

xTCA in CMS

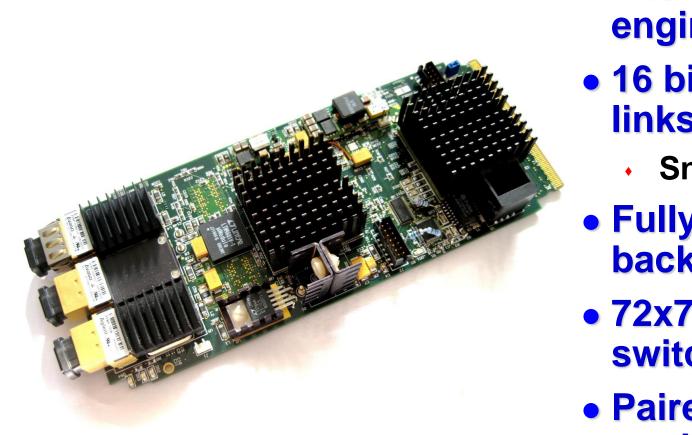
Magnus Hansen

Thanks to many CMS collaborators

Introduction

- CMS legacy off detector systems are essentially VME based
 - DAQ exception: cPCI
- Upgrades may profit from more recent technology
 - The world is going high speed serial rather than medium speed parallel; VME bus voltage levels are high; performance still adequate though
 - AMCs and uTCA was selected as the main candidate a few years ago
 - → Unique in its dual specification
 - Shain card in uTCA systems
 - $\ensuremath{{}^{\mbox{\tiny ∞}}}$ Mezzanine card on e.g. (commercial) ATCA carriers
 - → Does away with custom hardware, e.g. SBC or PCI interface cards in the PC
 - → Considerable investment in Expertise behind us

Systems with upgrade plans LS1 and LS2


- Not a one size fits all: Some systems may chose to continue using VME for upgrades
- ATCA, VME
 - None for the moment
- uTCA
 - CMS HCAL back end
 - Level 1 trigger
 - → Calorimeter trigger (RCT GCT)
 - → Global trigger
 - → Global Muon trigger
 - → Drift Tube, overlap, EMU Track Finder and input systems
 - → TCDS (TCS, TTC, TTS)
 - CMS Pixel readout
 - CMS GEM1/1
 - BRIL

CMS xTCA

Early development: CMS Matrix card

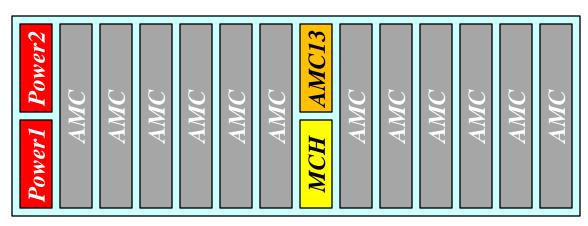
- The initial CMS test engine (2006)
- 16 bidir front panel links
 - Snap12 / pop4
- Fully populated backplane
- 72x72 cross point switch
- Paired with the Aux card
 - TTC, TTS, DAQ

Matrix conclusion

- Single width card size is not big; Prefer double width
 - Creates more constraints than you really need
 - Defendable if plan is to use **only** as mezzanine on ATCA carrier
- Full height is desirable
 - Heat sink for e.g. FPGA
 - → CMS generally target lower than industry standard die temp for longevity
 - → Commercial e.g. processors generally idle and will shut down of temp too high, thus different from our case
 - Height of optical components
 - Front panel area
 - → Becomes ~¹/₂ of the area on e.g. ATCA, 2/3 of 9U VME and similar to 6U VME

- Standardize key items in order to ease commissioning and long term maintenance of upgraded systems
 - Crate, a.k.a. Shelf
 - CMS interface, a.k.a. AMC13
 - → Discontinuity in the spec ☺
 - → Data Acquisition (DAQ)
 - → Trigger Timing and Control (TTC)
 - → Trigger Throttle (TTS)
 - AMC Module Management Controller (MMC)
 - → UW design; very complete, used in e.g. CTP*, MTF*, uHTR, AMC13
 - → UK design; also very complete, used in e.g. MP7, FC7
 - → DESY/CPPM/CERN design; supported by CERN; includes mezzanine ref design
 - Register access software and firmware
 - → IPBUS; includes a large software package and firmware
 - CMS DCS integration
 - → System manager

Planned uTCA Ports Use for CMS


А	0	Х		Common Options	1	GbE for slow control
	1		Х			DAQ / Controls
В	2	Х			2	Reserved
	3		Х			Synch. Controls, TTS
Clock	TCLKA	CLK1/2		Clocks		Reserved
	FCLKA		CLK1/2			LHC Clock
D-G	4-7	Х		Fat Pipes Extended	3, 4	User*
	8-11		Х			
H-K	12-15					
	16-19			Fat Pipes		

* Note: Interconnections can be customized by the backplane manufacturer relatively inexpensively.

