PDF4MC

H. Jung, F. Samson-Himmelstjerna, M. von den Driesch (DESY)

PDF4MC

why special PDFs for MCs are needed, necessary and important

Strategy:

HOWTO obtain PDF4MC

which data to use for fits

final states from HERA

- dependence on MC
- Conclusions

Motivation: example from HERA

Collinear approach: incoming/outgoing partons are on mass shell $(y+q)^2 = q^{-2}$, $-Q^2 + xys = 0 \rightarrow x = Q^2/(ys)$

BUT final state radiation:

$$(y+q)^2 = q'^2$$
, $-Q^2 + xys = m^2 \rightarrow x = (Q^2+m^2)/(ys)$

AND initial state radiation:

$$(y+q)^2 = q^{-2}$$
, $-Q^2 + xys + q^2 = 0 \Rightarrow x = (Q^2-q^2)/(ys)$

- Collinear approach: $q'^2 = q^2 = 0$, order by order
- Well known... since years....
- NLO corrections... better treatment of kinematics... but still not all....

gluon from F₂

- F_2 described by PYTHIA with reasonable χ^2
- significant difference from including initial state parton showers
- gluon much less steep
- → change of kinematics
- → better treat kinematics from beginning
- special machinerie in DIS needed....

Motivation

CP. Yuan, DIS2007

New Task of Global Analysis

New from Include Transverse Momentum p_T distributions

include not only rapidity (y) but also New Data:

 p_T of Drell-Yan pairs and **Z** bosons

QCD P_{τ} Resummation Global Analysis

hep-ph/0212159 Brock, Landry, Nadolsky, CPY

PDF4MC - why?

- MC generators include not only LO ME calculations, but include resummation to all orders via parton showers
- as resummations are now included in PDF determinantions, parton showers should also
- "factorization scheme" in MC event generators is not DIS, nor MSbar, but a MC specific factorization scheme
- in a global analysis, PDF and also parton shower parameters can be simultaneously determined ...
- kinematic effects of including transverse momenta can be important for PDFs

Strategy

- fully consistent approach would require doubly uPDFs and appropriate factorization theorem, which will include collinear factorization and kt-factorization as asymptotic limits...
- branch 1: use uPDFs and k_t -factorization as done with CCFM and CASCADE (see talks at HERA-LHC WS 2008 by F. Hautmann, A. Knutsson and CASCADE)
- branch 2: use standard MCEG like PYTHIA/HERWIG/RAPGAP but also ALPGEN/SHERPA etc and obtain PDFs from fits to F_2 and TeVatron data, as done in global analyses
 - neither LO or NLO is appropriate
 - define MC-PDFs, depend on generator, parton showers etc
 - MC-factorization scheme.... instead of MS bar
 - include proper treatment of parton showers in initial and final state
 - include all kinematics from full simulation, no approximations

Strategy (cont'd)

- use LHAPDF library for parton evolution and alphas
 - use any distribution and evolution code
 - evolve for every call (fast enough, can be improved if necessary...)
 - massive/massless treatment
- use HZTool/RIVET for comparison of MC prediction with measurements
 - HERA H1/ZEUS: F_2 , F_2^c , jets etc....
 - and at a later stage
 - TeVatron CDF/D0: jets, W/Z x section as fct of pt
- use general fit program (PROFFIT A. Bacchetta, A. Knutsson, K. Kutak)
 - easily extendable for other MC generators and also NLO programs
 - Improvements for fits (in progress: A. Knutsson, K.Kutak, H. Hoeth)
 - calculation in grid points
 - → parametrization
 - → fit to data (including uncertainties)

Which MCs to use for PDF4MC fit?

Lund string fragmentation

- PYTHIA 6
 - for pp ok
 - not really applicable for ep DIS
 - inclusive F₂: NOt really
 - charm in DIS: NO
 - dijets: ok
- PYTHIA 8
 - for pp ...
 - DIS and ep NOT implemented
- RAPGAP
 - applicable for ep DIS
 - using PS similar to PYTHIA (but not exactly (conserve x...)
 - virtuality ordered shower
- use Lund string
 H. Jung, PDF4LHC workshop, July 14, 2008, CERN

Cluster fragmentation

- HERWIG 6
 - for pp ok
 - not fully applicable for ep DIS
 - inclusive F₂
 - charm in DIS
 - dijets
- HERWIG++
 - for pp
 - DIS and ep NOT implemented

USE RAPGAP

- for PDF4MC determinantion
- Use PYTHIA in dijets as x-check
- test "universality" of PDF4MC

Where to start ...?

