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Experiment and theory

* The Higgs boson has ben found at the LHC g

Huge success both for theory and experiment

* What’s next!

- determine properties of the new particle

- search for deviations from the standard model

* Increasing experimental precision puts new challenges to
theory community



Les Houches wishlist

NNLO QCD and NLO EW Les Houches Wishlist

Wishlist part 1 - Higgs (V=W,Z)

Process | known desired motivation

H d\sigma @ NNLO QCD d\sigma @ NNNLO QCD + NLO EW | H branching ratios and
d\sigma @ NLO EW MC@NNLO couplings
finite quark mass effects @ NLO finite quark mass effects (@ NNLO

H+j d\sigma @ NNLO QCD (g only) d\sigma @ NNLO QCD + NLO EW Hp T
d\sigma @ NLO EW finite quark mass effects @ NLO

H+2j \sigma_tot(VBF) @ NNLO(DIS) QCD | d\sigma @ NNLO QCD + NLO EW H couplings
d\sigma(gg) @ NLO QCD
d\sigma(VBF) @ NLO EW

H+V d\sigma(V decays) @ NNLO QCD with H—bb @ same accuracy H couplings
d\sigma @ NLO EW

t\bar d\sigma(stable tops) @ NLO QCD d\sigma(NWA top decays) top Yukawa coupling

H @ NLO QCD + NLO EW

HH d\sigma @ LO QCD finite quatk mass | d\sigma @ NLO QCD finite quark mass | Higgs self coupling
effects effects
d\sigma @ NLO QCD large m_t limit | d\sigma @ NNLO QCD

Wishlist part 2 - jets and heavy quarks

Process known desired motivation
t\bar t \sigma_tot @ NNLO d\sigma(top decays) precision top/QCD,
QCD @NNLO QCD + NLOEW | gluon PDF
d\sigma(top decays) @ effect of extra radiation at high rapidity
NLO QCD top asymmetries
d\sigma(stable tops) @
NLO EW
t\bar t+j | d\sigma(NWA top d\sigma(NWA top decays) @ precision top/QCD, top asymmetries
decays) @ NLO QCD NLO QCD + NLO EW
single-top | d\sigma(NWA top d\sigma(NWA top decays) @ precision top/QCD, V_tb
decays) @ NLO QCD NNLO QCD (t channel)
dijet d\sigma @ NNLO d\sigma @ NNLO QCD + Obs.: incl. jets, dijet mass




Les Houches wishlist

QCD (g only)
d\sigma @ NLO weak

NLO EW

—> PDF fits (gluon at high x)

—> alpha_s

CMS x sections: http:/ /arxiv.org/abs/1212.6660
[http://arxiv.org/abs/1212.6660]

d\sigma @ NLO EW

NLO EW

3j d\sigma @ NLO QCD | d\sigma @ NNLO QCD + Obs.: R3/2 ot similar
NLO EW —> alpha_s at high pT
dom. uncertainty: scales
see http://arxiv.org/abs/1304.7498
[http:/ /arxiv.org/abs/1304.7498] (CMS)
\gamma-+j | d\sigma @ NLO QCD | d\sigma @ NNLO QCD + gluon PDF,

\gamma-+b for bottom PDF

Wishlist part 3 - EW gauge bosons (V=W,Z)

Process known desired motivation
\Y d\sigma(lept. V decay) @ NNLO d\sigma(lept. V decay) precision EW, PDFs
QCD + EW @ NNNLO QCD + NLO EW
MC@NNLO
V+j d\sigma(lept. V decay) @ NLO d\sigma(lept. V decay) Z+j for gluon PDF
QCD + EW @ NNLO QCD + NLO EW Wc for strange PDF
V+ij d\sigma(lept. V decay) @ NLO d\sigma(lept. V decay) study of systematics of H+jj
QCD @ NNLO QCD + NLO EW final state
\A% d\sigma(V decays) @ NLO QCD [ d\sigma(V decays) bkg H— VV
d\sigma(stable V) @ NLO EW @ NNLO QCD + NLO EW TGCs
gg —> VV d\sigma(V decays) @ LO d\sigma(V decays) @ NLO QCD bkg to H=>VV
V\gamma d\sigma(V decay) @ NLO QCD d\sigma(V decay) TGCs
d\sigma(PA, V decay) @ NLO EW | @ NNLO QCD + NLO EW
Vb\bar b d\sigma(lept. V decay) @ NLO d\sigma(lept. V decay) @ NNLO | bgk to VH(—bb)
QCD QCD
massive b massless b
VV'\gamma d\sigma(V decays) @ NLO QCD d\sigma(V decays) QGCs
N NTT 7 72N TN | O NTT 7 TOYU7r