E. Hazen, BU

Proposed CMS uTCA Shelf

e.g. Vadatech VT892

- 12 full size double height slots
- Vertical air flow
- Redundant power supply

Redundant telecom
 backplane

- Fabric C and D routed to MCH 1 & 2 tongue 2
- Fabric E and F routed to MCH 1 & 2 tongue 3 & 4
- Customizable backplane
 - → additional backplane interconnects (e.g. VT894, VT895)

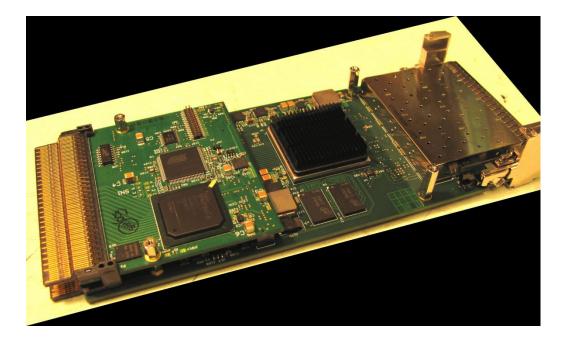
E. Hazen, BU

Prototype shelf / crate

CMS interface

• AMC13

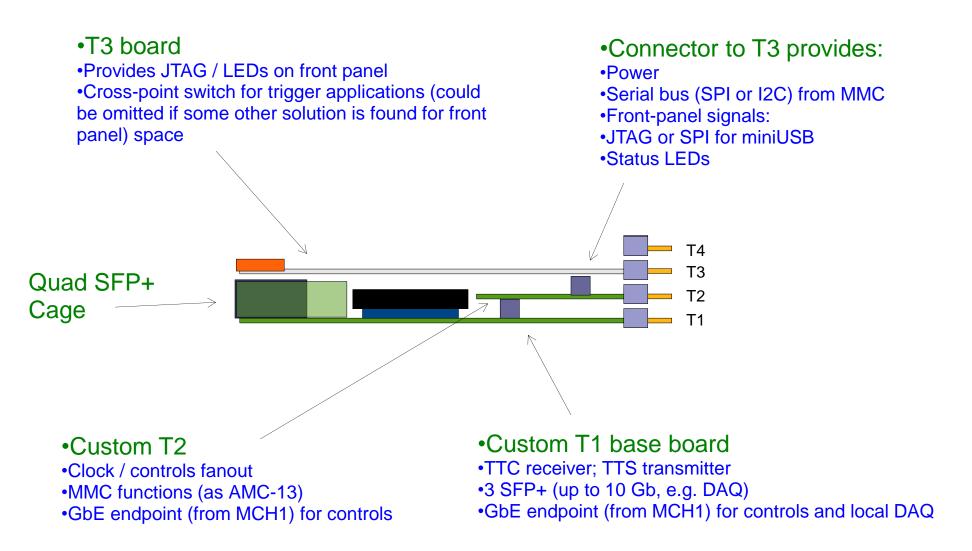
• T1


- → TTC interface
- → AMC DAQ links over Fabric A
- → Three 5/10 Gb DAQ links

• T2

→ Distributes LHC clock and ctrls Show FCLKA and Fabric B

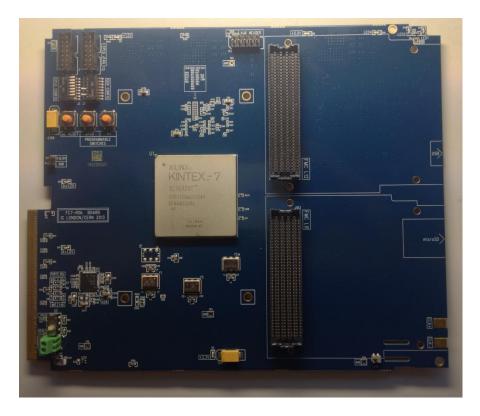
• T3–T4


- → Service interfaces (base config)
- → Optional (TCDS)
 - Strain Strai
 - S TTCMi orbit
 - S Two level 1 triggers (LVTTL)
 - S Two auxiliary (NIM) inputs
- → T3-T4 can be customized

