News from the xTCA Evaluation program - part 1

9th meeting of the xTCA Interest group

J. Mendez, Vincent Bobillier, Stefan Haas, Markus Joos, Sylvain Mico, Francois Vasey

25/02/2015

9th meeting of the xTCA interest group

PM Test Pad

- Motivation
- Requirements
- Test procedure
- Functional concept
- Test setup
- Summary

New PM product evaluation

- NAT-AC-600 specifications
- Evaluation test summary

- Pigeon Point solution
- LAPP and Pigeon Point mezzanines comparison
- Adapter card
- Summary

PM Test Pad

- Motivation
- Requirements
- Test procedure
- Functional concept
- Test setup
- Summary

New PM product evaluation

- NAT-AC-600 specifications
- Evaluation test summary

- Pigeon Point solution
- LAPP and Pigeon Point mezzanines comparison
- Adapter card
- Summary

PM Test Pad - Motivation

Previous test setup:

- Commercial crate hosting the power module under test
- CERN Load Modules
- Load sharing:
 - Auxiliary Power module \rightarrow CU1, CU2, MCH1
 - Power Module Under Test \rightarrow AMC1 to AMC12
- Load modules and instruments controlled by LabVIEW

Limitations:

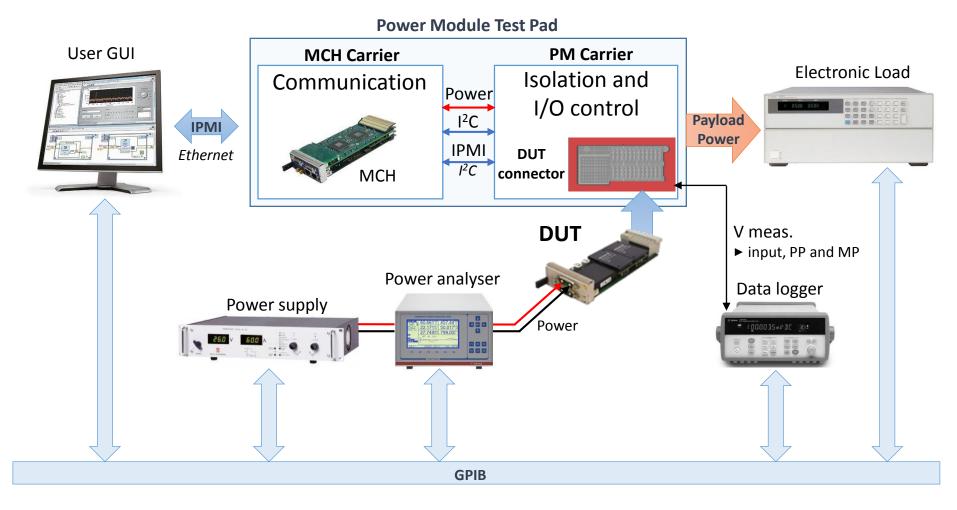
- □ Shelf components influence the measurements (noisy CUs, Aux PM and MCH)
- □ Test limited to the 12 AMC channels (Impossible to test MCH and CU channels)
- □ Not suitable for performing EMC measurements
- □ Fully automatic test procedure not possible

PM Test Pad - Requirements

Objective: Test platform to perform all tests automatically.

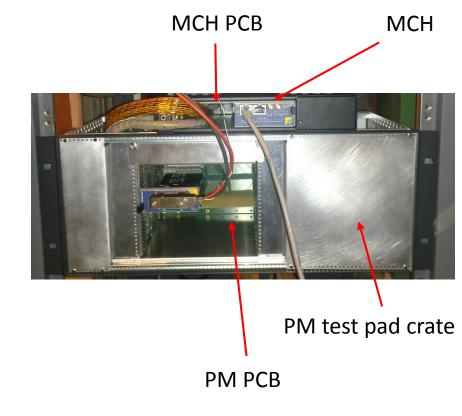
- Full PM I/O (PS, EN#, ...) control and monitoring to emulate the MTCA shelf environment
- Full instrumentation connectivity (Electronic load, power analyzer, data logger ...)
- Galvanic isolation between PM under test and test control circuitry
- Test pad compatible with different PM topologies (PM physical size, AC or DC input compatible, operating range and specs)
- Sufficient cooling of DUT
- PM test pad layout to accommodate EMI measurement features (LISN, EMI receiver)

PM Test Pad – Test procedure


25/02/2015

Active all payload power and wait for 15 minutes monitoring the output voltages	
 Functionality Validation of PICMG requirement (IPMI commands, autonomous mode) 	Automatic
 Sensor accuracy Measurement of the power module's sensor accuracy 	Automatic
 Soak test Heat the device monitoring the output voltages 	Automatic
 Load regulation (Management power and payload power) Measurement of the output voltage varying the output power 	Automatic
 Line regulation Measurement of the output voltage varying the input voltage 	Automatic
 Efficiency Measurement of the power module's efficiency for different output power 	Automatic
 EMI Measurement of the power module's electromagnetic interference 	Semi-automatic