Challenges for calculations in QFT

® Many processes involve several variables
(masses, scattering angles), e.g. 2->3 processes

® One of the main obstacles: often, no analytic expressions
for the Feynman integrals are available

® |n this talk, | will focus on virtual contributions and present
tools for the evaluation of the Feynman integrals




Qutline

Real versus ideal scattering amplitudes

new ideas for integrands and integrals in quantum field
theory

differential equations for Feynman integrals

application (new result):
all massless planar 2->3 NNLO Feynman integrals



‘Ideal’ and ‘real’ scattering amplitudes

formal theory’

supersymmetric

scattering

amplitudes
QCD at the
LHC

This talk: tools for ‘real’ QCD coming from ‘ideal’ amplitudes



ldealized "toy’ theories: from Kepler to QFT

|dealized systems play an important role in physics

Often, (hidden) symmetries help to solve a problem

Example |: Kepler problem
V=1/r V=1/r""

® [aplace-Runge-Lenz (LRL) vector is conserved

S0 1 S S AN T
A:—(”‘XL—LX")—
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® consequence: orbits do not precess



Example 2: Hydrogen atom

* described by quantum mechanics

;4=PHEIS1W&BEFI Pﬂﬂf4=7
e hidden symmetry: %
Laplace-Runge-Lenz-Pauli vector = §
* gives elegant algebraic way to find spectrum %
2 =l €
- M n=1,2...
2h? n?

* explains why there are n’2 states of energy E_n.

Is there a quantum field theory (preferably a gauge theory)
that has the same symmetry?



Example 3: N=4 super Yang-Mills theory

* generalization of massless QCD

- gluons, plus 4 complex fermions and 6 scalars in adjoint representation

- masses can be added via Higgs mechanism

e conformal symmetry and (extended) supersymmetry

* has a hidden dual conformal symmetry

[Drummond, JMH, Korchemsky, Sokatchey, 2008]
[Yangian interpretation: Drummond, JMH, Plefka, 2009]

* this symmetry is a generalization of the LRL symmetry to a

(planar) relativistic quantum field theory
[JMH and Caron-Huot, 201 3]

e.g., extra symmetry governs spectrum of
bound states of massive VV bosons




Laplace-Runge-Lenz symmetry

classical mechanics Kepler problem
quantum mechanics Hydrogen atom
quantum field theory (planar) N=4 super

Yang-Mills theory

Some people call N=4 SYM the ‘hydrogen atom of quantum field theory’
— perhaps they are not completely wrong...

Open questions:
- |s this the unique gauge theory with this property!?
- |s there a generalization to the non-planar level?



What gauge theory to study scattering
amplitudes!?

Our toy model will be (planar) N=4 supersymmetric theory

Many properties that allow to find spectacular results
e conformal field theory, ultraviolet finite

e conjectured string theory dual (AdS/CFT)

* dual conformal,Yangian symmetry

At the same time, very similar to QCD in perturbation theory
* Feynman diagrams, loop integrals

* infrared properties



Examples of developments and ideas

* on-shell techniques

(generalized) unitarity techniques [Bern, Dixon, Dunbar, Kosower], ...

on-shell recursion relations at tree level, and for loop integrands
[Britto, Cachazo, Feng, Witten], [Arkani-Hamed et al.]

