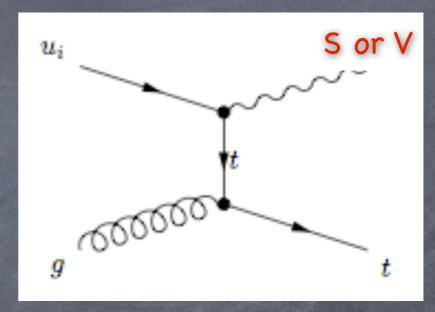

Summary of Monotop Models


G.Cacciapaglia (IPN Lyon)

DM-LHC Forum 28/01/2015

Resonant and non-resonant

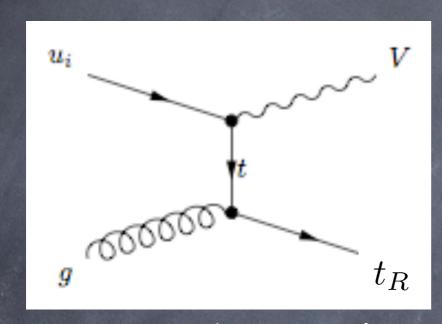
(see also 1109.5963)

(see also 1310.7600)

$$\mathcal{L} = \mathcal{L}_{SM}
+ \phi \bar{u} \Big[a_{FC}^{0} + b_{FC}^{0} \gamma_{5} \Big] u + V_{\mu} \bar{u} \Big[a_{FC}^{1} \gamma^{\mu} + b_{FC}^{1} \gamma^{\mu} \gamma_{5} \Big] u
+ \epsilon^{ijk} \varphi_{i} \bar{d}_{j}^{c} \Big[a_{SR}^{q} + b_{SR}^{q} \gamma_{5} \Big] d_{k} + \varphi_{i} \bar{u}^{i} \Big[a_{SR}^{1/2} + b_{SR}^{1/2} \gamma_{5} \Big] \chi
+ \epsilon^{ijk} \tilde{\varphi}_{i} \bar{d}_{j}^{c} \Big[\tilde{a}_{SR}^{q} + \tilde{b}_{SR}^{q} \gamma_{5} \Big] u_{k} + \tilde{\varphi}_{i} \bar{d}^{i} \Big[\tilde{a}_{SR}^{1/2} + \tilde{b}_{SR}^{1/2} \gamma_{5} \Big] \chi$$

$$+ \epsilon^{ijk} X_{\mu,i} \, \bar{d}_{j}^{c} \Big[a_{VR}^{q} \gamma^{\mu} + b_{VR}^{q} \gamma^{\mu} \gamma_{5} \Big] d_{k}$$

$$+ X_{\mu,i} \, \bar{u}^{i} \Big[a_{VR}^{1/2} \gamma^{\mu} + b_{VR}^{1/2} \gamma^{\mu} \gamma_{5} \Big] \chi + \text{h.c.},$$

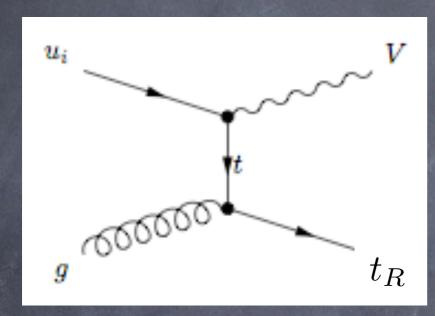

$$(1)$$

1106.6199, 1311.6478

MG implementation by B.Fuks et al.

Constraining the parameters using the SM: non-resonant case

1407.7529

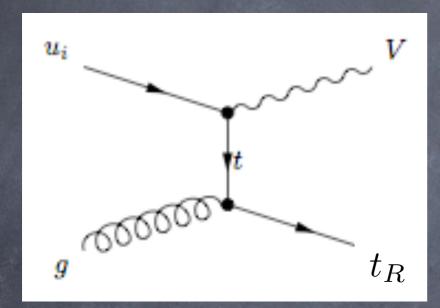

+ s-channel

Why not S?

- the only scalar that can couple to quarks is a doublet (additional states);
- else, it needs to mix to the Higgs (additional couplings).

Constraining the parameters using the SM: non-resonant case

1407.7529



+ s-channel

- Why not tL?
- gauge invariance requires a coupling V bL bL;
- decays V -> bb must be taken into account (invisible BR?)

