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That was a very exciting time for QFT anomalies:

Anomalies and differential geometry (Stora and Zumino 1983)
Gravitational anomalies (Alvarez-Gaumé and Witten 1984)
Consistent and covariant anomalies (Bardeen and Zumino 1984)
Gravitational anomalies and the family index (O. Alvarez, I. Singer and
Zumino 1984)
Anomaly cancellation in Superstring Theory (Green and Schwarz 1984)
Anomaly inflow (Callan and Harvey 1985)
Anomalies in odd dimensions (Niemi and Semenoff 1983,
Alvarez-Gaumé, Della Pietra and Moore 1985)
Gauge anomalies and index theorems (Alvarez-Gaumé and Ginsparg
1985)
Hamiltonian interpretation (Alvarez-Gaumé and Nelson 1985)
...............
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Graduation day (June 86)
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Plan of the talk

Basic facts about anomalies

Relativistic hydrodynamics

Anomalous hydrodynamics

Structure of anomalous partition functions
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Wess-Zumino consistency condition (1971)

In 1969 the non-abelian gauge anomaly (ABJ) was computed

DµJµa = cA εκλµνtr
{
T a∂κ

(
Aλ∂µAν +

1
2
AλAµAν

)}
≡ −Ga[A]

with cA = 1
24π2 and Aµ = Aa

µT
a.

The anomaly results from the non-invariance of the vacuum functional
under gauge transformations

δΛAa
µ = ∂µΛa + [Aµ,Λ]a

Namely,

Jµa =
δW
δAa

µ

=⇒ δΛW [A] =

∫
dxΛa(x)Ga[A]
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The commutator of two gauge transformations acting on W [A]

(δΛδΛ′ − δΛ′δΛ)W [A] = δ[Λ,Λ′]W [A]

implies the Wess-Zumino consistency condition for the anomaly∫
dx
(
Λ′aδΛGa − ΛaδΛ′Ga

)
=

∫
dx [Λ,Λ′]aGa

In 1983 Stora and Zumino discovered a very systematic and elegant
way to obtain non-trivial solutions to these conditions, based on the
use of the ‘descent equations’.

Note: A solution that can be obtained as the gauge variation of a local
functional of the gauge field is trivial. A trivial anomaly can be eliminated
by adding local counterterms to the action.
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Descent equations

To compute the non-abelian anomaly in any even dimension 2n, one
starts from a symmetric, invariant polynomial in 2n + 2 dimensions

P = trF n+1, ‘Anomaly Polynomial’

We are using the notation of differential forms

trF n+1 = εµ1µ2...µ2n+1µ2n+2trFµ1µ2 . . .Fµ2n+1µ2n+2

and F = dA + A2 is the field strength.
From the fact that P is closed we have

dP=0 =⇒ P = dω0
2n+1(A) , (d2 = 0)

where ω0
2n+1(A) is the Chern-Simons form.
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From the gauge invariance of P

0=δΛP = δΛdω0
2n+1(A) = dδΛω

0
2n+1(A)

the gauge variation of ω0
2n+1(A) is a total differential

δΛω
0
2n+1(A) = dω1

2n(Λ,A)

Integrating this equation over aM2n+1 with boundary 2n-dimensional
space-time and using Stokes theorem

δΛ

∫
M2n+1

ω0
2n+1(A) =

∫
M2n+1

dω1
2n(Λ,A) =

∫
∂M2n+1

ω1
2n(Λ,A)

shows that we can make the identification∫
∂M2n+1

ω1
2n(Λ,A) =

∫
d2nxΛa(x)Ga[A]
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The Wess-Zumino action
ω1

4(Λ,A) = Λa(x)Ga[A] satisfies the Wess-Zumino consistency
conditions in 4-dimensional space-time because it can be written as
the variation of a functional∫

d4xΛa(x)Ga[A] = δΛ

∫
M5

ω0
2n+1(A)

It is non-trivial because the RHS is not a local functional in 4
dimensional space-time.
One can make sense of the RHS if we define A = A(x , s), where x is
4-dimensional and A(x , s) is obtained from A(x) by a finite gauge
transformation