* better understanding of the loop integrand

[Arkani-Hamed et al.] [Caron-Huot]

smgularlty structure [JMH, Drummond] [Bourjaily et al.]

physical properties (e.g.infrared properties)

* progress in analytically computing loop integrals

[Brown, Goncharoy, Spradlin,

algebra of iterated integrals (‘symbol’, coproduct) Vergu,Volovich, Duhr, Gangl, ...]

progress in differential equations technique



Analyzing loop integrands:
maximal cuts, leading singularities

e maximal cuts
Dy =k* Dy=(k+p1)*> Ds=(k+p+p2)° Dy=(k+p+ps+p3)

— [ RADDSDID)ID) ~

note: there are two solutions that localize the loop
momentum (related by complex conjugation); these
correspond to the leading singularities

* at higher loops, maximal cuts do not completely localize the
loop momenta; leading singularities cut also Jacobian factors



Pentagon example

* one-loop pentagon integrals
D=k Dy=(k+p1)* Ds=(k+pi+p2)° Dys=(k+p+p2+p3)° Ds=(k—ps)°
- now there are five different maximal cuts we can take

- leading singularities of the scalar pentagon
integral cannot all be normalized to one

- consider a pentagon integral with numerator:
N (k
D1Ds D3 D4 Ds

- can choose numerator such that integral has constant leading singularities

* Such integrals naturally appear in N=4 SYM [Arkani-Hamed et l, 2010]
j k

1 .
2—loo :
Avmy. = ) E '

i<j<k<l<i




"d-log forms’

* observation: sometimes, loop integrand can be rewritten in
suggestive form

& 2 ) , , [Arkani-Hamed et al, 201 2]
A0 x = A0 x / e i ¢ )(5(1;;192%5191 ;‘2 &3)_ E [Caron-Huot, talk at Trento, 2012]
) ¢ . b b [Lipstein and Mason, 2013-2014]

1 4

[also see recent work, on non-planar cases:

d* (p1 + p2)?(p1 + p3)? Arkani-Hamed et al, 2014; Bern et al., 2015]
02(0 + p1)2(L + p1 + p2)2(€ — ps)?

el e 2

* 'd-log forms : make leading singularities obvious




Leading singularities, weight conjecture

* observation: these integrals have homogeneous logarithmic
weight (" transcendentality ); e.g.,

6 1

2

5 2 = ng(l — ’U,1> -+ ng(l — UQ) -+ ng(l — Ug) -+ log(u3)log(u1) — ?
4 3

assign log weight: w(log) =1 w(Lin) =N w(ﬂ) =1
w(ab) = w(a) + w(b)

function has uniform weight 2 and kinematic-independent prefactors

° Weight Conjectu re [Arkani-Hamed, Bourijaily, Cachzao, Trnka, 2010]
[Arkani-Hamed et al, 201 2]

integrals with constant leading singularities should have uniform weight

* as we will see, differential equations can

MH, 2013
shed more light on the weight properties : ]



Differential equations (DE) technique

* idea: differentiate Feynman integral w.r.t. external
variables, e.g. s, t, masses

Some general facts:

* a given Feynman integral J satisfies an n-th order DE

* equivalently described by a system of n first-order
equations for f

—

(333]?(3?, 6) — A(xa G)f(CE, 6)

since they come from Feynman integrals, they can only have
regular singularities. Constrains matrix A(x, €)

Long and successful history:
[Kotikov, 1991] [Remiddi, 1997] [Gehrmann, Remiddi, 2000] [...]

New idea: use integrals with constants leading
singularities as basis for DE system  [MH,2013]



Example: one-loop four-point integral

® choose basis according to [JMH, 2013]

o differential equations x =1/s D =4 — 2¢
- a b | -
a — I ]
w0 =%+ | flano

—1 0 O O 0 O
a = 0 0 O b = 0O 0 O
-2 0 -1 2 9 1

* make singularities manifest

* asymptotic behavior governed by matrices a, b
e Solution: expand to any order in €
]?: P Z ekf_(k‘)

k>0
£lk)

is k-fold iterated integral (uniform weight k)



Technique applies to QCD integrals

e system of DE for N=4" integral contains QCD integrals

flae) = f) _ i/j 2

flz,e) = <>
, b ,
0, flw,€) = e |~ - | fla,o




Multi-variable case and the alphabet

e Natural generalization to multi-variable case

df(Fe) = ed | Y Aploga()| f(Z;e)

constant matrices letters (alphabet)

e Examples of alphabets:

