

Summary of Discussion on MonoJet-Like models

ATLAS/CMS DM FORUM MEETING 28/01/2015

Sarah Alam Malik, CMS, Imperial College Antonio Boveia, Atlas, CERN Caterina Doglioni, Atlas, University of Geneva Steve Mrenna, CMS, Fermilab Steven Lowette, CMS, VUB

Mandate of ATLAS/CMS forum

FULL TEXT OF MANDATE

This talk/meeting: monojet-like and HF models

- 1. Agree on a list of simplified models: sufficiently complete, practical for experiments, endorsed by theory community
- minimal set of building blocks for reinterpretation

Next meetings:

- 1a. Reach agreement on EW models
- 1a. Finalize the set of grid points to be scanned
- 2. Harmonize technical details (generator, matching...)
- for ease of reinterpretation and comparison
- 3. Discuss presentation of results wrt DD experiments.
- 4. Role of EFT as benchmark (truncation)
- 5. Document the work in limited-authorship publication

Guiding principles for model list

Make practical choices for experimentalists: Tight timescale for decision on list (implementation needs discussion as well), number of points/models constrained by limited power of full simulation

Make sensible choices for theorists: List should be complete enough to assemble blocks into more complete theories

Pay attention to details: Many points to be ironed out (e.g. gluon loop production, widths, possible constraints)

Prepare the ground for future work: Simplifying assumptions can be made, but we must know what we're missing / giving up (e.g. extra searchable signatures?)

Don't reinvent the wheel: Simplified models have been discussed, implemented and tested by many so far → the set of models in these slides will **start from recent discussions and literature**

How to identify a model

Structure of model description [twiki]

- **Dark Matter type**: type of DM particle considered
- Mediator type(s): type of interaction mediated by mediator particle
- Mediator mass(es): are there constraints on mediator masses / are these free parameters?
- **Channel**: exchange of the mediator: s or t channel
- SM Couplings: are there constraints on the couplings between mediator and SM or are these free parameters?
- **DM Couplings**: whether there are constraints on the couplings between mediator and SM / are these free parameters?
- Includes lepton couplings: is the model leptophobic?
- Main signatures: main experimental signatures produced
- ME implementation ready: is there a ME generator ready?
- References: list of model description (still incomplete!)
- Main questions: questions that need answered in the choices for this model

s-channel, (axial) vector model

https://indico.cern.ch/event/364603/session/1/contribution/4/material/slides/0.pdf

Vector mediator, includes models commonly used so far by ATLAS and CMS

q X $\bar{\chi}$ χ

Vector

• Dark Matter type: Dirac fermion

Mediator type: Vector
 Mediator masses: M_V

Channel: s-channel

• **SM Couplings**: **g_q**, universal coupling for quarks only (this would be the most model-independent assumption, theorists will worry about anomalies and correlations between quark and lepton couplings)

DM Couplings: g_DM
 Coupling possibilities:

- Vector coupling to DM, axial vector coupling to SM (DM@LHC v2 proceedings)
- Vector coupling to DM, vector coupling to SM (1308.6799 and DM@LHC v2 proceedings)
- Axial vector coupling to DM, axial vector coupling to SM (1308.6799)
- Axial vector couplings to DM, vector couplings to DM (Haisch/Cacciapaglia's suggestion) is it distinguishable from others?

• Includes lepton couplings: no

• Width: Calculable

• Main signatures: monojet, >=2jet+Met (NLO)

ME implementation ready: yes, Powheg/MCFM (in progress)

References: arXiv:1311.7131, DM@LHC v2 proceedings

s-channel, (axial) vector model

https://indico.cern.ch/event/364603/session/1/contribution/4/material/slides/0.pdf

Main questions on width assumptions:

- a. mediator decays change sensitivity of direct searches
- b. width changes kinematics (http://arxiv.org/pdf/1411.0535v1.pdf)

s-channel, (axial) vector model

https://indico.cern.ch/event/364603/session/1/contribution/4/material/slides/0.pdf

Main questions on couplings:

a. which choices (axial/vector couplings to SM/DM) to make?

. Coupling possibilities:

- Vector coupling to DM, axial vector coupling to SM (DM@LHC v2 proceedings)
- Vector coupling to DM, vector coupling to SM (1308.6799 and DM@LHC v2 proceedings)
- Axial vector coupling to DM, axial vector coupling to SM (1308.6799)
- Axial vector couplings to DM, vector couplings to DM (Haisch/Cacciapaglia's suggestion) is it distinguishable from others?
- b. if $g_DM = g_q = 1$, is this model still observable at the LHC? (arXiv:1411.0535 chooses g = 0.5, these slides suggest three choices of 0.5/1/1.45)
- c. should we have g_DM != g_SM choices to compare to direct mediator searches (eg dijets)? One search could be more advantageous wrt the other depending on the coupling ratio.

