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I started my scientific career by studying Bruno’s papers on Noncommutative
Geometry and then I had the priviledge of many interactions on the subject
(Bruno was referee of my Ph.D. thesis). I shall recall some of his influential
results on the subject, and later present recent developments.

(1989-1994) Quantum groups and spaces

(1992-1995) Differential calculus on quantum groups,

quantum Lie algebras of vector fields

(1998-1998) T-duality in Noncommutative Yang-Mills theories

(2001-2002) Nonabelian Seiberg-Witten map



(1989-1994) Quantum groups and spaces.

Quantum groups arose in solving with algebraic methods quantum integrable
systems (e.g. spin chains). [Leningrad school]

They independently were studied in the noncommutative geometry context of
C⇤-algebras [Woronowicz].

They found applications in CFT and in the classifications of knots and 3-
manifolds.

Quantum groups are symmetry groups of noncommutative spaces.

Bruno Zumino initially studies examples of q-groups and planes [Vokos, Wess,
Zumino]. This lead to the classification of deformations of GL(2) and its as-
sociated quantum planes. [Schirrmacher, Wess, Zumino].
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Method: Generators and relations for quantum spaces and quantum groups.

Algebra of functions on commutative space is approximated by polynomial al-
gebra in the coordinates xi. They are mutually commuting: xixj = xjxi. This
algebra is that of words in the letters xi modulo the ideal generated by the
relations xixj = xjxi. Deform these relations into the quadratic relations

xixj = q�1Rji
lmxlxm (1)

Examples of possible deformations:

xixj � xjxi = i✓ij canonical

yxj � xjy = iaxj , xjxi � xixj = 0 Lie algebra type

xixj � qxjxi = 0 quantum plane

(ex. of quadratic rel.)

2



The Poincar

´

e-Birkhoff-Witt property (i.e. ordering (x1)
n1(x2)

n2(x3)
n3....

without introducing further constraints) holds for the quadratic relations (1) if
R satisfies the Yang-Baxter equation

R12R13R23 = R23R13R12 . (2)

The quantum group is a symmetry group of (1) i.e.

xi ! x0i = T i
jx

j

with x0i that satisfy the same relations (1). The algebra generated by the matrix
entries T i

j is noncommutative, it satisfies the RTT relations:

Rab
efT

e
cT

f
d = Tb

fT
a
eR

ef
cd

i.e.

RT1T2 = T2T1R (3)

In particular the noncommutative two dimensional quantum plane is

xy = qyx quantum plane

it has a two parameter GLq,p(2) quantum symmetry group [Schirrmacher,
Wess, Zumino].
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Differential calculus on quantum planes,

and their quantum groups symmetry

[Wess Zumino CERN-TH 5697/90]

Leibnitz rule for exterior derivative, d(fg) = (df)g + fdg,

Bimodule structure of 1-forms.

d2 = 0.

Consistency conditions

d(xixj � q�1Rji
lmxlxm) = 0

(xx� q�1Rxx)dxl = 0 use associativity and

move dx to the left

Similarly we have relations and consistency conditions between partial deriva-
tives @i. Partial derivatives are related to the exterior derivative via d = dxi@i.
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The xi, @j, dx
k

algebra:

dxixj = q�1R�1ij
efx

fdxe

@jx
i = �ij + q�1R�1ki

jl x
l@k

@i@j = q�1Ref
ji@e@f

It implies the Yang-Baxter equation for the R matrix.
The quantum group GLq(n) emerges as symmetry group of the quantum
plane and its differential calculus.

xi ! x0i = T i
jx

j , @i ! @0i = T j
i @j

RT1T2 = T2T1R

Partial derivatives are finite difference operators. Discretized Geometry.

@yf(x, y) = f(x,y)�f(x,q2y)
y(1�q2)

@xf(x, y) = f(x,qy)�f(q2x,qy)
x(1�q2)

NC spaces with these features could provide a natural ultraviolet cutoff.
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q-deformed Minkowski space (q � 1)

q-Minkowski coordinates Xµ constructed as SLq(2) spinors bilinears.

