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BRUNO ZUMINO

1923-2014

He graduated from the University of Rome in 1945

Sixty years of intense life in Theoretical Physics

Probably more than 180 publications (The exact number is not
known!)



The earliest paper I found

Internationaler Kongress über Kernphysik und
Quantenelektrodynamik,
Basel, 5. bis 9. September 1949
Helvetica physica acta, 23, Suppl. 3 (1950) 243-247



1950-1960

I Several papers on Quantum Field Theory
CPT, Spin-Statistics, Gauge invariance, ... But also

I On more "phenomenological" problems:
"Evaluation of the Collision Matrix for Dirac Particles in an
External Potential" (1954)

"Determination of Intermolecular Potentials from
Thermodynamic Data and the Law of Corresponding States"
(with J.B. Keller, 1959)

I Other problems in Theoretical Physics:
"Some Questions in Relativistic Hydromagnetics" (1957)
"Formal Solution of the Equations of Statistical Equilibrium"
(1959)
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CPT

Zumino’s contributions have been largely ignored:

I "On the equivalence of invariance under time reversal and
under particle-antiparticle conjugation in relativistic field
theories"
(Gerhard Lüders, 1954)
Dan.Mat.Fys.Medd.28, no.5 (1954)
On page 4 we find: "This conjecture was suggested to the
writer in a correspondence with B. Zumino, New York"

I Some Consequences of TCP-Invariance
Gerhart Lüders (MIT), Bruno Zumino (Stevens Tech.)
Apr 1957. 2 pp.
Phys.Rev. 106 (1957) 385-386
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I 1960-1970
• Current Algebra and Algebra of Fields
• Phenomenological Lagrangians
• Chiral dynamics
• Anomaly consistency condition
1967: First collaboration with Julius Wess

I 1970-1990
• Gauge theories
• Electroweak models
• Supersymmetry
• Supergravity

I 1990-2014
• SUSY and SUGRA
• String theory
• Quantum groups and deformations
• Non commutative geometry
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GAUGE THEORIES
AND

NON-COMMUTATIVE GEOMETRY



Motivation

I 1) Short distance singularities.

I Heisenberg → Peierls → Pauli → Oppenheimer → Snyder

I 2) External fluxes.

I Landau (1930) ; Peierls (1933)

I 3) Seiberg-Witten map.

I 4) Large N gauge theories and matrix models.

I 5) The construction of gauge theories using the techniques of
non-commutative geometry.
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I [xµ, xν ] = iθµν
simplest case: θ is constant (canonical, or Heisenberg case).

I [xµ, xν ] = iF ρµνxρ (Lie algebra case)

I xµxν = q−1Rρσµν xρxσ (quantum space case)

I Definition of the derivative:
∂µxν = δµν [xµ, f (x)] = iθµν∂ν f (x)

I Define a * product

f ∗ g = e
i
2
∂
xµ
θµν

∂
yν f (x)g(y)|x=y
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All computations can be viewed as expansions in θ
expansions in the external field

More efficient ways?



Large N field theories

I φi (x) i = 1, ...,N ; N → ∞

φi (x) → φ(σ, x) 0 ≤ σ ≤ 2π

∑∞
i=1 φ

i (x)φi (x) →
∫ 2π
0 dσ(φ(σ, x))2

but

φ4 → (
∫

)2

I For a Yang-Mills theory, the resulting expression is local
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Gauge theories on surfaces

E.G. Floratos and J.I.

I Given an SU(N) Yang-Mills theory in a d−dimensional space

Aµ(x) = Aa
µ(x) ta

I there exists a reformulation in d+2 dimensions

Aµ(x)→ Aµ(x , z1, z2) Fµν(x)→ Fµν(x , z1, z2)

with [z1, z2] = 2i
N
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[Aµ(x),Aν(x)]→ {Aµ(x , z1, z2),Aν(x , z1, z2)}Moyal

[Aµ(x),Ω(x)]→ {Aµ(x , z1, z2), ˙(x , z1, z2)}Moyal

∫
d4x Tr (Fµν(x)Fµν(x)) →

∫
d4xdz1dz2 Fµν(x , z1, z2) ∗

Fµν(x , z1, z2)



I. Large N

-A simple algebraic result:

At large N

The SU(N) algebra → The algebra of the area preserving
diffeomorphisms of a closed surface. (sphere or torus).



-The structure constants of [SDiff (S2)] are the limits for large N of
those of SU(N).



