BRUNO ZUMINO

Memorial Meeting

CERN, April 27-28 2015

John Iliopoulos
ENS Paris

BRUNO ZUMINO

1923-2014

He graduated from the University of Rome in 1945

Sixty years of intense life in Theoretical Physics

Probably more than 180 publications (The exact number is not known!)

The earliest paper I found

Relativistic Heisenberg picture by Bruno Zumino.
Centro di Studio per la Fisica Nucleare del Consiglio Nazionale delle Ricerche, Roma.

Internationaler Kongress über Kernphysik und
Quantenelektrodynamik,
Basel, 5. bis 9. September 1949
Helvetica physica acta, 23, Suppl. 3 (1950) 243-247

1950-1960

- Several papers on Quantum Field Theory CPT, Spin-Statistics, Gauge invariance, ... But also

1950-1960

- Several papers on Quantum Field Theory CPT, Spin-Statistics, Gauge invariance, ... But also
- On more "phenomenological" problems: "Evaluation of the Collision Matrix for Dirac Particles in an External Potential" (1954)
"Determination of Intermolecular Potentials from Thermodynamic Data and the Law of Corresponding States" (with J.B. Keller, 1959)

1950-1960

- Several papers on Quantum Field Theory CPT, Spin-Statistics, Gauge invariance, ... But also
- On more "phenomenological" problems: "Evaluation of the Collision Matrix for Dirac Particles in an External Potential" (1954)
"Determination of Intermolecular Potentials from Thermodynamic Data and the Law of Corresponding States" (with J.B. Keller, 1959)
- Other problems in Theoretical Physics:
"Some Questions in Relativistic Hydromagnetics" (1957) "Formal Solution of the Equations of Statistical Equilibrium" (1959)

Zumino's contributions have been largely ignored:

- "On the equivalence of invariance under time reversal and under particle-antiparticle conjugation in relativistic field theories"
(Gerhard Lüders, 1954)
Dan.Mat.Fys.Medd.28, no. 5 (1954)
On page 4 we find: "This conjecture was suggested to the writer in a correspondence with B. Zumino, New York"

Zumino's contributions have been largely ignored:

- "On the equivalence of invariance under time reversal and under particle-antiparticle conjugation in relativistic field theories"
(Gerhard Lüders, 1954)
Dan.Mat.Fys.Medd.28, no. 5 (1954)
On page 4 we find: "This conjecture was suggested to the writer in a correspondence with B. Zumino, New York"
- Some Consequences of TCP-Invariance Gerhart Lüders (MIT), Bruno Zumino (Stevens Tech.) Apr 1957. 2 pp.
Phys.Rev. 106 (1957) 385-386
- 1960-1970
- Current Algebra and Algebra of Fields
- Phenomenological Lagrangians
- Chiral dynamics
- Anomaly consistency condition

1967: First collaboration with Julius Wess

- 1960-1970
- Current Algebra and Algebra of Fields
- Phenomenological Lagrangians
- Chiral dynamics
- Anomaly consistency condition

1967: First collaboration with Julius Wess

- 1970-1990
- Gauge theories
- Electroweak models
- Supersymmetry
- Supergravity
- 1960-1970
- Current Algebra and Algebra of Fields
- Phenomenological Lagrangians
- Chiral dynamics
- Anomaly consistency condition

1967: First collaboration with Julius Wess

- 1970-1990
- Gauge theories
- Electroweak models
- Supersymmetry
- Supergravity
- 1990-2014
- SUSY and SUGRA
- String theory
- Quantum groups and deformations
- Non commutative geometry

GAUGE THEORIES AND

NON-COMMUTATIVE GEOMETRY

Motivation

- 1) Short distance singularities.

Motivation

- 1) Short distance singularities.
- Heisenberg \rightarrow Peierls \rightarrow Pauli \rightarrow Oppenheimer \rightarrow Snyder

Motivation

- 1) Short distance singularities.
- Heisenberg \rightarrow Peierls \rightarrow Pauli \rightarrow Oppenheimer \rightarrow Snyder
- 2) External fluxes.

Motivation

- 1) Short distance singularities.
- Heisenberg \rightarrow Peierls \rightarrow Pauli \rightarrow Oppenheimer \rightarrow Snyder
- 2) External fluxes.
- Landau (1930) ; Peierls (1933)

Motivation

- 1) Short distance singularities.
- Heisenberg \rightarrow Peierls \rightarrow Pauli \rightarrow Oppenheimer \rightarrow Snyder
- 2) External fluxes.
- Landau (1930) ; Peierls (1933)
- 3) Seiberg-Witten map.