9th meeting of the xTCA interest group


PM Test Pad – Functional concept

PM Test Pad – Test setup

Power analyser 1 -0003 -0006 Electronic load Data logger OFF . Power 480 V 000 A supply MCH crate PM crate PM (DUT)

9th meeting of the xTCA interest group

CERN

8

PM Test Pad - Summary

Status:

- PCBs proto. produced and tested
- PM Test Pad functional
 - Most of the test features successfully implemented
 - However few HW issues remain to be addressed
- Graphical user interface available
- Test SW easily adaptable through configuration files
 - XML files allow configuring the setup : PM Type (AC/DC), MCH IP address, tests
- Full test report generation
 - XML file save all measurements results
 - DOC file report (verbose)

Plans:

- PCB modifications:
 - Tested hardware fixes to be implemented
 - Layout to be adapted for efficiency test

Goal: PM Test pad fully operational by the end of 2015

PM Test Pad

- Motivation
- Requirements
- Test procedure
- Functional concept
- Test setup
- Summary

New PM product evaluation

- NAT-AC-600 specifications
- Evaluation test summary

- Pigeon Point solution
- LAPP and Pigeon Point mezzanines comparison
- Adapter card
- Summary

xTCA Evaluation project update: PM NAT-AC-600

Specifications:

- **Single-width**, full-size
- 110-230VAC input
- 600W output power
- 90% conversion efficiency
- Support of N+1 and 2+2 redundancy
- 16 power channels
 - 12V @ 6.6A max.
 - 3.3V @ 180 mA max.
- Support of:
 - Up to 12 AMCs, 2CUs, 2MCHs
 - Individual control of PM and PP
 - Individual current sensor
- Full HPM support for field upgrades of firmware

xTCA Evaluation project update: PM NAT-AC-600 (Summary)

Evaluation results summary			
	Measurements	Specifications	
Maximum output power	695W	600W	
Load regulation	3.09% max	Not specified	
Efficiency	87% max	90%	
Power factor	0.98 max	Not specified	
Ripple	24.9mV pk/pk	35mV max	
Current sensor accuracy	2.4% max	Not specified	

• Written evaluation report will be added on the SharePoint

https://espace.cern.ch/ph-dep-ESE-BEuTCAEvaluationProject

• No need for any additional AC/DC converter

 \rightarrow Good candidate for lab use

	Evaluated	PMs comp	arison		
	NAT	NAT	Vadatech	Wiener	NAT
	DC780	DC840	UTC010	MTCA PM	AC-600
Mechanical					
Form factor	single-width,	single-width,	single-width,	double-width,	single-width
	full-size	full-size	full-size	full-size (x2)	full-size
Electrical					-
Туре	DC/DC	DC/DC	DC/DC	AC/DC	AC/DC
Maximum Power	780W	840W	792W	1000W	600W
Power Factor	NA	NA	NA	0.99	0.98
Efficiency	95%	94%	92%	88%	87%
Input voltage	-40V to -60V	-40V to -60V	-36V to -75V	Not tested	Not tested
Ripple (Pk-Pk)	100mV	100mV	32mV	8mV	25mV
Load Regulation	8.60%	8%	1.50%	3%	3%
Management software					
Current measurements and Overcurrent protection	Yes	Yes	Yes	Yes	Yes
USB connection	No	No	Yes	Yes	No
Load sharing	Yes	Yes	Yes	Yes	Yes
HPM.1	Yes	Yes	Yes	Not tested	Not tested
PM over temperature protection	Yes	Yes	Yes	Not tested	Yes
PM input voltage protection	Yes	Yes	Yes	Not tested	Not tested

12

PM Test Pad

- Motivation
- Requirements
- Test procedure
- Functional concept
- Test setup
- Summary

New PM product evaluation

- NAT-AC-600 specifications
- Evaluation test summary

- Pigeon Point solution
- LAPP and Pigeon Point mezzanines comparison
- Adapter card
- Summary

Pigeon Point solution : Presentation (Starter kit)

- Licence : PH-ESE-BE (xTCA Evaluation Project)
- Starter kit : Received and installed
 - Start-up: OK
 - Detection / State M4
 - FRU Information
 - Sensors
 - AMC: **OK**
 - Detection / State M4
 - FRU Information
 - Sensors
 - Communication: **OK**
 - Shelf manager's shell (RS232)
 - IPMC's debug interface (RS232)
 - Ethernet interface (IPMI)

- Shelf Manager **RTM** Emulation IPMC **AMC1** Emulation AMC2 (CERN MMC)
- Next evaluation phase: ease of use and adaptability to an ATCA blade

