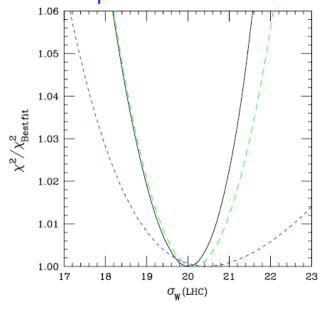
$$f(x) = a_0 x^{a_1} (1-x)^{a_2}$$

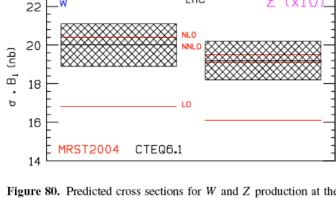
- which combines Regge behavior at x->0 and spectator counting at x->1
- Both forms above are positive definite and have simplified logarithmic derivatives

CTEQ parametrization

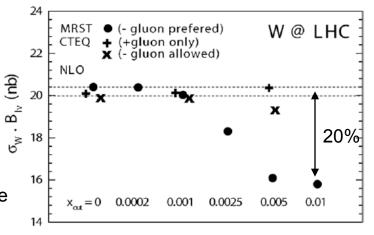
- Is this form flexible enough?
- Remember the lesson of Tevatron jets, where low x and high x can easily be (artificially) tied together through the parametrization
- We find that significantly better fits cannot be achieved by introducing additional parameters or changing the functional form
 - NB: prior to CTEQ6.6, the analysis generally assumed

$$s(x) = \overline{s}(x) \propto \overline{d}(x) + \overline{u}(x)$$


that ansatz has been dropped in CTEQ6.6


W/Z cross sections at the LHC

- CTEQ6.1 and MRST2004 NLO predictions in good agreement with each other
- NNLO corrections are small and negative
- NNLO mostly a K-factor; NLO predictions adequate for most predictions at the LHC



removing
low x data
from global
fits increases
uncertainty but
does not
significantly
move central
answer; negative
gluon increases
uncertainty even

LHC

Figure 80. Predicted cross sections for *W* and *Z* production at the LHC using MRST2004 and CTEQ6.1 pdfs. The overall pdf uncertainty of the NLO CTEQ6.1 prediction is approximately 5%, consistent with figure 77.

tension
between
low x and
high x
data?; not a
big effect in
CTEQ
analysis

more Figure 81. Predicted total cross section of $W^+ + W^-$ production at the LHC for the fits obtained in the CTEQ stability study, compared with the MRST results. The overall pdf uncertainty of the prediction is $\sim 5\%$, as observed in figure 77.

Figure 82. Lagrange multiplier results for the W cross section (in nb) at the LHC using a positive-definite gluon. The three curves, in order of decreasing steepness, correspond to three sets of kinematic cuts, standard/intermediate/strong.

Errors in parton distribution functions

- CTEQ/MSTW/HERA provide ways to estimate the error on the central pdf
 - Hessian methodology enables full characterization of parton parametrization space in neighborhood of global minimum

2-dim (i,j) rendition of d-dim (~16) PDF parameter space

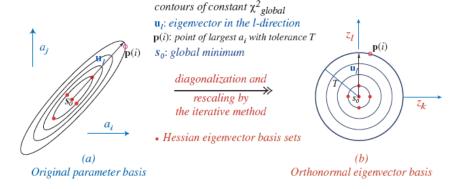


Figure 28. A schematic representation of the transformation from the pdf parameter basis to the orthonormal eigenvector basis.

 CTEQ6.1 has 20 free parameters so 20 directions in eigenvector space

40 error $\Delta X_{\text{max}}^{+} = \sqrt{\sum_{i=1}^{N} [\max(X_{i}^{+} - X_{0}, X_{i}^{-} - X_{0}, 0)]^{2}},$ pdfs $\Delta X_{\text{max}}^{-} = \sqrt{\sum_{i=1}^{N} [\max(X_{0} - X_{i}^{+}, X_{0} - X_{i}^{-}, 0)]^{2}}.$

Inclusive jets at the Tevatron

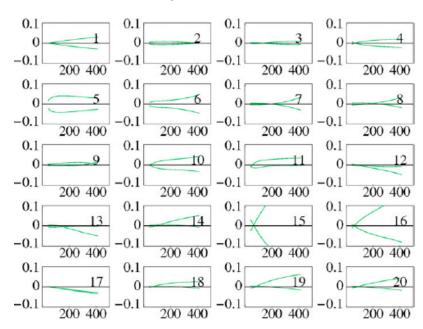


Figure 29. The pdf errors for the CDF inclusive jet cross section in Run 1 for the 20 different eigenvector directions. The vertical axes show the fractional deviation from the central prediction and the horizontal axes the jet transverse momentum in GeV.