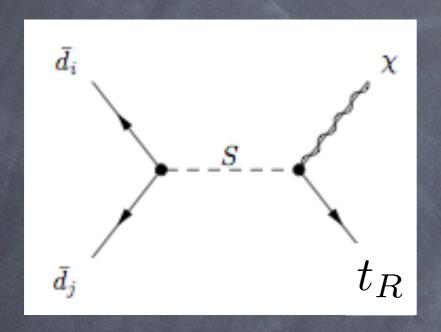
Constraining the parameters using the SM: non-resonant case

1407.7529

+ s-channel

- The minimal model is V, with couplings to right-handed quarks only!
- Simplification of the couplings:

2 free parameters


$$\mathcal{L}=\mathcal{L}_{SM}$$
 $+V_{\mu}ar{u}ig[a_{FC}^{1}\gamma^{\mu}+b_{FC}^{1}\gamma^{\mu}\gamma_{5}ig]u$
 $a_{FC}^{1}=b_{FC}^{1}$
 (1)

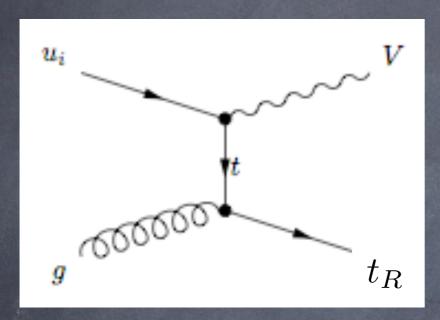
V is a messenger, the invisible rate is

$$V \to \chi \chi$$

Constraining the parameters using the SM: resonant case

1407.7529

- S is a stop(R) in RPV SUSY!
- 3 free parameters


$$\mathcal{L} = \mathcal{L}_{SM}$$

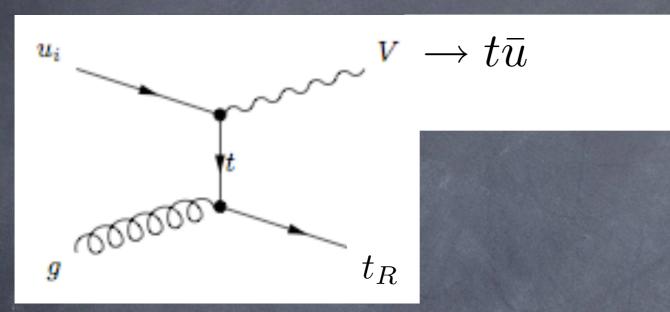
$$+ \epsilon^{ijk} \varphi_i \bar{d}_j^c \left[a_{SR}^q + b_{SR}^q \gamma_5 \right] d_k + \varphi_i \bar{u}^i \left[a_{SR}^{1/2} + b_{SR}^{1/2} \gamma_5 \right] \chi$$

$$a_{SR}^q = b_{SR}^q$$

$$a_{SR}^{1/2} = -b_{SR}^{1/2}$$

"Pollution" of the signal region: the non-resonant case

+ s-channel


VS. $qcD < \overline{t} \longrightarrow V\overline{u}$ W^+b

If
$$m_V < m_{top}$$

$$\frac{N_{ev}(t\bar{t} \to tV\bar{u})}{N_{ev}(ug \to tV)}$$

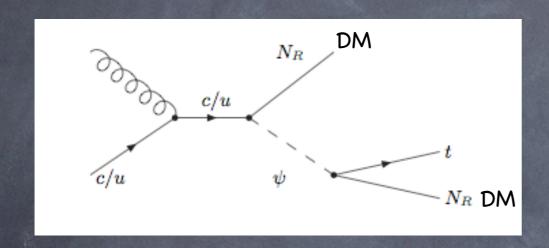
only depends on mV, and the experimental acceptance

Interplay with other searches: the non-resonant case

If $m_V > m_{top}$

+ s-channel

Romain's talk!


Other simple models

t-channel scalar mediator

$$\begin{split} \tilde{a}_{SR}^q &= \tilde{b}_{SR}^q \\ &+ \epsilon^{ijk} \tilde{\varphi}_i \bar{d}_j^c \big[\tilde{a}_{SR}^q + \tilde{b}_{SR}^q \gamma_5 \big] u_k + \tilde{\varphi}_i \bar{d}^i \big[\tilde{a}_{SR}^{1/2} + \tilde{b}_{SR}^{1/2} \gamma_5 \big] \chi \end{split}^{(1)} \\ &\tilde{a}_{SR}^{1/2} = -\tilde{b}_{SR}^{1/2} \end{split}$$

- S is a sbot(R) in RPV SUSY!
- 3 free parameters

Other simple models

- However, pair production of the coloured mediator must be checked:
- jj + MET, ttbat + MET

Monotop may be not competitive: see 1404.1415