# How to Probe a Dark Matter Model with Monotop and Same Sign Top final state?

#### Romain Madar

Laboratoire de Physique Corpusculaire (LPC)
Clermont-Ferrand – France

**HQT** weekly meeting

- Monday 8<sup>th</sup> of December 2014 -



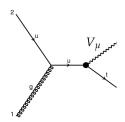




### Introduction

Context: Search for monotop final state allows to constrain a pretty generic dark matter model (DM candidate  $\chi$  + interaction with SM fields via  $V_{\mu}$ )

$$\mathcal{L}_{NP} = \mathcal{L}_{kin} \left[ \chi, V_{\mu} \right] 
+ a_{R} V_{\mu} \bar{t}_{R} \gamma^{\mu} u_{R} + a_{L} V_{\mu} \left( \bar{t}_{L} \gamma^{\mu} u_{L} + \bar{b}_{L} \gamma^{\mu} d_{L} \right) 
+ V_{\mu} \left( g_{R\chi} \bar{\chi}_{R} \gamma_{\mu} \chi_{R} + g_{L\chi} \bar{\chi}_{L} \gamma_{\mu} \chi_{L} \right)$$
(1)

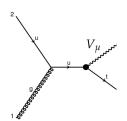

### Underlying ingredients of the model:

- relies on an effective theory on which  $SU(2)_L \times U(1)$  was imposed
- couplings are such the production can occur at hadron colliders
- should induce monotop final state (justifying *Vtu* vertex)

#### References:

- ATLAS Monotop search: http://arxiv.org/abs/1410.5404
- Theory pre-print: http://arxiv.org/abs/1407.7529

### Why Same Sign Top Production?




Monotop assumes that BR  $[V \rightarrow \chi\chi] = 100\%$ But  $V \rightarrow t\bar{t}u + t\bar{t}u$  is also possible: visible in SS dilepton analysis

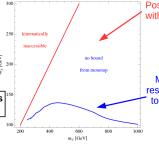
$$\Gamma(V \to \chi \chi) = \frac{m_V}{24\pi} \sqrt{1 - 4\frac{m_\chi^2}{m_V^2}} \left[ \left( |g_{L\chi}|^2 + |g_{R\chi}|^2 \right) \left( 1 - \frac{m_\chi^2}{m_V^2} \right) + \frac{6m_\chi^2}{m_V^2} \Re \left\{ g_{L\chi} g_{R\chi}^* \right\} \right]$$

$$\Gamma(V \to t\bar{u} + \bar{t}u) = \frac{m_V}{4\pi} \left( |a_R|^2 + |a_L|^2 \right) \left( 1 - \frac{m_t^2}{m_V^2} \right) \left( 1 - \frac{m_t^2}{2m_V^2} - \frac{m_t^4}{2m_V^4} \right)$$

### Why Same Sign Top Production?



Monotop assumes that BR  $[V \rightarrow \chi\chi] = 100\%$ But  $V \rightarrow t\bar{u} + t\bar{u}$  is also possible: visible in SS dilepton analysis

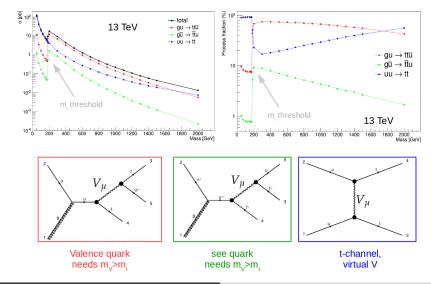

$$\Gamma(V \to \chi \chi) = \frac{m_V}{24\pi} \sqrt{1 - 4\frac{m_\chi^2}{m_V^2}} \; \left[ \left( |g_{L\chi}|^2 + |g_{R\chi}|^2 \right) \left( 1 - \frac{m_\chi^2}{m_V^2} \right) + \frac{6m_\chi^2}{m_V^2} \Re \left\{ g_{L\chi} g_{R\chi}^* \right\} \right] \; , \label{eq:gamma}$$

$$\Gamma(V \to t\bar{u} + \bar{t}u) = \frac{m_V}{4\pi} \left( |a_R|^2 + |a_L|^2 \right) \left( 1 - \frac{m_t^2}{m_V^2} \right) \left( 1 - \frac{m_t^2}{2m_V^2} - \frac{m_t^4}{2m_V^4} \right)$$

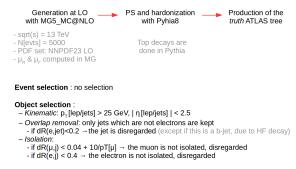
The product BR[V  $\rightarrow \chi\chi$ ] x BR[V  $\rightarrow t\bar{u} + \bar{t}u$ ] is constrained by the relic density of dark matter in the universe, through the DM annihilation process:

 $\chi\chi o V o tar u$  and ar tu

Nice interplay between 2 exotic analyses 150 and cosmological constraints



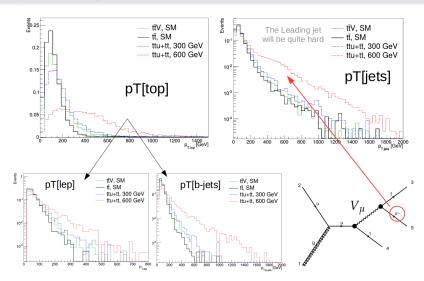

Possible to cover with SS analysis


Monotop CMS

results, interpreted to constraint DM

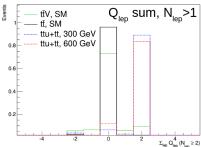
# Relevant processes and cross-sections




## Signal / background (naive) comparison




#### **Comments:**


- this comparison is very naive: LO calculations, no detector effects
- Main backgrounds:  $t\bar{t}$  (with charge mis-reconstruction),  $t\bar{t} + V$
- ullet the  $V_{\mu}$  width is not computed properly (affect distributions, not the previous xsections)

# **Typical signature**



# Typical signature





### **Questions:**

• Why there are some signal events with  $\Sigma Q_{\ell} = 0$ ? Investigating ...

#### **Comments:**

- Main signatures are charge of leptons, object momentum
- Since t and  $\bar{u}$  are boosted,  $\Delta \phi(\ell, j)$  should be interesting
- Interesting signature  $tt + high p_T$  jet (new(?) phase-space region).

# **Summary and Proposal**

#### **General comment:**

It is important to probe new models, but as experimentalist, this is even more important to look at data in new phase-space regions

### Search for same sign top pair production:

- (Only) positive same sign leptons (less activity than in  $t\bar{t}t\bar{t}$  events)
- Interesting because sensitive to FCNC (in particular t u coupling)
- Models: 2HDM (type III), contact int., RPV-SUSY, colored scalar ...

### Interplay between SS top, monotop, cosmology:

- Combine monotop and SS top: probes scenario where  $\mathcal{BR}_{V\to\chi\chi}$  < 1.0
- Potential to add cosmological constaints on  $\mathcal{BR}_{V \to \chi \chi} \times \mathcal{BR}_{V \to tu}$
- $V \rightarrow tu$  signature leads to tt + high momentum jet: interesting (new?) phase-space corner