4-point on-shell a={xr,1+x}
two-variable example (from a={z,1+z,y,1+ty,2+vy,1+zy}
| -loop Bhabha scattering): 0M.H. Smirnov]
"“hexagon functions'" in a=1z,9,%,1-z,1-y,1-%
N=4 SYM 1 —zy,1 —x2,1—yz,1—2yz}
[Goncharoyv, Spradlin,Vergu,Volovich] [Caron-Huot, He]
[Dixon, Drummond, |.M.H.] [Dixon et al.]

e Matrices and letters determine solution

* Immediate to solve in terms of iterated integrals




Physics applications of new ideas for DE

JMH, 2013]
* vector boson production

VV’ planar and non-planar NNLO integrals
[Caola, JMH, Melnikov, Smirnov, Smirnov, 2014]

equal mass case: [Gehrmann, von Manteuffel, Tancredi,Weihs, 2014]

essential ingredient for ZZ and W+W- production at NNLO
[Cascioli et al, 2014] [Gehrmann et al, 2014]
* 3-loop QCD cusp anomalous dimension (determines IR
structure of planar QCD scattering amplitudes)
[Grozin, JMH, Korchemsky, Marquard, 201 4]

B Ph)’SiCS [Bell, Huber, 2014] [Huber, Kraenkl, 2015]

* integrals for H production in gluon fusion at N3LO
[Dulat, Mistlberger, 2014] [Hoeschele,Hoff,Ueda, 201 4]
physics result: [Anastasiou et al,2014]



Beyond iterated integrals

* Note: functions beyond iterated integrals can appear in
Feynman integrals

* One such class are elliptic functions, needed e.g. in top quark
Ph)’SiCS [Czakon and Mitov, 2010]

* A generalization of the above methods is required here



New results for penta-box

integrals and five-particle
amplitudes at NNLO

[Gehrmann, JMH, Lo Presti, to appear]

[related work with Frellesvig on one-loop pentagon integrals]



five-point kinematics

* massless 5->0 process

sij = (pi +pj)° / Y

/N,

D5

* independent variables 7 = {s12, 523, S34,

* convenient to start with non-physical region
where all planar integrals are real-valued

e other kinematic regions can be reached by
analytic continuation

S45 851}

Siit1 <0



differential equations for penta-box integrals

* 6| planar master integrals

-

df(ZFe) = ed | Y Aplogay()| f(Z;e)
|k _

* integral basis chosen following [MH,2013]

T = {812,523 ,534, 545, S51 |
e alphabet of 24 letters (%) e.g.

512 512 — S34
S12 + S23 S$12 — S34 + S51
2 2
(S23 — S51) VA + $19553 — S34553 + S34545523 — 2512551523
2 2
1534551523 + S45551523 + S12S551 — S45S551 T S34545S551

Gram determinant A



boundary conditions

* the boundary conditions can be obtained from physical

conditions

. . . . Sia41 <0
* no singularities in non-physical region ~***!

* this means that certain singularities are spurious (on the
first sheet of the multivalued functions), e.g. at

512 = 534
S12 + S51 = S34

* similarly, no branch cuts should startat A = 0

* these conditions fix everything except trivial single-scale
integrals that are evaluated in terms of gamma functions



analytic solution

* we have
df(fa 6) :Edlef(fae) A:ZAk@k(f)
k

* solution in terms of iterated integrals
f(@.e) =Pexp |e [ 44| flan.)