- determination of gluon distribution
- use CTEQ 6L as starting distribution (evolution code is fast)
 - ullet with NLO $lpha_{
 m s}$
 - with heavy quark PDF
- evolve starting distribution for every event

Which data to use for PDF4MC fit?

- inclusive structure function measurements:
 - F₂ from HERA (not used here)
- heavy quark measurements at HERA:
 - F_2^c , D* in DIS, D* + dijets in DIS
- dijet measurements in DIS

$$\frac{d^3\sigma}{dxdQ^2dE_t}$$

The problem with charm

Measurement of D*+- meson production and F2(c) in deep inelastic scattering at HERA. By H1 Collaboration (C. Adloff et al.). Phys.Lett.B528:199-214,2002. hep-ex/0108039

- F₂^c depends on assumption for extraction
- large extrapolation factors
- more results at ICHEP 08

The gluon from F_2^c ...

- Fit DGLAP F2c
 to obtain gluon
- use RAPGAP with massive MEs in LO + PS
- steep gluon obtained ...
- is this a problem of the way F₂^c is "measured"?

Fits to D* cross section

- use measured xsection of D*
- fit Q^2, x, p_t, η
- improve χ^2 by 6 units compared to starting values
- much improved χ^2 compared to F2c fit

Production of D*+- Mesons with Dijets in Deep-Inelastic Scattering at HERA. H1 Collaboration (A. Aktas et al) Eur.Phys.J.C51:271-287,2007.hep-ex/0701023

dsigma/dpt 06-240 data

Gluon from D* with jets

Production of D*+- Mesons with Dijets in Deep-Inelastic Scattering at HERA.

H1 Collaboration (A. Aktas et al) Eur.Phys.J.C51:271-287,2007.hep-ex/0701023

- only slightly changed parameters
- BUT further constraints due to different kinematic regions
- Gluon can be well determined from visible charm xsection

Resume from heavy quarks

- use only visible cross sections,
 - at least for MC fits.... extrapolations to total x-section highly model dependent
 - D* and D*+jet measurements give consistent results for gluon
 - result is nearly identical to CTEQ61
 - BUT pdf in massless scheme, and ME massive ...
 - NLO alphas in pdf, BUT LO alphas in ME
 - need to check consistency on mass parameters etc

PDF4MC from dijets in DIS

- dijets in DIS, sensitive to gluons but also to quarks ...
- dijets can be calculated by PYTHIA and RAPGAP
 - consistency check and check for "universality" of PDF4MC

Jets in DIS

Using H1 jet measurements
 (H1 EPJC 33 (2004) 477)

$$5 < Q^2 < 100 \text{ GeV}^2$$

 $-1 < \eta < 2.5$
 $E_T > 5 \text{ GeV}$

 investigate x dependence of starting distribution

- Using PYTHIA for jets in DIS
 NEW !!!
- gives reasonable results...
- for E₊ distributions gives

$$\frac{\chi^2}{ndf} = \frac{66}{36} = 1.8$$

with CTEQ6L

Jets in DIS... after fit

Using H1 jet measurements

(H1 EPJC 33 (2004) 477)

$$5 < Q^2 < 100 \text{ GeV}^2$$

 $-1 < \eta < 2.5$
 $E_T > 5 \text{ GeV}$

Fit improves χ^2 significantly (~30 units)

Gluon from dijets

- fit normalisation of gluon, other params give similar results.
- significant χ^2 improvement in
- norm different from D* fits
- need to investigate influence of quarks... which also lead to similar χ^2 improvement in

Universality checks

- Dijets in DIS calculated with PYTHIA / RAPGAP
 - both using Q² ordered PS and Lund string fragmentation
 - matrix element and ME+PS matching is different
- Important check for consistency of both MCs
 - never done before, in terms of PDF fits
- consistency of PDF fits with both generators
- → little dependance on details of PS

Next steps ...

- tools are available ...
- relevant data are selected and available (would be even better to use precise preliminary measurements of D* !!!!!)
- investigate fitting of quark initial parameters
- real fits including error treatment can start now
- expect 1st PDF4MC during summer
- → PDF4MC is one of the activities of MC group of Terascale Analysis Center at DESY

Conclusions

- using PDF4MC helps to improve description of data by MCs
- PDF4MC are "universal":
 - → depend on parton showers and fragmentation (?)
 - → do not depend on MC generator (if same PS is used...)
- concept of PDF4MC works
 - → fitted parameters are close to global fits
 - ightharpoonup but improve χ^2 significantly
 - ready for a global PDF4MC fit of HERA
- Plan to have 1st PDF4MC from HERA final state released by end of summer (2008)!