
Professor: Frédéric Bapst
Supervisors: Paolo Calafiura
 Wim Lavrijsen
Expert: Michel Yerly

01/26/2015

Master Thesis

Concurrent I/O
from

Xeon Phi Accelerator Cards
Romain Monnard

Romain Monnard - January 2015

Objectives

2

Romain Monnard - January 2015

Xeon Phi

3

PCI-Express 2

8GB/s

Romain Monnard - January 2015

Technologies

4

NFS

Sockets

Intel SCIF

Romain Monnard - January 2015

Technologies

5

5.4. MUTLITHREAD CHAPTER 5. MEASUREMENTS

NFS sockets SCIF
0

500

1,000

1,500

2,000

94

328

1,693

B
an

dw
id

th
[M

B
/s

]

Figure 5.7: Comparison of communications bandwidth (NFS, sockets, SCIF)

5.4 Mutlithread

For the first measurement with many threads, the simplest way was to not create any
thread synchronization on the Xeon Phi. For this, each thread establishes a connection
with the host and sends its data through this connection. The first measurements were
done to see how the SCIF library can handle up to 240 connections.

The first limit reached in this experiment was the memory. On this version of Xeon
Phi there is 8GB of memory available. The maximum size of data which can be sent at
the same time from the 240 threads was 8MB. Figure 5.8 shows the memory allocated
in each step needed by the transfer of a 8MB TMemFile. The memory usage is 3 times
higher than the size of the TMemFile. One 8MB file per thread means a memory usage
of 5760MB. This is less than 8GB but remember that there is the operating system and
all the file system of the Xeon Phi which are on this unique memory.

CopyTo Send
scif_writeto

Recv

Xeon Phi - MIC Host

2MB 2MB

2MB 2MB
8MB 8MB 8MB 8MB

Figure 5.8: TMemFile transfer - memory usage

In order to reduce the memory usage, it is possible to pass a buffer to the TMessage
class. By giving the memory registered by SCIF for the remote memory access, it is
possible to delete one memory copy. This has been done with a new method in the
TSCIF class which handles the sending of a TMemFile. Figure 5.9 shows this memory

26

Romain Monnard - January 2015

ROOT - Sockets
• TSocket - TServerSocket

• TMemFile

• A completely in-memory version of TFile

• TParallelMergingFile

• A TMemFile that on a call to Write will upload its
content and reset the TTree objects.

6

Romain Monnard - January 2015

TParallelMergingFile

7

Parallel Merging
• New TFile implementations:

■ TMemFile: a completely in-memory version of TFile.
■ TParallelMergingFile: a TMemFile that on a call to Write will upload

its content and reset the TTree objects.

• New solution:
■ Increase parallelism by

having the slaves start
uploading the TTree
clusters directly to the
server which immediately
starts saving them in the
final output file.

Final File!

Client!

Client!

Client!

Server!

Romain Monnard - January 2015

Sockets vs SCIF

8
24

MPSS

Architecture Overview
Software Architecture

PCI Express*

Tools & Apps

DAPL

OFED
Verbs

HCA
Libs

Sockets
User SCIF

OFED
Core

HCA
Driver

OFED
SCIF

Virtual
Ethernet

TCP UDP

IP

Host SCIF Driver KNX Host Driver

Linux Kernel

Tools & Apps

DAPL

OFED
Verbs

HCA
Libs

Sockets
User SCIF

OFED
Core

HCA
Driver

OFED
SCIF

Virtual
Ethernet

TCP UDP

IP

SCIF Driver

Linux Kernel (Mod)

R3
R0

HOST CARD

Host Xeon Phi

Romain Monnard - January 2015

Sockets vs SCIF

9
24

MPSS

Architecture Overview
Software Architecture

PCI Express*

Tools & Apps

DAPL

OFED
Verbs

HCA
Libs

Sockets
User SCIF

OFED
Core

HCA
Driver

OFED
SCIF

Virtual
Ethernet

TCP UDP

IP

Host SCIF Driver KNX Host Driver

Linux Kernel

Tools & Apps

DAPL

OFED
Verbs

HCA
Libs

Sockets
User SCIF

OFED
Core

HCA
Driver

OFED
SCIF

Virtual
Ethernet

TCP UDP

IP

SCIF Driver

Linux Kernel (Mod)

R3
R0

HOST CARD

Host Xeon Phi

Romain Monnard - January 2015

Intel SCIF

10

4.2. INTEL SCIF CHAPTER 4. COMMUNICATION LIBRARIES

 11
 SCIF Users Guide Rev 1.03 – February 2014 Docum

Node i Node j

scif_connect(epdi,
(Nj, pn))

scif_bind(epdi, pm)

scif_bind(epdj, pn)

scif_listen(epdj, qLen)

scif_accept(epdj,
*nepd, peer)

scif_send(epdi,…)/
scif_recv(epdi,...)

scif_send(nepd,…)/
scif_recv(nepd,...)

epdj=scif_open()

epdi=scif_open()

Figure 2: Connecting two endpoints

Normally the endpoints of a connection are on different nodes in the SCIF network. We
therefore often refer to these endpoints as local and remote with respect to one end of the
connection. In fact, SCIF fully supports connections in which both endpoints are on the same
node, and we refer to this as a loopback connection.
A process may create an arbitrary number of connections, limited by system resources
(memory). The following figure illustrates a SCIF network of three nodes. Two connections have
been established between nodes 0 and 1, another between nodes 0 and 2. On node N2, a
loopback connection has been established.