L Jy _

v:10,1] — M

v0) =%y ~(1)=4

* can be written in terms of Goncharov polylogarithms
(for a convenient choice of 7 )




application to five-particle amplitudes

* five-particle scattering amplitudes were conjectured to
have the following form (in modern language) [Bern Dixon, Smirnov, 2003]

(L) g(L> 3 2\ Le
loo M- — L Y 0 f(L) H
0g Mz =) o S(Lo?  aLe 2

S. .
L>1 i=1 \Zurtl

8 B0 (s5) + Cla) + 0(9)

* This is in part due to the infrared structure of amplitudes

* The BDS conjecture fixes the finite part; it is now
understood to follow from dual conformal symmetry
[Drummond, JMH, Korchemsky, Sokatchey, 2008]

* previously, this formula had been tested numerically

[Cachazo, Spradlin,Volovich, 2006] (parity-even part)
[Bern, Czakon, Kosower, Roiban, Smirnov, 2006]

* we verified the parity-even part of it using our analytic results



Summary and conclusions

* supersymmetric toy models valuable for perturbative QCD

* unitarity-based methods for determining integrands
complemented with a new method for evaluating the integrals

* both rely on analyzing the integrand’s singularity structure

* many recent new results obtained with DE method
* method particularly useful for problems with many scales

* presented new results for five-particle two-loop integrals

* can be used to compute QCD +++++ amplitude
[Badger, Frellsvig, Zhang, 201 3]



Thank you!



Extra slides



The alphabet and perfect bricks (1)

Can we parametrize variables such that alphabet is rational?
Not essential, but nice feature.

e Example: Higgs production

encounter /1 — 4m2/s
—m?/s =z/(1 — z)°
a={zr,1—x,1+z} (totwo loops)

choose

Higgs production

~ Hig

Note: this is a purely kinematical question. Independent of basis choice.

* Related to diophantine equations
e.g. find rational solutions to equations such as

1+4a=0b

here we found a |-parameter solution

X

a —=

(1—x)°

1
p— 1%
1l —x




The alphabet and perfect bricks (2)

e Classic example: Euler brick problem .
b
Find a brick with sides @, b C a’ + b% =d? :
and diagonals d e |nte ers
g , | integ 21 =e?
smallest solution (P. Halcke): b2 2 —f2 c
(a,b,c)=(44,117,240) B

Perfect cuboid (add eq. @2 4 b2 4 2 = 92 ): open problem in mathematics!

* Similar equations for particle kinematics [Caron-Huot JMH, 2014]
e.g encountered in 4-d light-by-light scattering

U = —4m2/8 U = —4m2/t az]"“_a[
— \/1 -+ U, 5?} — \/1 + U, Buv — \/1 + U+ v I—“IJ

Need two-parameter solution to

Bu+ By = Buy +1

1 —wz w+ z 1 +wz
e.g. B

, Bo = , Buv =
more roots in D-dim and at 3 loops! - in general alphabet changes with the loop order!

w — w —z

Find such solutions systematically?! Minimal polynomial order?



Feynman integrals as iterated integrals (1)

* Logarithm and dilogarithm are first examples of iterated integrals
with special 'd-log " integration kernels

dt —dt dt
" dlogt T dlog(1 —t) T+ dlog(1l +t)

e these are called harmonic polylogarithms (HPL)  [Remiddi,Vermaseren]

T odx 1 dx
eg Hy, _1(z) = / = 1 / 1 2
0 X1 Jo + o

* shuffle product algebra

e coproduct structure

 Mathematica implementation [Maitre]

e weight: number of integrations

e special values related to multiple zeta values (MZV)

1 .
E — , cf. e.g. [Bluemlein, Broadhurst,
ai'ay ...a;" Vermaseren]

C’il,ig ..... 1L —
ai1>as>...ap>1

e.g. H(),l(l) — L12(1) — CQ



Feynman integrals as iterated integrals (2)

* Natural generalization: multiple polylogarithms 56 called hyperiogarithms;

h lyl ith
allow kernels w = dlog(t — a) Goncharov polylogarithms]

Gal,...an(z):/ at Gag,...,an(t)
0

t—a1

numerical evaluation: GINAC [Vollinga, Weinzierl]

e Chen iterated integrals

/ Wiz .. .Wn C: [O, 1] —— M (space of kinematical variables)
C

Alphabet: set of differential forms w; = dlog «;

integrals we discuss will be monodromy invariant on M \ S
S (set of singularities)

more flexible than multiple polylogarithms!

e Uniform weight functions (pure functions):

@Q -linear combinations of functions of the same weight