A(x , s) = g−1dg + g−1A(x)g

Here g(x , s) = exp(sξ(x)) and the ‘pion field’ ξ(x) transforms in the
adjoint representation. One can show that this is equivalent to the
action proposed by Wess and Zumino in 1971.
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Plan of the talk

Basic facts about anomalies

Relativistic hydrodynamics

Anomalous hydrodynamics

Structure of anomalous partition functions
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From Thermodynamics to Hydrodynamics
Assume a fluid in thermodynamic equilibrium with equation of state

p = p (T , µ)

from which we may obtain the entropy, particle and energy densities

s = ∂p/∂T , n = ∂p/∂µ , ε = −p + Ts + µn

In Hydrodynamics the thermodynamic variables T and µ are
promoted to slowly varying functions T (x) and µ(x). To these, one
has to add a local fluid velocity uµ(x), with u2 = uµuµ = −1. Thus,
we take as hydrodynamic fields

{T (x), µ(x), uµ(x)}

In Ideal Hydrodynamics the local the entropy, particle and energy
densities are obtained form the equation of state by the expressions
above.
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Ideal Hydrodynamics
The energy-momentum and particle current density are given by

Tµν = (ε+ p) uµuν + p ηµν

Jµ = nuµ

These ‘constitutive relations’ can be understood by noting that in the
local rest frame defined by uµ one has

T 00 = ε , T ij = p δij , J0 = n , T 0i = J i = 0

The equations of motion are

∂µTµν = 0 (1) , ∂µJµ = 0 (2)

Combining (1) and (2) yields

∂µ(s uµ) = 0

i. e., ideal hydrodynamics is non-dissipative.
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Dissipative hydrodynamics and constitutive relations
Ideal hydrodynamics is generalized by writing the most general
expression for Tµν and Jµ

Tµν = (E + P)uµuν + Pηµν + (qµuν + qνuµ) + tµν

Jµ = Nuµ + jµ

where uµqµ = uµ jµ = uµtµν = 0, and tµν is symmetric and traceless.

E , P, qµ, jµ and tµν depend on the hydrodynamic fields

{T (x), µ(x), uµ(x)}

and their derivatives.
One may use the ambiguities in the definition of uµ to choose a
‘frame’. In the Landau frame one defines the fluid velocity in such a
way that qµ = 0.
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First order Hydrodynamics
In the Landau frame, the constitutive relations to first derivative order
are given by E = ε and

P = p − ζ ∂λuλ

tµν = −η σµν

jµ = −σT∆µν∂ν(µ/T ) + χT ∆µν∂νT

where ∆µν = uµuν + ηµν is the transverse projector (∆µνuµ = 0) and

σµν ≡ ∆µα∆νβ

(
∂αuβ + ∂βuα −

2
d
ηαβ∂µuµ

)
is the shear tensor.
Writing the second law of thermodynamics in the form ∂µSµ > 0
imposes

η ≥ 0 , ζ ≥ 0 , σ ≥ 0 , χT = 0
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QFT anomalies and Hydrodynamics

Hydrodynamics arises as the description of long wavelength, low
frequency modes in QFT at finite temperature and chemical potential.

This suggests that anomalies should play a role in the hydrodynamics
of chiral fluids. But this was not clearly realized until the work of Son
and Surówka in 2009. (See however G. Newman 2005)
In their 2009 work Hydrodynamics with Triangle Anomalies they
considered a charged chiral fluid in the presence of an external U(1)
gauge field with equations of motion

∂µTµν = FµλJλ, ∂µJµ =
C
4
εµνρσFµνFρσ

They showed that the positivity of entropy production demands the
modification of the constitutive relations.
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Concretely Jµ = nuµ + jµ, with

jµ = −σ
(
T∆µν∂ν(µ/T )− Eµ

)
+ ξωµ + ξBBµ

Here Eµ and Bµ are the electric and magnetic fields in the local rest
frame Eµ = Fµνuν ,

Eµ = Fµνuν , Bµ =
1
2
εµνρσuνFρσ

and ωµ is the vorticity

ωµ =
1
2
εµνρσuν∂ρuσ

From the entropy current condition they were able to determine the
two new transport coefficients

ξ = C
(
µ2 − 2

3
nµ3

ε+ P

)
, ξB = C

(
µ− 1

2
nµ2

ε+ P

)
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A QFT computation

Son and Sorowka used only the anomalous divergence of the U(1)
current to obtain their results. It was later realized, throught explicit
QFT computations, that they were missing crucial contributions to the
anomalous transport coefficients.