Motivation

- 1) Short distance singularities.
- Heisenberg \rightarrow Peierls \rightarrow Pauli \rightarrow Oppenheimer \rightarrow Snyder
- 2) External fluxes.
- Landau (1930) ; Peierls (1933)
- 3) Seiberg-Witten map.
- 4) Large N gauge theories and matrix models.

Motivation

- 1) Short distance singularities.
- Heisenberg \rightarrow Peierls \rightarrow Pauli \rightarrow Oppenheimer \rightarrow Snyder
- 2) External fluxes.
- Landau (1930) ; Peierls (1933)
- 3) Seiberg-Witten map.
- 4) Large N gauge theories and matrix models.
- 5) The construction of gauge theories using the techniques of non-commutative geometry.
- $\left[x_{\mu}, x_{\nu}\right]=i \theta_{\mu \nu}$
simplest case: θ is constant (canonical, or Heisenberg case).
- $\left[x_{\mu}, x_{\nu}\right]=i \theta_{\mu \nu}$
simplest case: θ is constant (canonical, or Heisenberg case).
- $\left[x_{\mu}, x_{\nu}\right]=i F_{\mu \nu}^{\rho} x_{\rho}$ (Lie algebra case)
- $\left[x_{\mu}, x_{\nu}\right]=i \theta_{\mu \nu}$
simplest case: θ is constant (canonical, or Heisenberg case).
- $\left[x_{\mu}, x_{\nu}\right]=i F_{\mu \nu}^{\rho} x_{\rho}$ (Lie algebra case)
- $x_{\mu} x_{\nu}=q^{-1} R_{\mu \nu}^{\rho \sigma} x_{\rho} x_{\sigma}$ (quantum space case)
- $\left[x_{\mu}, x_{\nu}\right]=i \theta_{\mu \nu}$
simplest case: θ is constant (canonical, or Heisenberg case).
- $\left[x_{\mu}, x_{\nu}\right]=i F_{\mu \nu}^{\rho} x_{\rho}$ (Lie algebra case)
- $x_{\mu} x_{\nu}=q^{-1} R_{\mu \nu}^{\rho \sigma} x_{\rho} x_{\sigma}$ (quantum space case)
- Definition of the derivative:

$$
\partial^{\mu} x_{\nu}=\delta_{\nu}^{\mu} \quad\left[x_{\mu}, f(x)\right]=i \theta_{\mu \nu} \partial^{\nu} f(x)
$$

- $\left[x_{\mu}, x_{\nu}\right]=i \theta_{\mu \nu}$
simplest case: θ is constant (canonical, or Heisenberg case).
- $\left[x_{\mu}, x_{\nu}\right]=i F_{\mu \nu}^{\rho} x_{\rho}$ (Lie algebra case)
- $x_{\mu} x_{\nu}=q^{-1} R_{\mu \nu}^{\rho \sigma} x_{\rho} x_{\sigma}$ (quantum space case)
- Definition of the derivative:
$\partial^{\mu} x_{\nu}=\delta_{\nu}^{\mu} \quad\left[x_{\mu}, f(x)\right]=i \theta_{\mu \nu} \partial^{\nu} f(x)$
- Define a * product
$f * g=\left.e^{\frac{i}{2} \frac{\partial}{\alpha_{\mu}} \theta_{\mu \nu} \frac{\partial}{y_{\nu}}} f(x) g(y)\right|_{x=y}$

All computations can be viewed as expansions in θ expansions in the external field

More efficient ways?

Large N field theories

- $\phi^{i}(x) i=1, \ldots, N ; N \rightarrow \infty$
$\phi^{i}(x) \rightarrow \phi(\sigma, x) 0 \leq \sigma \leq 2 \pi$
$\sum_{i=1}^{\infty} \phi^{i}(x) \phi^{i}(x) \rightarrow \int_{0}^{2 \pi} d \sigma(\phi(\sigma, x))^{2}$
but
$\phi^{4} \rightarrow\left(\int\right)^{2}$

Large N field theories

- $\phi^{i}(x) i=1, \ldots, N ; N \rightarrow \infty$
$\phi^{i}(x) \rightarrow \phi(\sigma, x) 0 \leq \sigma \leq 2 \pi$
$\sum_{i=1}^{\infty} \phi^{i}(x) \phi^{i}(x) \rightarrow \int_{0}^{2 \pi} d \sigma(\phi(\sigma, x))^{2}$
but
$\phi^{4} \rightarrow\left(\int\right)^{2}$
- For a Yang-Mills theory, the resulting expression is local

Gauge theories on surfaces

E.G. Floratos and J.I.