- •CTEQ6.6 has 22 free parameters so 22 directions in eigenvector space and 44 error pdf's
- Of order of a factor of 1E6 between largest (best determined directions) and smallest (least well-determined directions) eigenvalues

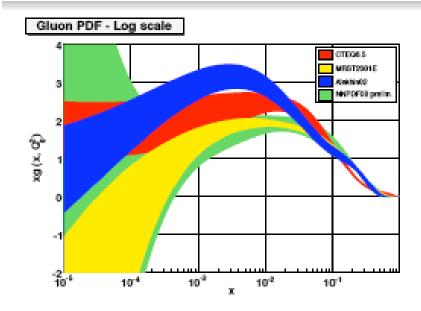
Eigenvector directions (CTEQ6.1)

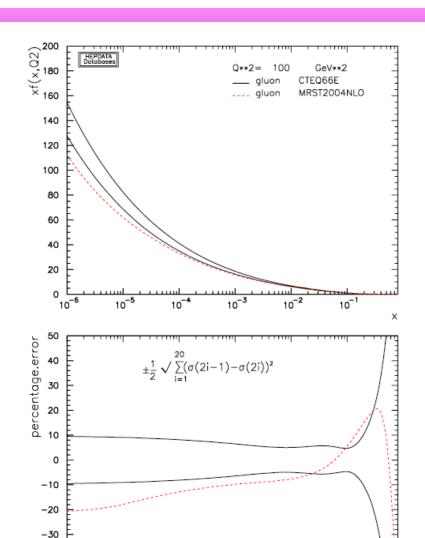
Eigenvector 1: primarily a₁ of u valence

Shape Parameter Component BP(2, 1) 0.057911 1, BP(2, 2) -0.022688 2, 3) 0.015496 BP(0.035277 BP(BP(frozen 0.888833 BP(1, 1) 1, BP(1, 2) 1, BP(1, 3) 1, BP(1, 4) 0.268405 BP(1, 5) 0.276392 0, 1) BP(0.038555 0, 2) BP(-0.006610 1, BP(0, 3) frozen 1, -0.017717 BP(0, 4) BP(0, 5) frozen -1, 1)-0.007668 BP(0.012745 1, 0.001851 BP(1, BP(frozen 1, 0.001004 BP(BP(-2, 1) 0.117517 -0.008357 1, BP(-2, 3) 0.006504 BP(-2, 4)frozen BP(-2, 5) frozen

Eigenvector 20: high x sea quark

Sets	ts Shape Parameter		ameter	Component
39, 40	BP(2,	1)	0.000248
39, 40	BP(2,	2)	0.069038
39, 40	BP(2,	3)	0.173137
39, 40	BP(2,	4)	-0.029044
39, 40	BP(2,	5)	frozen
39, 40	BP(1,	1)	0.000920
39, 40	BP(1,	2)	-0.001493
39, 40	BP(1,	3)	0.008380
39. 40	BP(1.	41	0.000153
39, 40	BP(1,	5)	-0.008078
39, 40	BP(ο,	1)	0.003339
39, 40	BP(ο,	2)	-0.010965
39, 40	BP(ο,	3)	frozen
39, 40	BP(ο,	4)	0.008411
39, 40	BP(Ο,	5)	frozen
39, 40	BP(-1,	1)	0.479314
39, 40	BP(-1,	2)	0.190673
39, 40	BP(-1,	3)	0.796917
39, 40	BP(-1,	4)	frozen
39, 40	BP(-1,	5)	-0.131794
39, 40	BP(-2,	1)	-0.000408
39, 40	BP(-2,	2)	0.136504
39, 40	BP(-2,	3)	0.163995
39, 40	BP(-2,	4)	frozen
39, 40	BP(-2,	5)	frozen




Extrapolations

-40

- How reasonable are extrapolations, say to low x?
- Of course, in the absence of data, you may be constrained by the parametrization (and momentum sum rule) and are probably underestimating the uncertainty
- See, for example, Ubiati presentation at La Thuile

10⁻⁴