[X0, XC] = 0

[XB,XC] = (q2 � 1)✏BC
AX

0XA

The q-Lorentz group and the SUq(2) angular momentum subgroup act on this
Minkowski space-time. The differential calculus on quantum Minkowski space
gives the algebra of partial derivatives, i.e. momenta.

Momenta + Lorentz ) Quantum Poincar

´

e algebra [Ogievetsky, Schmidke,
Wess and Zumino]

Coordinates + Momenta ) Quantum Phase Space [Zumino]

Note: An extra generator, a dilatation, is needed to close the Poincaré algebra
under complex conjugation. It is a unitary operator, usually denoted U (or ⇤).
@ is a function of @ and of U . This is a typical phenomenon in q-groups.
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(1992-1995) Differential calculus on quantum groups,

quantum Lie algebras of vector fields

An approach that complements the previous one: more abstract techniques
based on representation theory and universal R-matrices. More in the spirit
of deformation quantization (?-products); generators and relations then follow
choosing a basis. First the differential geometry on quantum groups [Woronow-
icz] is further investigated. Then the geometry on quantum spaces is induced.

Differential calculus on noncommutative deformations of group manifolds, the
quantum Lie algebra of left invariant vector fields (and its relation to the univer-
sal enveloping algebra).

Cartan calculus of Lie derivatives, contraction operators and exterior deriva-
tive. Then this geometry is induced on quantum homogeneous spaces: quan-
tum planes and also projective spaces CPq(N).

[collaborations with Schlieker, Jurco, Schupp, Watts, Chryssomalakos, Chong-
Sun Chu, Pei-Ming Ho].
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(1998-1998) T-duality in Noncommutative Yang-Mills theories

T-duality acts within NCSYM theories on torus. [Connes, Douglas, Schwartz]

NC plane [xi, xj] = ✓ij ) NC torus coordinates Ui = eix
i.

NCSYM: U(n), ✓ij, Gij, gSYM , M first Chern number 1
2⇡

R
TrF .

NCSYM0: U(n0), ✓0ij, G0
ij, g

0
SYM , M 0.

[Brace, Morariu, Zumino] give an explicit proof of the equality of the NCSYM
and NCSYM0 actions in the case of T2 and then of T3, respectively with T-
duality groups SO(2,2, Z) and SO(3,3, Z).
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.

Let ⇤ =

 
A B
C D

!

, then

✓0 = (A✓ + B)(C✓ +D)�1,

G0ij = (C✓ +D)ik(C✓ +D)jl G
kl,

g02SYM =
q

|det(C✓ +D)| g2SYM,
✓

n0

M 0

◆
= S(⇤)

✓
n
M

◆
spinor representation S(⇤)

The rank and the bundle topology of the NCSYM theory determine the D0 and
D2 brane charges in IIA string theory. Noncommutativity ✓ij =

R
�ij

B captures
the presence of nontrivial NS B field. The action of these SO(d, d, Z) rotations
matches the T-duality transformation on metric, string coupling constant, D-
brane chages, NS field of type IIA string theory.
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(2001-2002) Nonabelian Seiberg-Witten map A cohomological method in or-
der to obtain the SW map. [Brace, Cerchiai, Pasqua, Varadarajan, Zumino]

Seiberg Witten Map between noncommutative and commutative gauge theo-
ries

SW map determines

bA = bA[A, ✓] , b✏ = b✏[✏, A, ✓]

such that
bA[A, ✓] + �b✏ bA[A, ✓] = bA[A+ �✏A, ✓]

Noncommutative gauge transformations are one-to-one with commutative gauge
transformations. If such a map exists then the physical degrees of freedom
(gauge equivalence classes) of the commutative and noncommutative theory
are the same.

(2010) Deformation of the wedge product of exterior forms covariant under
general coordinates transformations. Covariant ^?-products [McCurdy, Zu-
mino]
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I briefly illustrate some developments of the NC geomerty thus far presented.
I will use the language of ?-product deformation (deformation quantization),
rather than generators and relations and restrict to the wide class of deforma-
tions obtained via Drinfeld twist.