t-channel, colored scalar models

http://arxiv.org/pdf/1402.2285v1.pdf

http://www.int.washington.edu/talks/WorkShops/int 14 57W/People/Tait T/Tait.pdf

t-channel (squark-exchange) model (#1, from arXiv:1402.2285)

- Dark Matter type: Dirac fermion
- Mediator type(s): Three colored scalars (note: either all mediators or only up-type can contribute, but only x-sec will change)
- Mediator mass(es): Same mass for all three mediators: M_med Maximal Flavor Symmetry assumption
- Channel: t-channel
- SM Couplings: Same DM and SM coupling for all three mediators: g
- DM Couplings: Same DM and SM coupling for all three mediators: g
- Includes lepton couplings: N/A
- Width: Calculable, or left as free parameters

$$\mathcal{L} = \mathcal{L}_{SM} + g_M \sum_{i=1,2} \left(\tilde{Q}_L^i \bar{Q}_L^i + \tilde{u}_R^i \bar{u}_R^i + \tilde{d}_R^i \bar{d}_R^i \right) \chi + \text{mass terms} + c.c.$$

- Main signatures: Monojet, dijet+MET
- ME implementation ready: Yes, Madgraph
- References: arXiv:1402.2285

t-channel (squark-exchange) model (#2, from DM@LHCv2 proceedings)

- Dark Matter type: Dirac fermion
- Mediator type(s): Three colored scalars
- Mediator mass(es): Either degenerate masses (M_med) or split between first/second and third generation (M_1,2, M_3)
- Channel: t-channel
- SM Couplings: Either degenerate coupling for SM and DM (g) or split between first/second and third generation (g_1,2, g_3)
- DM Couplings: same as SM couplings
- Includes lepton couplings: N/A
- Width: Calculable, or left as free parameters
- Main signatures: Monojet, dijet+MET
- ME implementation ready: Yes, Madgraph
- $\mathcal{L} = i\bar{\chi}\partial \chi M_{\chi}\bar{\chi}\chi + (D_{\mu}\tilde{u})^*(D^{\mu}\tilde{u}) M_{\tilde{u}}^2\tilde{u}^*\tilde{u}$
 - $+(g_{DM}\tilde{u}^*\bar{\chi}P_Ru+h.c.)$

t-channel, colored scalar models

http://arxiv.org/pdf/1402.2285v1.pdf

http://www.int.washington.edu/talks/WorkShops/int 14 57W/People/Tait T/Tait.pdf

Main questions:

a. Lagrangians are similar - are there any fundamental differences between the two models?

- b. what SUSY models (searches) already existing constrain this model?
- are vector t-channel models difficult to engineer? If we want to keep those for later, specific difficulties might be worth discussing in the write-up.

s-channel, scalar/pseudoscalar model

https://indico.cern.ch/event/364603/session/1/contribution/4/material/slides/0.pdf

$$\mathcal{L}_{\text{fermion},\phi} = \mathcal{L}_{\text{SM}} + i\bar{\chi}\partial\!\!/\chi + m_{\chi}\bar{\chi}\chi + |\partial_{\mu}\phi|^{2} + \frac{1}{2}m_{\phi}^{2}\phi^{2} + g_{\chi}\phi\bar{\chi}\chi + \frac{\phi}{\sqrt{2}}\sum_{i}\left(g_{u}y_{i}^{u}\bar{u}_{i}u_{i} + g_{d}y_{i}^{d}\bar{d}_{i}d_{i} + g_{\ell}y_{i}^{\ell}\bar{\ell}_{i}\ell_{i}\right) \mathcal{L}_{\text{fermion},a} = \mathcal{L}_{\text{SM}} + i\bar{\chi}\partial\!\!/\chi + m_{\chi}\bar{\chi}\chi + |\partial_{\mu}a|^{2} + \frac{1}{2}m_{a}^{2}a^{2} + ig_{\chi}a\bar{\chi}\gamma^{5}\chi + \frac{ia}{\sqrt{2}}\sum_{i}\left(g_{u}y_{i}^{u}\bar{u}_{i}\gamma^{5}u_{i} + g_{d}y_{i}^{d}\bar{d}_{i}\gamma^{5}d_{i} + g_{\ell}y_{i}^{\ell}\gamma^{5}\bar{\ell}_{i}\ell_{i}\right)$$

Scalar mediator, s-channel model from M. Buckley's talk and 1410.6497

- Dark Matter type: Dirac fermion, scalar
- Mediator type: Scalar, pseudoscalar (complex case)
- Mediator mass: M_phi, M_a
- Channel: s-channel
- SM Couplings: Yukawa-like, with prefactor g_q_i. Simplest MFV renormalizable case: g_u = g_d = g_l = 1. Phenomenology will differ with different choices.
- DM Couplings: no Yukawa structure, g_DM, can be = g_SM
- Includes lepton couplings: yes
- . Width: Minimal width calculable, other choices are model-dependent
- Main signatures: >=2jet+Met (also with HF)
- ME implementation ready: yes, for Dirac fermions (MCFM/Sherpa(soon)/Powheg(soon))
- References: arXiv: 1410.6497