That was part of the motivation behind our work

J. Mañes and M. Valle, Parity violating gravitational response and
anomalous constituive relations, JHEP 1301 (2013) 008

where we do a QFT computation to third order in the derivative
expansion.
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We place an ideal gas of Weyl fermions in a curved background at
finite T and µ. The action is∫

d4x
√
−g i

2
[
ψ̄γµ∇µψ − (∇µψ̄)γµψ

]

where ∇µψ = ∂µψ − Γµψ and the spin connection is related to the
vierbein eνa by

Γµ =
1
8

[γa, γb]eνa ebν;µ =
1
8

[γa, γb]eνa (∂µebν − Γαµν)eβα

In terms of the effective action Γ we may define the graviton
polarization tensor

Πµν ρσ(x−y) = −4 δΓ

δgµν(x)δgρσ(y)

∣∣∣∣
g=η

= −2 δ

δgµν(x)

(√
−g〈T ρσ(y)〉

)∣∣∣∣
g=η

with
〈Tµν〉 =

2√
−g

δΓ

δgµν
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Linear response theory gives the corresponding induced change to
linear order in hµν ≡ gµν − ηµν .

δ
(√
−g〈Tµν(x)〉

)
= −1

2

∫
d4y Πµν ρσ(x − y)hρσ(y)

where the retarded version of Πµν ρσ(x − y) has to be used.

There are two contributions to Πµν ρσ:

Πµν ρσ(x − y) ≡ −i θ(x0 − y0)
〈[
Tµν(x),T ρσ(y)

]〉
− 2

〈
δ
(√
−g(x)Tµν(x)

)
δgρσ(y)

∣∣∣∣∣
g=η

〉
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For an ideal gas of left-handed Weyl fermions, the first term takes the
following form in the imaginary time formalism

Πµν ρσ
1 (iνn,q) = T

∑
ωn

∫
d3k

(2π)3 tr
[
P− /KV µν(K ,K + Q)( /K + /Q)

× V ρσ(K + Q,K )
] 1
K 2(K + Q)2 , K 0 = iωn + µ,

where P−=(1− γ5)/2 and the fermion-fermion-graviton three-vertex is

V µν(K ,P) =
1
4
[
γµ(K + P)ν + γν(K + P)µ

]
− 1

2
ηµν( /K + /P)

21 / 38



Up to parity-even contributions, the second (‘seagull’) term can be written

Πµν ρσ
2 (iνn,q) =

1
8
ηµρT

∑
ωn

∫
d3k

(2π)3 tr
[
{σνσ, /Q}P− /K

] 1
K 2

+
1
8
ηνρT

∑
ωn

∫
d3k

(2π)3 tr
[
{σµσ, /Q}P− /K

] 1
K 2 + (ρ↔ σ),

where σνσ ≡ 1
4 [γν , γσ].
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Energy-momentum tensor and metric perturbations

Once the parity-odd response function is computed, the parity
violating part of the energy-momentum tensor is given by

δ〈Tµν〉 = −1
2

Πµν ρσ(q0,q)hρσ

It is convenient to decompose a general perturbation of the metric
into SO(3) components, where a(S)

i and a(L)
i = ∂ib are the solenoidal

and irrotational parts of h0i = −ai (t, x).

Scalar Vector Tensor
h00 −2σ – –
h0i −∂ib −a(S)

i –
hij cδij + ∂i∂jd ∂iFj + ∂jFi h̃ij
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Direct substitution shows that scalar perturbations do not produce any
parity-violating effect on Tµν .