- Given an $S U(N)$ Yang-Mills theory in a d-dimensional space

$$
A_{\mu}(x)=A_{\mu}^{a}(x) t_{a}
$$

Gauge theories on surfaces

E.G. Floratos and J.I.

- Given an $S U(N)$ Yang-Mills theory in a d-dimensional space

$$
A_{\mu}(x)=A_{\mu}^{a}(x) t_{a}
$$

- there exists a reformulation in $d+2$ dimensions

$$
A_{\mu}(x) \rightarrow \mathcal{A}_{\mu}\left(x, z_{1}, z_{2}\right) \quad F_{\mu \nu}(x) \rightarrow \mathcal{F}_{\mu \nu}\left(x, z_{1}, z_{2}\right)
$$

with

$$
\left[z_{1}, z_{2}\right]=\frac{2 i}{N}
$$

$\left[A_{\mu}(x), A_{\nu}(x)\right] \rightarrow\left\{\mathcal{A}_{\mu}\left(x, z_{1}, z_{2}\right), \mathcal{A}_{\nu}\left(x, z_{1}, z_{2}\right)\right\}_{\text {Moyal }}$
$\left[A_{\mu}(x), \Omega(x)\right] \rightarrow\left\{\mathcal{A}_{\mu}\left(x, z_{1}, z_{2}\right), \cdot\left(x, z_{1}, z_{2}\right)\right\}_{\text {Moyal }}$
$\int d^{4} x \operatorname{Tr}\left(F_{\mu \nu}(x) F^{\mu \nu}(x)\right) \rightarrow \int d^{4} x d z_{1} d z_{2} \mathcal{F}_{\mu \nu}\left(x, z_{1}, z_{2}\right) *$ $\mathcal{F}^{\mu \nu}\left(x, z_{1}, z_{2}\right)$

I. Large N

-A simple algebraic result:

At large N

The $\operatorname{SU}(N)$ algebra \rightarrow The algebra of the area preserving diffeomorphisms of a closed surface. (sphere or torus).
-The structure constants of $\left[\operatorname{SDiff}\left(S^{2}\right)\right]$ are the limits for large N of those of $S U(N)$.
-Alternatively: For the sphere
$x_{1}=\cos \phi \sin \theta, \quad x_{2}=\sin \phi \sin \theta, \quad x_{3}=\cos \theta$
$Y_{l, m}(\theta, \phi)=\sum_{\substack{i_{k}=1,2,3 \\ k=1, \ldots, l}} \alpha_{i_{1} \ldots i_{l}}^{(m)} x_{i_{1}} \ldots x_{i_{l}}$
where $\alpha_{i_{1} \ldots i_{l}}^{(m)}$ is a symmetric and traceless tensor.
For fixed I there are $2 I+1$ linearly independent tensors $\alpha_{i_{1} \ldots i_{I}}^{(m)}$, $m=-l, \ldots, l$.

Choose, inside $S U(N)$, an $S U(2)$ subgroup.
$\left[S_{i}, S_{j}\right]=i \epsilon_{i j k} S_{k}$
A basis for $S U(N)$:
$S_{l, m}^{(N)}=\sum_{\substack{i_{k}=1,2,3 \\ k=1, \ldots, l}} \alpha_{i_{1} \ldots i_{l}}^{(m)} S_{i_{1} \ldots S_{i}}$
$\left[S_{l, m}^{(N)}, S_{l^{\prime}, m^{\prime}}^{(N)}\right]=i f_{l, m ; l^{\prime}, m^{\prime}}^{(N) I^{\prime \prime}, m^{\prime \prime}} S_{l^{\prime \prime}, m^{\prime \prime}}^{(N)}$