Example Moyal-Weyl ?-product on R4

(f ? h)(x) = e
� i

2✓
µ⌫ @

@xµ⌦
@

@y⌫ f(x)h(y)
���
x=y

We extract the bidifferential operator

F = e�
i
2✓

µ⌫ @
@xµ⌦

@
@x⌫

F is an example of Drinfeld twist on the manifold M = R4.

F deforms the geometry of M into a noncommutative geometry.

?-Algebra of functions

f ? g = µ � F(f ⌦ g)
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?-Algebra of functions

f ? g = µ � F(f ⌦ g)

^?-Algebra of Forms

# ^? #
0 = ^ � F(#⌦ #0) .

Exterior forms are twisted-antisymmetric.

Similarly ?-Tensorfields ⌧ ⌦? ⌧ 0

It is possible to deform via F also the Lie derivative along a vector field

Lv �! L?
v

?-Lie derivatives leads to a quantum Lie algebra of vector fields of the kind
previously discussed.
See [P.A., Dimitrijevic, Meyer, Wess, ’06] where a NC gravity theory is constructed
based on NC diffeomorphisms invariance.

More in general vector bundles over M can be deformed (e.g. tangent and
cotangent bundle) and connections [Aschieri, Schenkel 2014]

Twist and Cartan calculus on quantum groups and quantum spaces methods
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Deformation of Principal bundles

(e.g. the bundle of ortonormal frames on a Riemannian manifold).
[Aschieri, Biliavsky, Pagani, Schenkel to appear]

Construct noncommutative principal bundles deforming commutative principal
bundles with a Drinfeld twist. If the twist is related to the structure group then
we have a deformation of the fiber, that becomes noncommutative. We can
also have NC deformations of the base space.

We provide a general theory, construct new examples and recover in particular
the instanton bundle on the noncommutative Connes-Landi sphere S4

✓ .

Motivations: The notion of gauge group in NC geometry can be considered
from different viewpoints:

• In gauge theories on NC spaces gauge groups are mainly U(N) or GL(N)
groups.

• A way to consider NC gauge transformations based on more general
groups (e.g. SU(N) or SO(N)) is via the Seiberg-Witten map between
commutative and noncommutative gauge transformations.
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• In geometry the gauge group is the group of authomorphisms of a Princi-
pal bundle (that are the identity on the base space). Then it is interesting
to study NC gauge groups (e.g. NC SO(N) gauge transformations) as
authomorphisms of NC principal bundles.



Further development. NC/NA geometry.

More general fluxes lead to nonassociative structures. These also can be
described by a relaxed twist F (a 2-cocycle twist).

Noncommutative and nonassociative geometry emerges also in the compact-
ification on 3-tori of closed strings in the presence of nonvanishing H-flux.
T-dualizing along all cicles leads to a non geometric flux compactification that
has a description in terms of Noncommutative and Nonassociative geometry.
[Luest], [Blumenhagen, Plauschinn], [Blumenhagen, Fuchs,Hassler,Luest, Sun]

Phase space algebra:

[xi, xj] =
i`4s
3~

Rijk pk , [xi, pj] = i~ �ij and [pi, pj] = 0 ,

which has a non-trivial Jacobiator

[xi, xj, xk] = `4s R
ijk .

This nonassociative geometry is described by a 2-cochain twist F . It induces
the expected off shell triproducts of fields on configuration spaces

[Mylonas, Schupp, Szabo].
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It also induces the full structure of ennary products related to the nonvanishing
R-flux. (n-tripoducts) [Aschieri, Szabo].

The nonassociative differential geometry can be studied with 2-cochain twist
deformation methods. The quantum Lie algebra of infinitesimal diffeomor-
phisms has been obtained. this is a first step toward a nonassociative theory of
gravity related to the non-geometric flux compactifications of the closed string
sector.

The COST research network: Quantum Structure of Spacetime starts on
thursday! It is a network for developing these research field, where many of
Bruno’s students and collaborators have key responsibilities.


