
Master Thesis

Atlas Tracking Optimization on GPU

Luis Domingues

Professor: Frédéric Bapst
Supervisors: Paolo Calafiura

Wim Lavrijsen

Expert: Mathieu Monney

02/25/2015

Luis Domingues - January 2015 2

Target

Luis Domingues - January 2015 3

Code we started from

● Demonstrator of ATLAS trigger on GPUs

● Basic host side

– Take data

– Send and compute data on GPU

– Sleep waiting the response

Luis Domingues - January 2015 4

Code we started from

Luis Domingues - January 2015 5

 Overlapping pixels and SCT

● The pixel and SCT processing are done in sequence

● Same event, but sequential processing...

Time

Pixel

SCT

Kernels
Time
stamp

Time
stamp

Kernels
Time
stamp

Time
stamp

Luis Domingues - January 2015 6

Overlapping pixels and SCT

Luis Domingues - January 2015 7

CUDA Streams

● A stream is a queue of execution

● Non-default streams can be executed in parallel

Time

H2D

H2D

H2D

Stream1

Stream2

Stream3

Kernel

Kernel

Kernel

D2H

D2H

D2H

H2D = Host to device transfer
D2H = Device to host transfer

Luis Domingues - January 2015 8

Overlapping pixels and SCT

● Use CUDA Streams

● Start the processing of SCT before pixels end

Time

Pixel stream

SCT stream

Kernels
Time
stamp

Time
stamp

Kernels
Time
stamp

Time
stamp

Luis Domingues - January 2015 9

Overlapping pixels and SCT

Luis Domingues - January 2015 10

Overlapping pixels and SCT

● For 2000 events, without overlapping

– Avg Pixel: 2.03 ms

– Avg SCT: 1.95 ms

– Total avg: 3.98 ms
● For 2000 events, overlapping

– Avg Pixel: 2.3 ms

– Avg SCT: 2.5 ms

Luis Domingues - January 2015 11

Overlapping pixels and SCT

● Total execution

– Without overlapping: 8.65 s

– With overlapping: 6.53 s

Luis Domingues - January 2015 12

Multi-thread server side

● Huge amount of “small” data

– They do not fulfill the GPU
● Parallelize the “event” level processing with streams

Luis Domingues - January 2015 13

Multi-thread server side

ClientClient

ClientClient

ClientClient

ClientClient

FIFO

Luis Domingues - January 2015 14

Multi-thread server side

● Life of a thread

Luis Domingues - January 2015 15

Multi-thread server side

Luis Domingues - January 2015 16

Multi-thread server side

● Executions time

– Without overlapping: 8.65 s

– With overlapping: 6.53 s

– Multi-threading server side: 4.7 s

Luis Domingues - January 2015 17

CUDA Occupancy

● A good setup of Grid/Block size in card can be
significant

● CUDA offers an API to maximize the occupancy of the
kernels

Luis Domingues - January 2015 18

CUDA Occupancy

Cuda Core

GPU

Multiprocessor

Luis Domingues - January 2015 19

CUDA Occupancy

Cuda Core

GPU

● Bad block size Setup

Kernel 1

Kernel 2

Intra-block synchronization

Multiprocessor

Luis Domingues - January 2015 20

CUDA Occupancy

Cuda Core

Multiprocessor

GPU

● Better block Setup

Kernel 1

Kernel 2

Intra-block synchronization

Luis Domingues - January 2015 21

CUDA Occupancy

● Maximize the occupancy kills global performances

● Runs results for 2000 events

– Big Blocks size: 10.88 s

– Original configuration: 4.7 s

– Small blocks size: 4.4 s

Luis Domingues - January 2015 22

CUDA Occupancy

● Maximize the occupancy kills global performances

● Runs results for 2000 events

– Big blocks size: 3 kernels in parallel (Max 5)

– Small blocks size: 4 kernels in parallel (Max 7)

Luis Domingues - January 2015 23

Conclusion

● Important points when using a GPU

– Port of an algorithm to the GPU

– Communicate with the GPU

– Host side design

● Keep the GPU busy

● Big occupancy does not allow the GPU to schedule its
tasks efficiently

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23

