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Target
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Code we started from

● Demonstrator of ATLAS trigger on GPUs

● Basic host side

– Take data

– Send and compute data on GPU

– Sleep waiting the response 
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Code we started from
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 Overlapping pixels and SCT

● The pixel and SCT processing are done in sequence

● Same event, but sequential processing...
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Overlapping pixels and SCT
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CUDA Streams

● A stream is a queue of execution

● Non-default streams can be executed in parallel
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H2D = Host to device transfer
D2H = Device to host transfer
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Overlapping pixels and SCT

● Use CUDA Streams

● Start the processing of SCT before pixels end
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Overlapping pixels and SCT
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Overlapping pixels and SCT

● For 2000 events, without overlapping

– Avg Pixel: 2.03 ms

– Avg SCT: 1.95 ms

– Total avg: 3.98 ms
● For 2000 events, overlapping

– Avg Pixel: 2.3 ms

– Avg SCT: 2.5 ms
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Overlapping pixels and SCT

● Total execution

– Without overlapping: 8.65 s

– With overlapping: 6.53 s
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Multi-thread server side

● Huge amount of “small” data

– They do not fulfill the GPU
● Parallelize the “event” level processing with streams
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Multi-thread server side

ClientClient

ClientClient

ClientClient

ClientClient

FIFO
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Multi-thread server side

● Life of a thread
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Multi-thread server side
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Multi-thread server side

● Executions time

– Without overlapping: 8.65 s

– With overlapping: 6.53 s

– Multi-threading server side: 4.7 s
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CUDA Occupancy

● A good setup of Grid/Block size in card can be 
significant

● CUDA offers an API to maximize the occupancy of the 
kernels
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CUDA Occupancy

Cuda Core

GPU

Multiprocessor
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CUDA Occupancy

Cuda Core

GPU

● Bad block size Setup

Kernel 1

Kernel 2

Intra-block synchronization

Multiprocessor
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CUDA Occupancy

Cuda Core

Multiprocessor

GPU

● Better  block Setup

Kernel 1

Kernel 2

Intra-block synchronization
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CUDA Occupancy

● Maximize the occupancy kills global performances

● Runs results for 2000 events

– Big Blocks size: 10.88 s

– Original configuration: 4.7 s

– Small blocks size: 4.4 s
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CUDA Occupancy

● Maximize the occupancy kills global performances

● Runs results for 2000 events

– Big blocks size: 3 kernels in parallel (Max 5)

– Small blocks size: 4 kernels in parallel (Max 7)
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Conclusion

● Important points when using a GPU

– Port of an algorithm to the GPU

– Communicate with the GPU

– Host side design

● Keep the GPU busy

● Big occupancy does not allow the GPU to schedule its 
tasks efficiently
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