Many questions raised for this model idea: this is the simplest, baseline option

s-channel, scalar/pseudoscalar model

https://indico.cern.ch/event/364603/session/1/contribution/4/material/slides/0.pdf

Main questions:

- a. are the Yukawa pre-factors independent \rightarrow can we generate different couplings independently and then combine?
- b. how does the kinematic change in case of other DM types (e.g. scalar DM)?
- c. we can't neglect DM or mediator couplings to the Higgs
 - do we treat those as baseline models or as specific cases? If treated as specific cases (seems preferred), need coherence with choices made in scalar model
 - ii. do we rely on invisible Higgs searches to constrain parameter space for those specific models?

s-channel, two-scalar model w/Higgs

http://arxiv.org/pdf/1312.2592.pdf,

This should also be discussed in the context of EW models but has implications for monojet searches: model with mixing of mediator and Higgs boson

New scalar particles may provide a portal into the dark sector $\boxed{18}$. The simplest possibility is to introduce a real scalar singlet, denoted S, with a Yukawa coupling to DM

$$\mathcal{L} \supset -y_{\chi}\bar{\chi}\chi S$$
. (17)

By virtue of gauge invariance, S may couple to the SM (at the renormalizable level) only through the Higgs field $\boxed{37}$. The relevant terms in the scalar potential are

$$V \supset a|H|^2 S + b|H|^2 S^2 + \lambda_h |H|^4$$

$$\longrightarrow \frac{1}{2} a(h+v)^2 S + \frac{1}{2} b(h+v)^2 S^2 + \frac{\lambda_h}{4} (h+v)^4, \quad (18)$$

In Summary: our simplified model is given by the Lagrangian (1.4) and involves two singlet scalar mediators, h_1 and h_2 . The first scalar is the 125 GeV SM Higgs, while the second one is an additional Higgs-like scalar. In general, this simplified model is characterised by five parameters: the mass and the widths of the second scalar, m_{h_2} and Γ_{h_2} , the DM (or invisible fermion's) mass, m_{χ} , the mixing angle θ and the DM coupling g_{χ} .

We note that these five parameters are in one-to-one correspondence with the five parameters characterising the scalar and pseudo-scalar mediated simplified models for DM searches at

s-channel, top-loop scalar model

https://indico.cern.ch/event/364603/session/1/contribution/8/material/slides/0.pdf

Scalar mediator, s-channel top loop model from U. Haisch and E. Re's talks and 1410.6497

- Dark Matter type: Dirac fermion, scalar
- Mediator type: Scalar, pseudoscalar (complex case)
- Mediator masses: M_phi, M_a
- Channel: s-channel, but also EFT
- SM Couplings: only coupling to top
- DM Couplings: no Yukawa structure, g_DM
- Includes lepton couplings: no
- Width: Calculable
- Main signatures: 2jet+Met, can exploit angular correlations
- ME implementation ready: in progress, Powheg
- References: arXiv:1311.7131
- Main questions:
 - validity of EFT (do we want to include it?)

General points for further discussion

General choices and considerations for all models:

- . m DM, m Med are free parameters to scan
- Consider all 6 quarks for width calculation
- Consider loop generation of mediator as well when necessary, specialized event generators available
- All width calculations should be considered as minimal and scanned with one or two wider assumptions
- It will be difficult to do generator-level scans for experiments, full simulation is needed in many cases and desired by the collaborations. We
 can however provide truth-level acceptances and reconstruction correction factors so that it is the theorists doing the scan and reinterpreting
 the experimental results.

General questions:

- Why do we restrict ourselves to Dirac DM? What would change with scalar (real/complex) or vector, or Majorana fermion DM?
- How seriously do we consider other constraints on simplified models? E.g. arXiv: 1501.03490
- How simplified should our models be? Should we consider "less-simplified" models (eg, scalar mediator mixing with the Higgs, does not
 introduce too many extra parameters) within the original starting list?

How to move forward

Gather implementations of chosen models: what is the minimal information we need to simulate those models at the matrix element (Madgraph?) → organizers will collect and place it somewhere public

Check of our assumptions: scan at truth-level models that are not on the list (e.g. different kinds of DM), compare kinematics with models that have been chosen → need volunteers to provide models and run truth-level code

Next step: decisions on grid points

- keep discussing on the mailing list, conclusion to be reached at the next meeting
- 2) systematic scan results for chosen models would be useful: how does the kinematic of search variables change?