Simplified Models for tt + Dark Matter

T. du Pree, P. Harris, J. Marrouche, N. Wardle CERN

B. Jayatilaka FNAI

D. Abercrombie, B. Allen, K. Bierwagen, L. Di Matteo, G. Gómez-Ceballos, D.G. Hsu, M. Klute, S. Narayanan, C. Paus, J. Veverka MIT

> K. Hahn, S. Sevova, *K. Sung* Northwestern University

> > M. Zanetti Universita' di Padova

Introduction

- Preliminary studies on simplified models for tt + Dark Matter
 - Run-I tt+DM analyses utilized an EFT / contact interpretation
 - Limitations of the EFT interpretation now widely recognized
 - Simplified models (ie: with an explicit mediator) more appropriate at the LHC, as the DM mediator can be directly produced

Overview

- Models & Implementation
- Validation
 - Gen-level Comparison with EFT
- Analysis
 - Gen-level simplified model scan
- Summary & Outlook

Models

- Focus on spin-0 mediator, scalar / pseudoscalar couplings
 - Minimal Flavor Violation → couplings proportional to SM Yukawas

$$\mathcal{L}_{S} = \mathcal{L}_{\text{SM}} + \frac{1}{2}(\partial_{\mu}\phi)^{2} - \frac{1}{2}m_{\phi}^{2}\phi^{2} + i\bar{\chi}\partial\!\!\!/\chi - m_{\chi}\bar{\chi}\chi - g_{\chi}\phi\bar{\chi}\chi - \sum_{\text{fermions}}g_{v}\frac{y_{f}}{\sqrt{2}}\phi\bar{f}f,$$

$$\mathcal{L}_{A} = \mathcal{L}_{\text{SM}} + \frac{1}{2}(\partial_{\mu}A)^{2} - \frac{1}{2}m_{A}^{2}A^{2} + i\bar{\chi}\partial\!\!\!/\chi - m_{\chi}\bar{\chi}\chi - ig_{\chi}A\bar{\chi}\gamma^{5}\chi - \sum_{\text{fermions}}ig_{v}\frac{y_{f}}{\sqrt{2}}A\bar{f}\gamma^{5}f.$$

- Monojet sub-optimal for this scenario, loop suppressed
- Pseudo-scalar coupling velocity suppressed in Direct Detection
- Using model conventions of 1411.0535
 - Coupling strength g_q scales SM Yukawa

$$g_{\rm SM}^q \equiv g_q y_q$$
, $g_{\rm DM} \equiv g_\chi y_\chi$, where $y_\chi \equiv \frac{m_\chi}{v} = \frac{m_{\rm DM}}{v}$

- Coupling strength g_x set to 1, facilitates re-scaling of results

Model Implementation

- Extend MadGraph SM to incorporate mediated DM production
 - Introduce spin-0 PS mediator, use SM Higgs for scalar
 - Implement messenger-SM couplings to top only
 - Minimum mediator widths a la 1411.0535

$$\Gamma_{\text{MED,min}}^{S,P} = \Gamma_{\chi\bar{\chi}}^{S,P} + N_c \Gamma_{t\bar{t}}^{S,P}$$

$$\Gamma_{f\bar{f}}^{S} = \frac{g_f^2 m_f^2 m_{\text{MED}}}{8\pi v^2} \left(1 - \frac{4m_f^2}{m_{\text{MED}}^2} \right)^{\frac{3}{2}}$$

$$\Gamma_{f\bar{f}}^{P} = \frac{g_f^2 m_f^2 m_{\text{MED}}}{8\pi v^2} \left(1 - \frac{4m_f^2}{m_{\text{MED}}^2} \right)^{\frac{1}{2}}$$

- Showering with Pythia8
- Free parameters in the model: m_{DM} , m_{MED} and g_{q}

(private) Production

- Scan m_{DM}:
 - 1, 10, 50, 100, 200, 600, 1000 GeV
- Scan m_{MED} over range similar to recent monojet/mono-V study:
 - 350, 525, 725, 925, 1125, 1325, 1525, 1725, 1925, 2000, 3000, 4000, 5000, 7000, 10000, 11000, 12000 GeV
- Same with g_a ...
 - 0.3, 0.5, 1.0, 1.5, 2.0, 3.0
- Study @ 13 TeV: validation with EFT and first look at effects from parameter scans

Validation (1)

• Compare official CMS EFT samples to simplified model with $m_{MED} = 12$ TeV and $g_{\alpha} = 3$

- Comparison above at LHE level
 - Implementation of the MG model validated

Validation (2)

• Compare official CMS EFT samples to simplified model with $m_{MED} = 12$ TeV and $g_{\alpha} = 3$

- Comparison above after Pythia8
 - Initially generated samples where jet-matching parameters differed from official CMS config
 - In following, will show results before fix, as not yet propagated to all our samples...

Model Scan

- Scans over model parameters
 - 1) m_{MED} for fixed g_{α} and m_{DM}
 - 2) g_{α} for fixed m_{DM} and m_{MED}
 - 3) Scalar vs pseudoscalar
- Caveat
 - Validation performed with 0,1,2 additional jets, as in the EFT
 - **But** scan samples generated with 0 additional jets
 - Higher multiplicity prohibitively time consuming for private production
 - But should be do-able in an official scenario

M_{MED} Scan (1)

- $M_{DM} = 1$, 10, 100 GeV @ $g_q = 3$, scalar
 - MET distribution broadens with increasing mediator mass, as expected
 - Hadronization differences more apparent with increasing m_{DM}

K. Sung - LHC DM Forum

0.015

0.01

0.005

gen MET

M_{MED} Scan (2)

- $M_{DM} = 1$, 10, 100 GeV @ $g_q = 3$, scalar
 - $\underline{Top p_T distribution}$ also broadens with increasing mediator mass, as expected

g_q Scan (1)

- $M_{DM} = 1 \text{ GeV}, M_{MED} = .525, 2, 7$ TeV, scalar
 - Little difference in MET distributions for light mediators
 - Large couplings: pdf suppression of large s_{xx}, narrows MET distribution

01.28.15 K. Sung - LHC DM Forum

g_q Scan (2)

- $M_{DM} = 1 \text{ GeV}, M_{MED} = .525, 2, 7$ TeV, scalar
 - Similar situation for top p_T

K. Sung - LHC DM Forum

Scalar vs Pseudoscalar

- Small effects from difference in widths
 - $-\Gamma_{PS} > \Gamma_{S}$, leads to narrowing of PS MET distribution
 - Again, pdf suppression
 - More apparent near threshold(s), as below
 - Note: only comparing shapes; cross sections will be different

Summary & Outlook

- First look at simplified models for DM + heavy flavor pair
 - Implementation validated against 13 TeV EFT
 - Kinematics from simplified modeling consistent with expectations
 - Machinery in place to turn around LHEs for a 13 TeV scan

Open issues:

- Double check / synchronize coupling strength convention
 - Important for obtaining consistent cross sections (not yet checked) with monojet/mono-V models

In progress:

- Explore model predictions following basic kinematic selections
- Develop LHE/GEN re-weighting scheme to avoid full reconstruction of many model points
 - Techniques from monojet / mono-V a good starting point
- Simplified $b\overline{b}$ + DM implemented, generation recently finished
 - Validation on-going
 - Looking at consistency with relic density constraints using MadDM

Backup

• M_{MED} for central value of 2 TeV, various coupling strengths