LAPP and Pigeon Point mezzanines comparison

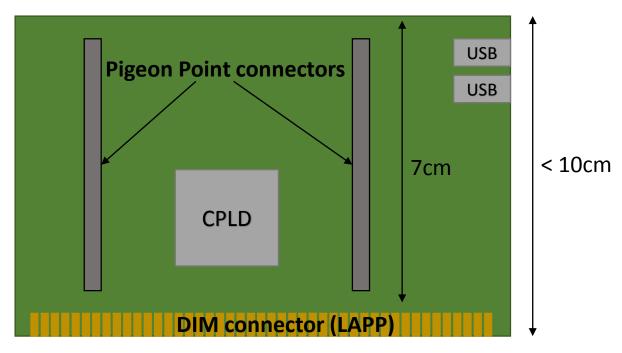
Pigeon Point Evaluation board features:

- Up to 2 AMCs (Due to evaluation board limitation)
- RTM (Managed by the IPMC core)
- 35 User IOs
- Debug interface (RS232)
- Ethernet interface (IPMI commands)
- Payload / E-keying
- IPMB-L : point to point connectivity

LAPP's IPMC connector pinout:

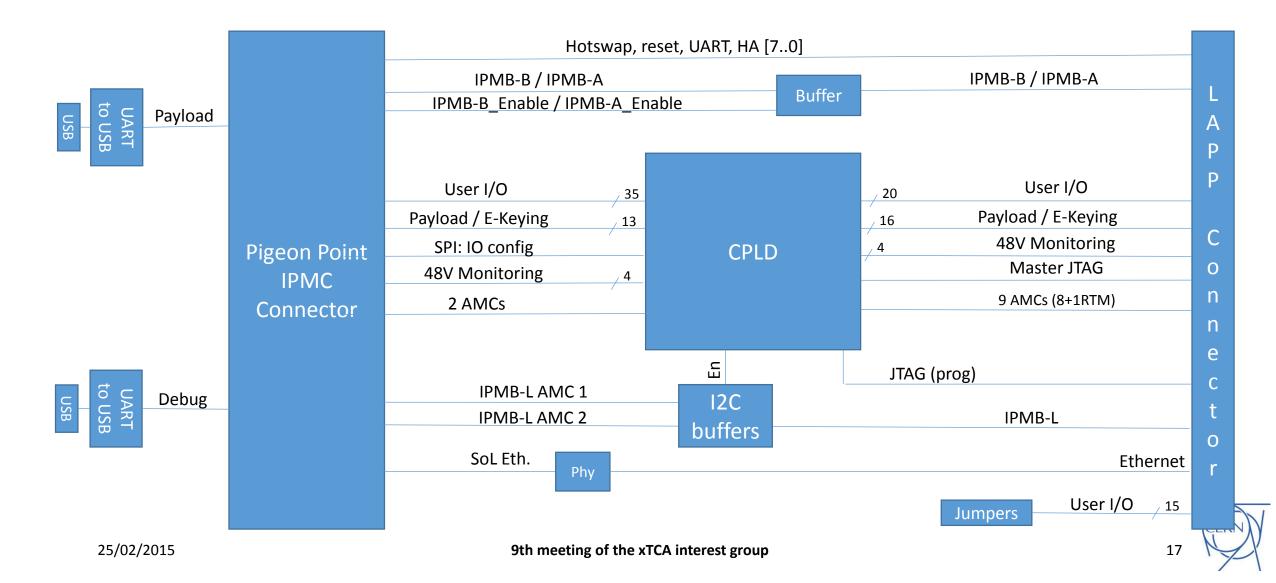
- Up to 8 AMCs
- RTM (Managed like AMC)
- 35 User IOs
- RS232 Interface
- Ethernet interface (IPMI commands)
- Payload / E-keying
- IPMB-L: bus connectivity
- Gigabit Ethernet
- Master JTAG

Pigeon Point evaluation mezzanine


LAPP IPMC mezzanine

Open points to be addressed				
	Pigeon Point	LAPP		
IPMB-L	Point to point connectivity	Bus connectivity		
RTM	Managed by the IPMC core	Managed like an AMC		
Gigabit Ethernet	net Not implemented foreseen			
Master JTAG	Not implemented	foreseen		

15


Adapter Card: Presentation

- Design of an adapter card
 - Goal: Evaluate Pigeon Point IPMC on a custom ATCA blade featuring the LAPP footprint

Adapter Card: Block diagram

IPMC: Summary

- Status:
 - First Pigeon Point IPMC evaluation successful (Starter kit + AMC support, CERN MMC compatible)
 - Design of the Adapter card is on going
- Plans:
 - Adapter Card prototyping and hardware debugging
 - Software study: IPMC core + FRU/SDR
 - Test with LAPP's ATCA IPMC test board

Thanks for your attention !

Any question ?