The three $S U(2)$ generators S_{i}, rescaled by a factor proportional to $1 / N$, will have well-defined limits as N goes to infinity.
$S_{i} \rightarrow T_{i}=\frac{2}{N} S_{i}$
$\left[T_{i}, T_{j}\right]=\frac{2 i}{N} \epsilon_{i j k} T_{k}$
$T^{2}=T_{1}^{2}+T_{2}^{2}+T_{3}^{2}=1-\frac{1}{N^{2}}$
In other words: under the norm $\|x\|^{2}=\operatorname{Tr} x^{2}$, the limits as N goes to infinity of the generators T_{i} are three objects x_{i} which commute and are constrained by
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$

$$
\begin{aligned}
& \frac{N}{2 i}[f, g] \rightarrow \quad \epsilon_{i j k} x_{i} \frac{\partial f}{\partial x_{j}} \frac{\partial g}{\partial x_{k}} \\
& \frac{N}{2 i}\left[T_{I, m}^{(N)}, T_{I^{\prime}, m^{\prime}}^{(N)}\right] \rightarrow\left\{Y_{I, m}, Y_{I^{\prime}, m^{\prime}}\right\}
\end{aligned}
$$

$$
N\left[A_{\mu}, A_{\nu}\right] \rightarrow \quad\left\{A_{\mu}(x, \theta, \phi), A_{\nu}(x, \theta, \phi)\right\}
$$

II. To all orders

We can parametrise the T_{i} 's in terms of two operators, z_{1} and z_{2}.

$$
\begin{aligned}
& T_{+}=T_{1}+i T_{2}=e^{\frac{i z_{1}}{2}}\left(1-z_{2}^{2}\right)^{\frac{1}{2}} e^{\frac{i z_{1}}{2}} \\
& T_{-}=T_{1}-i T_{2}=e^{-\frac{i z_{1}}{2}}\left(1-z_{2}^{2}\right)^{\frac{1}{2}} e^{-\frac{i z_{1}}{2}} \\
& T_{3}=z_{2}
\end{aligned}
$$

If we assume that z_{1} and z_{2} satisfy:
$\left[z_{1}, z_{2}\right]=\frac{2 i}{N}$
The T_{i} 's satisfy the $S U(2)$ algebra.
If we assume that the T_{i} 's satisfy the $S U(2)$ algebra, the z_{i} 's satisfy the Heisenberg algebra

The techniques of non-com. geometry

- Gauge transformations are:

The techniques of non-com. geometry

- Gauge transformations are:
- Diffeomorphisms space-time

The techniques of non-com. geometry

- Gauge transformations are:
- Diffeomorphisms space-time
- Internal symmetries

The techniques of non-com. geometry

- Gauge transformations are:
- Diffeomorphisms space-time
- Internal symmetries
- Question: Is there a space on which Internal symmetry transformations act as Diffeomorphisms?

The techniques of non-com. geometry

- Gauge transformations are:
- Diffeomorphisms space-time
- Internal symmetries
- Question: Is there a space on which Internal symmetry transformations act as Diffeomorphisms?
- Answer: Yes, but it is a space with non-commutative geometry. A space defined by an algebra of matrix-valued functions
- SO WHAT?
- SO WHAT?
- A possible way to unify gauge theories and Gravity???
- SO WHAT?
- A possible way to unify gauge theories and Gravity???
- A possible connection between gauge fields and scalar fields.
- SO WHAT?
- A possible way to unify gauge theories and Gravity???
- A possible connection between gauge fields and scalar fields.
- New predictions for the B.E.H. mass?

Is the S.M. reducible?

- Can we impose a condition of the form

$$
\frac{m_{\phi}}{m_{z}} \quad \text { or } \quad \frac{m_{\phi}}{m_{W}}=C ?
$$

Is the S.M. reducible?

- Can we impose a condition of the form

$$
\frac{m_{\phi}}{m_{z}} \quad \text { or } \quad \frac{m_{\phi}}{m_{W}}=C \text { ? }
$$

- Answer: NO! There is no fixed point in the renormalisation group equations.

Is the S.M. reducible?

- Can we impose a condition of the form

$$
\frac{m_{\phi}}{m_{z}} \text { or } \frac{m_{\phi}}{m_{W}}=C \text { ? }
$$

- Answer: NO! There is no fixed point in the renormalisation group equations.
- Related question: Is there a B.R.S. symmetry for this model?

Conclusions

- Non-Commutative Geometry has come to stay!

Conclusions

- Non-Commutative Geometry has come to stay!
- Whether it will turn out to be convenient for us to use is still questionable.

Conclusions

- Non-Commutative Geometry has come to stay!
- Whether it will turn out to be convenient for us to use is still questionable.
- It will depend on our ability to simplify the mathematics sufficiently, or to master them deeply, in order to get new insights

Conclusions

- Non-Commutative Geometry has come to stay!
- Whether it will turn out to be convenient for us to use is still questionable.
- It will depend on our ability to simplify the mathematics sufficiently, or to master them deeply, in order to get new insights
- We need somebody with knowledge and imagination