CMS interface: AMC13

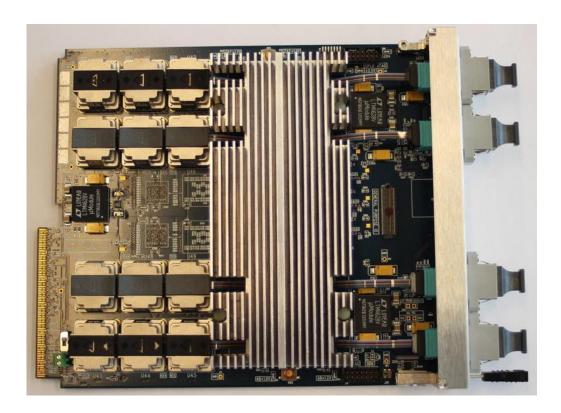
• uHTR

- HCAL, BRIL
- FE: XC6VLX240T
- BE: XC6VLX195T
- 24 Rx @ 6.4Gb (4.8Gb)
- 12 Tx @ 6.4Gb (4.8Gb)
- 2 TRx @ 4.8Gb
- Ports 4,5,8,9 populated



• FC7

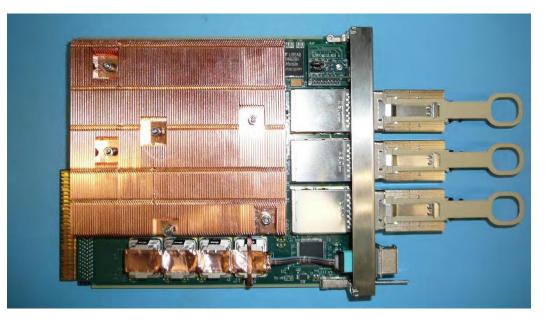
- TCDS, Pixels
- XC7K420T
- Two LPC FMC sites
 - → Site 1: 8 TRx @ 10Gb
 → Site 2: 12 TRx @ 10Gb
- Ports 4-11 populated



• MP7

- CT layer 2, Muon BTF, uGMT, uGT, GEM, etc.
- XC7VX690T
- 72 Rx @ 13Gb
- 72 Tx @ 13Gb
- Ports 4-8 populated

→ 9-11 LVDS

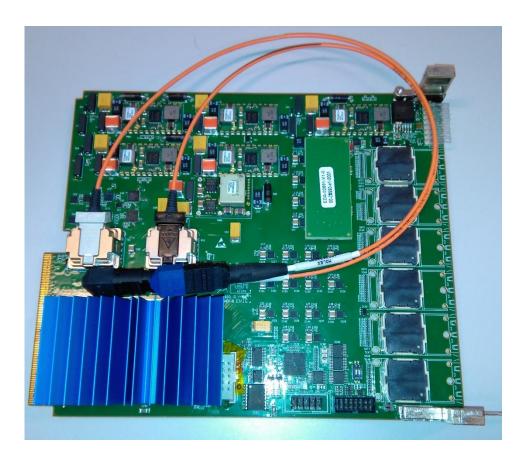


• CTP7

- CT layer 1
- XC7VX690T
- XC7Z045
 - → GbE endpoing, uP
- 67 Rx @ 10Gb
- 48 Tx @ 10Gb
- Ports 4-7, 12-15, 17-20 populated (as VT894, VT895)

• MTP7

- Muon OTF, ETF
- Dual card stack
 - → Occupies two slots
- XC7VX690T
- XC7K70T
- 80+4 Rx @ 10Gb
- 28 Tx @ 10Gb
- Pt LUT module
 - → Up to 2GB low latency RAM
 - → Split in banks



Modules ready for production in CMS

• Twinmux

- DT sector collector
- XC7VX330T
- 64 Rx @ 480Mb
- 12 Rx @ 10Gb
 → Used @ 1.6Gbps
- 12 Tx @ 10Gb
- Ports 4-8 populated
 → 9-11 LVDS
- Implements the MMC reference design from DESY/CPPM/CERN

Commercial Items

uTCA crate Vadatech or Schroff

Power-One AC/DC (48V) converter

Recent shelf

Schroff shelf features

- 4 power modules
 - → In the rear of the shelf
 - → 2 in parallel in the front
- JSM in the rear
 - → JSM has been custom developed
 - Access to backplane JTAG through – jtag (rotary switch), Ethernet.
- Up to six RTMs in the outer slots
 - → 1-3, 10-12
 - → Not used by CMS to date

uTCA crate Vadatech or Schroff

Issues with PowerOne

- N+1 Redundant
- Highly efficient
- Monitoring but not control
 - → Redundancy complicates things
- 20A Circuit breakers are not switches
 - → The circuit breakers are only for line protection
 - ➔ If used for powering up power modules one by one some power modules may fail to power up properly

Power-One AC/DC (48V) converter

- CMS is using almost (?) exclusively mTCA for the phase 1 upgrades
- Most issues are ironed out to a level beyond the capability of the legacy VME systems
 - Monitoring, potential availability, etc.
- Phase 2 being around the corner the door is still open for other standards to enter