Figure 4.2: SCIF - Connection and messaging[3]

14

HostXeon Phi

Romain Monnard - January 2015

Intel SCIF RMA
• Remote Memory Access

11

int offset = scif_register(…)

2MB

malloc(…)

scif_send(offset);

scif_readfrom(offset, r_offset, …)

scif_writeto(offset, r_offset, …)2MB

int r_offset;
scif_recv(r_offset, …)

int offset = scif_register(…)

malloc(…)

Node i Node jHostXeon Phi

Romain Monnard - January 2015

TSCIF

• Implementation of SCIF in ROOT

• TSCIF / TServerSCIF

• Offer the same API as TSocket / TServerSocket

12

Romain Monnard - January 2015

TSCIF
• TParallelMergingFile based on TSCIF

• 240 threads * 8MB * 3 = 5760MB

• Only 8GB of memory on the card
13

CHAPTER 5. MEASUREMENTS 5.2. MUTLITHREAD

5.2 Mutlithread
For the first measurement with many threads, the simplest way was to not create any
thread synchronization on the Xeon Phi. For this, each thread establishes a connection
with the host and sends its data through this connection. The first measurements were
done to see how the SCIF library can handle up to 240 connections.

The first limit reached in this experiment was the memory. On this version of Xeon
Phi there is 8GB of memory available. The maximum size of data which can be sent at
the same time from the 240 threads was 8MB. Figure ?? shows the memory allocated
in each step needed by the transfer of a 8MB TMemFile. The memory usage is 3 times
higher than the size of the TMemFile. One 8MB file per thread means a memory usage
of 5760MB. This is less than 8GB but remember that there is the operating system and
all the file system of the Xeon Phi which are on this unique memory.

TMemFile TMessage TSCIF TSCIF TMessage
CopyTo Send

scif_writeto
Recv

Xeon Phi - MIC Host

2MB 2MB

2MB 2MB
8MB 8MB 8MB 8MB

Figure 5.5: TMemFile transfer - memory usage

In order to reduce the memory usage, it is possible to pass a buffer to the TMessage
class. By giving the memory registered by SCIF for the remote memory access, it is
possible to delete one memory copy. This has been done with a new method in the
TSCIF class which handles the sending of a TMemFile. Figure 5.6 shows this memory
reduction to 2 copies on the Xeon Phi side.

Send

scif_writeto
Recv

Xeon Phi - MIC Host

2MB

2MB 2MB 8MB 8MB 8MB

2MB

Memory copy on MIC Transfer MIC - Host Handling on Host side

Figure 5.6: TMemFile transfer - memory usage reduction

5.2.1 Starting 240 threads on Xeon Phi with ROOT
In order to write data from many threads in ROOT, the TThread class has to be used.
Without this threading class, the ROOT operations (file opening and data writing) were

Romain Monnard — Concurrent I/O from Xeon Phi Accelerator Cards 21

Romain Monnard - January 2015

TSCIFFile

14

Xeon Phi - MIC

TScifFile

8MB

TSCIF

Host

TScifFileServer

8MB

TServerSCIF

TMemFile

8MB
scif_writeto Recv

Romain Monnard - January 2015

Measurements

15

Simulate computations of Geant4.
Busy waiting of 10 to 15s (random)

TTree::Fill TransferWriting data to ROOT

100x

measure measure measure

Thread #1

Thread #2

Romain Monnard - January 2015

Results

16

• 60 threads

• 100 x 2MB files

• Throughput:

• Socket: 250 MB/s

• SCIF: 5263 MB/s

CHAPTER 7. TUNING 7.8. ALLOCATION WITH HUGE 2MB MEMORY PAGE

Socket SCIF
0

500

1,000

1,500

2,000

2,500

3,000

3,500

800

38

1,699 1,689

253 222

2,752

1,949

T
im

e
[m

s]

Transfer TTree::Fill Others Total

Romain Monnard — Concurrent I/O from Xeon Phi Accelerator Cards 49

Romain Monnard - January 2015

Results

17

100 x 64kB 100 x 8MB

107MB/s 780MB/s 262MB/s 6200MB/s

60 threads

CHAPTER 7. TUNING 7.8. ALLOCATION WITH HUGE 2MB MEMORY PAGE

Socket SCIF
0

50

100

150

200

250

300

58

8

56 53

124
101

238

162

T
im

e
[m

s]

