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Motivation

e Perturbative calculations are usually presented
with an error estimate.

e For example, Anastasiou, Dissertori, and Stockli,
JHEP 0709, 018 (2007):
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e Suppose that we have only NLO.
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e For cross sections used for parton distributions,
we should include the estimated theory error in
the fitting procedure.




e The one jet inclusive cross section is used in
parton fitting.

e This cross section has relatively large theory
errors since it is known only to NLO.

e We therefore provide an estimate of the theory
error in a form suitable for fitting.

® Caveat: a theory error is a guess. Opinions can

differ.
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e In this talk, I present our results for /s = 1960 GeV,
Ymin = 0, Ymax = 1.0, with a cone algorithm
using R = 0.7 and Rgep, = 1.3.




Format for theory errors
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e [,(E7) are functions to be specified.

e \. are Gaussian random variables
with standard deviation 1.

e The size of the functions f;(FEr) gives
the size of the errors.

e This gives the complete error matrix
as for experimental systematic errors.
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Scale dependence

e Use dependence on renormalization and
factorization scales.

o If we had an NNLO calculation, the

dependence on the scales would be cancelled to
that order.

e Thus the dependence on the scales gives an
estimate of the error induced by truncating the
perturbative expansion at one loop order.




e We use the standard central choice
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e Graphs of P(x) (approximate: this is for
do/(dET dy) at y = 0).

Er = 500 GeV




e Define estimated error

scale

1 27
B2 = —/ df P(|Z|cos 0, |Z|sin §)*
2T 0
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e We find about a 10% error, slowly increasing with Er.
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e Divide this into parts.

e The unknown
contributions can
have a shape.

e Higher order
polynomials have
smaller coefhicients.

filBr) =
fo(Er) = 0.04 {log(15E1//s) + 0.7}
f3(Er) = 0.02 {[log(15E7//s)]* — 1.0}

e Net error,
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Summation of threshold logs

e Kidonakis, Owens, and Sterman have shown
how to sum “threshold logs” in the jet cross
section.

e The threshold logs are important when the
variation of the parton distributions with x is
large.

e Since they represent terms beyond NLO, we
can use the summed logs as an error estimate.




e The summed logs are available as part of “FastNLO”

(Kluge, Rabbertz, Wobisch).

e For iy = tico = Er /2, the threshold logs contribution
is about 4%, not strongly dependent on Er.

e S0 we take




Power suppressed corrections

e Some Er can be lost from the jet when
the partons hadronize.

e Some FE can be gained by the jet from
the underlying event.

e Dasgupta, Magnea and Salam have estimated
these effects.

e Our estimate based on this work is

oEr = 0.5 £0.7 GeV




e To see the effect on the cross section, define
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The estimated error
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Assembled errors

L .3 {1+Z)\ifi(ET)}
LaBT INLo 7;

= 0.04 { log(15E1//s) + 0.7}
= 0.02 {[log(15E7/+/5)]* — 1.0}
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