For vector perturbations, one finds

δ〈T 0i 〉 = cV(q0, q) iεijkqj(−ak + iq0Fk),

δ〈T ij〉 = cV(q0, q) iq0 (εimnq̂mq̂j + εjmnq̂mq̂i) (−an + iq0Fn),

where q̂j = qj/q. cV(q0, q) parametrizes the response to vector
perturbations of the metric.
Similarly, cT(q0, q) parametrizes the response to tensor perturbations
h̃ij

δ〈T ij〉 = −cT(q0, q)εilmδjn iql h̃mn + (i ↔ j)
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The functions cL,T are explicitly given by

cV(q0, q) =
1

24π2

(
µ3 + π2µT 2)(1 +

3Q2

q2 L(q0, q)

)
+

µ q2

192π2

[
−2Q2

q2 +
3Q2(q2 − 2Q2)

q4 L(q0, q)

]
cT(q0, q) = − 1

96π2

(
µ3 + π2µT 2)(2 +

Q2

q2 +
3Q4

q4 L(q0, q)

)
+

µ q2

192π2

[
Q4

2q4 +
3Q6

2q6 L(q0, q)

]
where

L(q0, q) = −1 +
q0

2q
ln
∣∣∣∣q0 + q
q0 − q

∣∣∣∣− iπ
2
q0

q
θ
(
1− (q0)2

q2

)
This gives the response function to third derivative order.
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Static limit and anomalous constitutive relations

The complete expressions to linear order in Q have been used in

M. Valle, Kinetic theory and evolution of cosmological fluctuations
with neutrino number asymmetry, PRD88 (2013)041304

to derive the Botzmann equation that governs the evolution of the
µ-dependent part of the chiral fermion distribution.
In the static limit q0 → 0

cV(0, q) = − 1
12π2

(
µ3 + π2µT 2)+

µ

192π2 q
2

cT(0, q) = − µ

192π2 q
2
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Static limit and anomalous constitutive relations

To first derivative order, this implies the following the parity-odd
contributions to the energy-momentum tensor

δ〈T 0i 〉 = −c(0)
V (0, q)εijk iqjak , δ〈T ij〉 = 0

Identifying h0i =−ai with the fluid velocity v i and T 0i with the
induced momentum density gi gives

δg = χV∇× v

and implies the following value for the anomalous susceptibility

χV = c(0)
V (0, q) = − 1

12π2

(
µ3 + π2µT 2)

The term ∝ T 2 was missing in the work of Son and Surowka.
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Basic facts about anomalies

Relativistic hydrodynamics

Anomalous hydrodynamics

Structure of anomalous partition functions
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Around 2012 it was realized that the consequences of QFT anomalies in
hydrodynamics could be conveniently obtained from the analysis of an
equilibrium partition function:

K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom,
Towards hydrodynamics without an entropy current, PRL109 (2012)
101601
K. Jensen, Triangle Anomalies, Thermodynamics, and Hydrodynamics,
PRD85 (2012) 125017
M. Valle, Hydrodynamics in 1 + 1 dimensions with gravitational
anomalies, JHEP 1208 (2012) 113
N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla
and T. Sharma, Constraints on Fluid Dynamics from Equilibrium
Partition Functions, JHEP 1209 (2012) 046

This is possible because the new anomaly induced transport coefficients,
which violate parity, are non-dissipative.
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The anomalous partition function is closely related to the
Wess-Zumino effective action, but has two distinctive features

(1) It can be written as the 3d integral of a local polynomial in the
background fields.

(2) It can be decomposed into two different pieces

W [A] = Wanom[A] + Winv [A]

Wanom is essentially given by the dimensional reduction of ω0
2n+1 on

the thermal cycle.

ω0
2n+1 → n tr (A0F n−1) + dΓ[A]

The non-invariance of Wanom[A] ∼ Γ[A] under gauge transformations
gives rise to the anomaly.
Winv is the integral of a Chern-Simons form. It is parity violating but
gauge invariant.
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U(1) anomalous partition function in 3 + 1 dimensions
Consider a gas of Weyl fermions in the presence of a time independent
gravitational background and U(1) gauge field

ds2 = −e2σ(x)(dt + ai (x)dx i )2 + gij(x)dx idx j

Aµ = (A0(x),A(x))

where i , j = 1, 2, 3.