Transfer TTree::Fill Others Total

Romain Monnard — Concurrent I/O from Xeon Phi Accelerator Cards 49

CHAPTER 7. TUNING 7.8. ALLOCATION WITH HUGE 2MB MEMORY PAGE

Socket SCIF
0

0.2

0.4

0.6

0.8

1

·104

3,050

129

6,349 6,325

286 333

9,685

6,787

T
im

e
[m

s]

Transfer TTree::Fill Others Total

Romain Monnard — Concurrent I/O from Xeon Phi Accelerator Cards 49

Romain Monnard - January 2015

Results - 1 to 240 threads

18

1.6. MORE THAN 60 THREADS CHAPTER 1. TUNING

1.6 More than 60 threads

1 30 60 90 120 150 180 210 240
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Number of threads

T
im

e
[m

s]
SCIF transfer
SCIF TTree::Fill
SCIF total
Sockets transfer
Sockets TTree::Fill
Sockets total

Figure 1.5: ROOT performance from 1 to 240 threads (2MB files)

8

2MB files

Romain Monnard - January 2015

Reduce computation time

19

60 threads 100 x 2MB files

Simulate computations of Geant4.

Writing data to ROOT

100x

measure measure measure

Thread #1

Thread #2

CHAPTER 7. TUNING 7.6. STRESS TEST

10-15ms 50-75ms 100-150ms 1-1.5s
0

0.2

0.4

0.6

0.8

1

·104

46 44 42 38

9,564

3,954

1,847 1,712

903

2,665

303 235

10,513

6,663

2,192 1,985

T
im

e
[m

s]

Transfer TTree::Fill Others Total

Figure 7.8: Stress test 2MB files (60 threads)

seconds. How ROOT runs when this time is reduced? This is the question which will
be answered in this measurement. The data transfer reached is close to the theoretical
bandwidth of the PCIe bus. If the transfer is going to be done in concurrency, they will
have to share the bandwidth of the bus and their time will increase. In reality, the time
needed by the transfer is very small compared to the time required by the TTree::Fill
method. The first thing which will be processed in parallel is this method. Figures 7.8
and 7.9 show that ROOT can become very slow when it runs in parallel. The TTree::Fill
method is largely responsible but some others routines of ROOT like the TFile::Write
called just before the data transfer affect also the measurements.

The information given by these measurements is that the performance shown in other
graphs will be reached if the data processing for an event takes more than 1s with 240
threads and more than 100ms for 60 threads. For an ATLAS production job, the estimated
processing time for one event is 1000s on one Xeon Phi thread. It is far away from the
current limit of time showed by these measurements.

Romain Monnard — Concurrent I/O from Xeon Phi Accelerator Cards 47

Romain Monnard - January 2015

Conclusion
• SCIF

• Best throughput

• 21 x faster than sockets

• TSCIFFile

• Reduction of memory usage for the Xeon Phi

20

Romain Monnard - January 2015

Future work

• Optimize file writing in ROOT

• TTree::Fill

• Concurrency

21

Romain Monnard - January 2015

Questions

?
22

Romain Monnard - January 2015 23

Romain Monnard - January 2015

Transfer

24

Xeon Phi - MIC

TScifFile

2MB

TSCIF

Host

TScifFileServer

2MB

TSCIF

TMemFile

7MB

scif_writeto

Recv
7MB

2MB

2MB

2MB

1MB
Write

Romain Monnard - January 2015 25

1.6. MORE THAN 60 THREADS CHAPTER 1. TUNING

1.6 More than 60 threads

1 30 60 90 120 150 180 210 240
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Number of threads

T
im

e
[m

s]
SCIF transfer
SCIF TTree::Fill
SCIF total
Sockets transfer
Sockets TTree::Fill
Sockets total

Figure 1.5: ROOT performance from 1 to 240 threads (2MB files)

8

60 x
no slow-down

1949 ms

4730 ms
2.4 x more time
4 x more computations
Speedup of 1.6

(60 to 240 threads)

Speedup (1 to 240 threads)
96

Romain Monnard - January 2015

Connection
• TSocket

• 2.23ms

• TSCIF

• 0.75ms

• Memory registration (with TSCIF)

• 2MB: 4.88ms

• 512kB: 2.88ms

• 64kB: 2.00ms
26

Romain Monnard - January 2015

TFile writting

27

CHAPTER 3. ROOT 3.9. TDIRECTORY

Figure 3.5: Writing/Reading a TTree [2]

Romain Monnard — Concurrent I/O from Xeon Phi Accelerator Cards 11

Int_t TScifFile::SysWrite(Int_t /* fd */, const void *buf, Int_t len)

Romain Monnard - January 2015

memcpy Host vs MIC

• 1000 x memcpy of 2MB

• Host: 237ms

• Xeon Phi 873ms 3.68 x slower

28

Romain Monnard - January 2015

Writing file on Xeon Phi

• Speed of tmpfs on Xeon Phi

• Measure with dd (from BusyBox): 195MB/s

• Measure with Bonnie: peak to 500MB/s

29