-Alternatively: For the sphere

x1 = cosφ sinθ, x2 = sinφ sinθ, x3 = cosθ

Yl ,m(θ, φ) =
∑

ik=1,2,3
k=1,...,l

α
(m)
i1...il

xi1 ...xil

where α(m)
i1...il

is a symmetric and traceless tensor.

For fixed l there are 2l + 1 linearly independent tensors α(m)
i1...il

,
m = −l , ..., l .



Choose, inside SU(N), an SU(2) subgroup.

[Si , Sj ] = iεijkSk

A basis for SU(N):

S (N)
l ,m =

∑
ik=1,2,3
k=1,...,l

α
(m)
i1...il

Si1 ...Sil

[S (N)
l ,m , S

(N)
l ′,m′ ] = if (N)l ′′,m′′

l ,m; l ′,m′ S (N)
l ′′,m′′



The three SU(2) generators Si , rescaled by a factor proportional to
1/N, will have well-defined limits as N goes to infinity.

Si → Ti = 2
N Si

[Ti ,Tj ] = 2i
N εijkTk

T 2 = T 2
1 + T 2

2 + T 2
3 = 1− 1

N2

In other words: under the norm ‖x‖2 = Trx2, the limits as N goes
to infinity of the generators Ti are three objects xi which commute
and are constrained by

x2
1 + x2

2 + x2
3 = 1



N
2i [f , g ]→ εijk xi

∂f
∂xj

∂g
∂xk

N
2i [T (N)

l ,m ,T (N)
l ′,m′ ]→ {Yl ,m,Yl ′,m′}

N[Aµ,Aν ]→ {Aµ(x , θ, φ),Aν(x , θ, φ)}



II. To all orders

We can parametrise the Ti ’s in terms of two operators, z1 and z2.

T+ = T1 + iT2 = e
iz1
2 (1− z2

2 )
1
2 e

iz1
2

T− = T1 − iT2 = e−
iz1
2 (1− z2

2 )
1
2 e−

iz1
2

T3 = z2



If we assume that z1 and z2 satisfy:

[z1, z2] = 2i
N

The Ti ’s satisfy the SU(2) algebra.

If we assume that the Ti ’s satisfy the SU(2) algebra, the zi ’s satisfy
the Heisenberg algebra



The techniques of non-com. geometry

I Gauge transformations are:

I Diffeomorphisms space-time

I Internal symmetries

I Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?

I Answer: Yes, but it is a space with non-commutative geometry.
A space defined by an algebra of matrix-valued functions



The techniques of non-com. geometry

I Gauge transformations are:

I Diffeomorphisms space-time

I Internal symmetries

I Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?

I Answer: Yes, but it is a space with non-commutative geometry.
A space defined by an algebra of matrix-valued functions



The techniques of non-com. geometry

I Gauge transformations are:

I Diffeomorphisms space-time

I Internal symmetries

I Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?

I Answer: Yes, but it is a space with non-commutative geometry.
A space defined by an algebra of matrix-valued functions



The techniques of non-com. geometry

I Gauge transformations are:

I Diffeomorphisms space-time

I Internal symmetries

I Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?

I Answer: Yes, but it is a space with non-commutative geometry.
A space defined by an algebra of matrix-valued functions



The techniques of non-com. geometry

I Gauge transformations are:

I Diffeomorphisms space-time

I Internal symmetries

I Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?

I Answer: Yes, but it is a space with non-commutative geometry.
A space defined by an algebra of matrix-valued functions



I SO WHAT?

I A possible way to unify gauge theories and Gravity???

I A possible connection between gauge fields and scalar fields.

I New predictions for the B.E.H. mass?



I SO WHAT?

I A possible way to unify gauge theories and Gravity???

I A possible connection between gauge fields and scalar fields.

I New predictions for the B.E.H. mass?



I SO WHAT?

I A possible way to unify gauge theories and Gravity???

I A possible connection between gauge fields and scalar fields.

I New predictions for the B.E.H. mass?



I SO WHAT?

I A possible way to unify gauge theories and Gravity???

I A possible connection between gauge fields and scalar fields.

I New predictions for the B.E.H. mass?



Is the S.M. reducible?

I Can we impose a condition of the form
mφ
mZ

or mφ
mW

= C ?

I Answer: NO! There is no fixed point in the renormalisation
group equations.

I Related question: Is there a B.R.S. symmetry for this model?
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Conclusions

I Non-Commutative Geometry has come to stay!

I Whether it will turn out to be convenient for us to use is still
questionable.

I It will depend on our ability to simplify the mathematics
sufficiently, or to master them deeply, in order to get new
insights

I We need somebody with knowledge and imagination
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