We have gauge and mixed (covariant) anomalies

∇µJµcov =
1
4
εµνρσ

(
3cAFµνFρσ + cmRαβµνRβαρσ

)
∇νTµν

cov = FµνJνcov +
1
2
cm∇ν

(
ερσαβFρσRµναβ

)
For a left-handed spinor in (3 + 1) dimensions,

cA = 8cm =
1

24π2
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To first order in the derivatives of the background fields the
anomalous partition function is given by

W [A, a] =
cA
T0

∫ (
2A0ÃdÃ + A2

0Ãda
)
− c̃4dT0

∫
Ãda

where ai is the Kaluza-Klein field and Ãi = Ai − A0ai .

The integral proportional to cA is Wanom. The last integral, which is
the gauge invariant Winv , has the structure of a (mixed) Chern-Simons
term.
The coefficient c̃4d is in principle undetermined. However, it has been
argued (K. Jensen, R. Loganayagam and A. Yarom, JHEP02(2013)
088) that c̃4d = −8π2cm.
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This can be checked against explicit QFT computations by noting that
the partition function makes the following prediction for the
susceptibility considered earlier (δg = χV∇× v)

χV = 2(c̃4d µT 2 − cAµ3)

Our QFT computation gave

χV = − 1
12π2 (µ3 + π2µT 2)

which confirms that

c̃4d = −8π2cm = − 1
24
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Anomalous hydrodynamics in 2 + 1 dimensions

There are no gauge anomalies in odd space-time dimensions. As a
consequence, Wanom = 0 and

W [A, a] = Winv [A, a] =

∫ (
α(σ,A0)dÃ + T0β(σ,A0)da

)
where Ãi = Ai − A0ai and the coefficient functions of the U(1) and
KK field strengths are in principle arbitrary.

In J. Mañes and M. Valle, Parity odd equilibrium partition function in
2+1 dimensions, JHEP 1311 (2013) 178

we used Schwinger’s proper time method to compute the unknown
functions in the partition function for an ideal gas of fermions
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They are given by

α(σ,A0) =
1
4π

log
[
cosh[

β

2
(A0 − eσm)]

]
− 1

4π
log
[
cosh[

β

2
(A0 + eσm)]

]
+

A0β

4π
sgn(m)

β(σ,A0) =− β2

4π
A0eσm +

β

8π
eσm log[2 cosh(A0β) + 2 cosh(eσβm)]

− β

4π
(A0 + eσm) log

[
1 + e−β(A0+eσm)

]
+

β

4π
(A0 − eσm) log

[
1 + e−β(A0−eσm)

]
+

1
4π

Li2
[
−e−β(A0+eσm)

]
− 1

4π
Li2
[
−e−β(A0−eσm)

]
+

A2
0β

2

8π
sgn(m)
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Hall viscosity
In 2 + 1 dimensions the stress tensor gets an anomalous contribution

tµν = −ησµν − η̃σ̃µν

where η̃ is the Hall viscosity and

σ̃µν =
1
2

(
εµαβuασνρ + εναρuασµρ

)
For the background considered above σ̃µν vanishes in equilibrium, and
η̃ can not be computed from the partition function.

M. Valle has recently shown (arXiv:1503.04020) that in the presence
of torsion σ̃µν 6= 0, and the equilibrium partition function can be used
to obtain

η̃ = −〈Ψ̄Ψ〉
4

=
mT
8π

[
ln
(
1 + exp

(
µ− |m|

T

))
+ ln

(
1 + exp

(
−µ− |m|

T

))]
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State of the art

For spacetimes of even dimension 2n:

There is a well established method to obtain the non-invariant part
Wanom of the anomalous partition function by dimensional reduction
of the Chern-Simons form ω0

2n+1 on the thermal cycle. The only input
is the anomaly polynomial.

Regarding the invariant piece Winv , the authors of

K. Jensen, R. Loganayagam and A. Yarom, Chern-Simons terms from
thermal circles and anomalies, JHEP05(2014)110

propose the use of a ‘thermal anomaly polynomial’. They derive the
form of this polynomial from the condition of ‘consistency with the
thermal vacuum’.
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THANK YOU
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