

The search for Supersymmetry at the LHC

Zumino Memorial

CERN, 27 April 2015

Tejinder S. Virdee, Imperiăr ීරී රිසිදු , London

LªHC Wstarcirca MCMXC's: Sergio da Vittorio Veneto aka Sergio Cittolin

2015 The Year of Light

The United Nations decided to proclaim 2015 the International Year of Light and Light based technologies.

INTERNATIONAL YEAR OF LIGHT 2015 1015: Ibn Al-Haytham - the works on optics,

1815: Fresnel - the notion of light as a wave

1865: Maxwell - the electromagnetic theory of light propagation,

1905: Einstein - theory of the photoelectric effect and of the **1915: Einstein** - embedding of light in cosmology through general relativity,

1965: Penzias and Wilson - the discovery of the cosmic microwave background

1965: Kao - transmission of light in fibres for optical communication.

Electroweak Unification

A key feature in the theory of electroweak unification of Salam and Weinberg (1967) (and earlier work of S. Glashow) was the prediction of the Z boson and the existence of neutral current interactions.

In 1973, the existence of neutral current interaction was confirmed at CERN. (In 1974, the Wess-Zumino paper "Supergauge transformations in 4D") appeared

In 1983, the *W* and *Z* particles were discovered at CERN (UA1 and UA2) *then* the Higgs boson became the last important missing piece of SM! Setting the scene for the LHC.

Physics Outlook: Questions for the LHC

1. SM contains too many apparently arbitrary features - presumably these should become clearer as we make progress towards a unified theory.

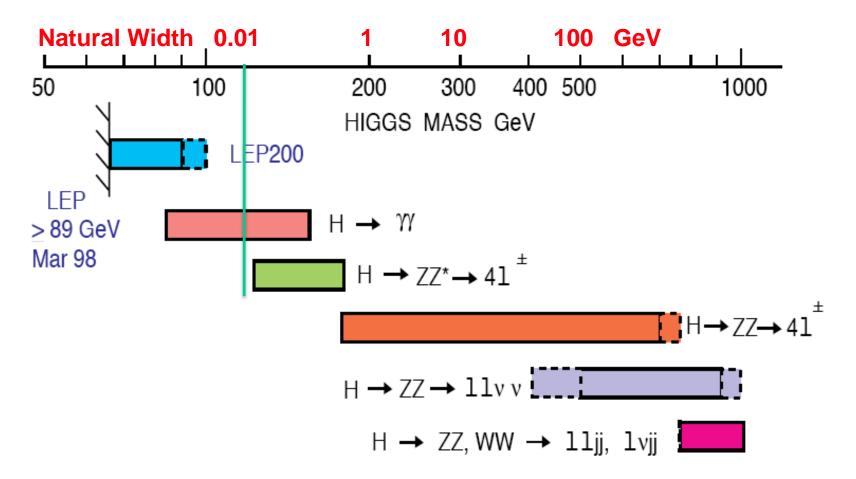
2. Clarify the e-w symmetry breaking sector SM has an unproven element: the generation of mass Higgs mechanism ->? or other physics ? Answer will be found at LHC energies

3. SM gives nonsense at LHC energies

e.g. why $M_{\gamma} = 0$ $M_{W}, M_{Z} \sim 100,000 \text{ MeV}!$

Transparency from the early 90's

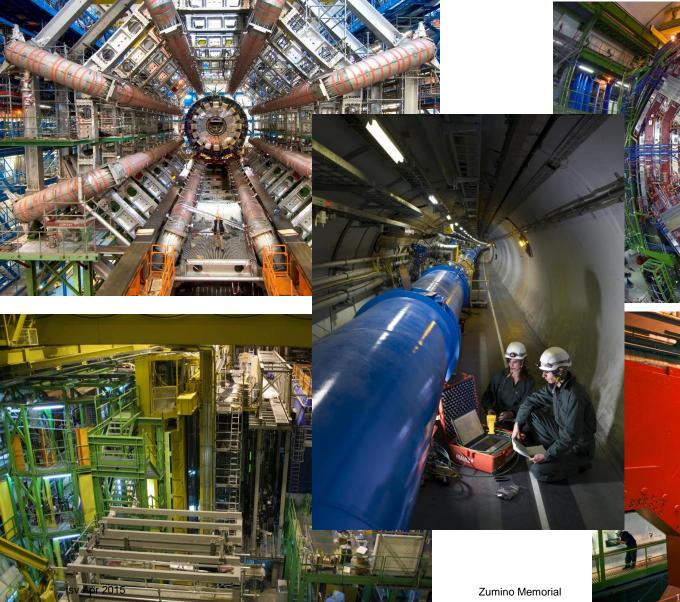
Probability of some processes becomes greater than 1 !! Nature's slap on the wrist! Higgs mechanism provides a possible solution

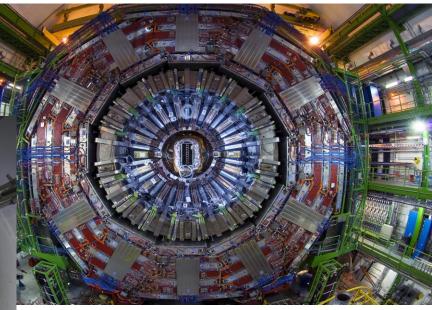

4. Identify particles that make up Dark Matter

Even if the Higgs boson is found all is not completely well with SM alone: next question is "Why is (Higgs) mass so low"? *If a new symmetry (Supersymmetry) is the answer, it must show up at O*(**1TeV)**

5. Search for new physics at the TeV scale SM is logically incomplete – does not incorporate gravity Superstring theory strangic concepts: supersymmetry, extra space-time dimen/sions ?

SM Higgs Boson as a Physics Benchmark For Detector Design

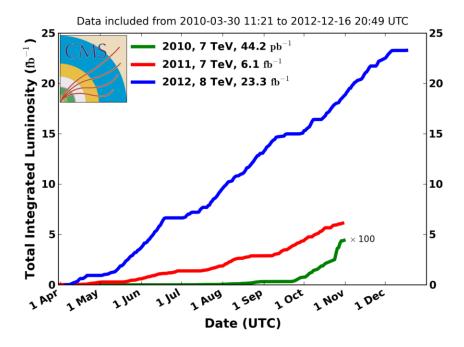

Theory does not predict m_H The favourable decay modes change with mass



Zumino Memorial

CERN

The LHC Accelerator and Experiments Have Performed Exceedingly Well

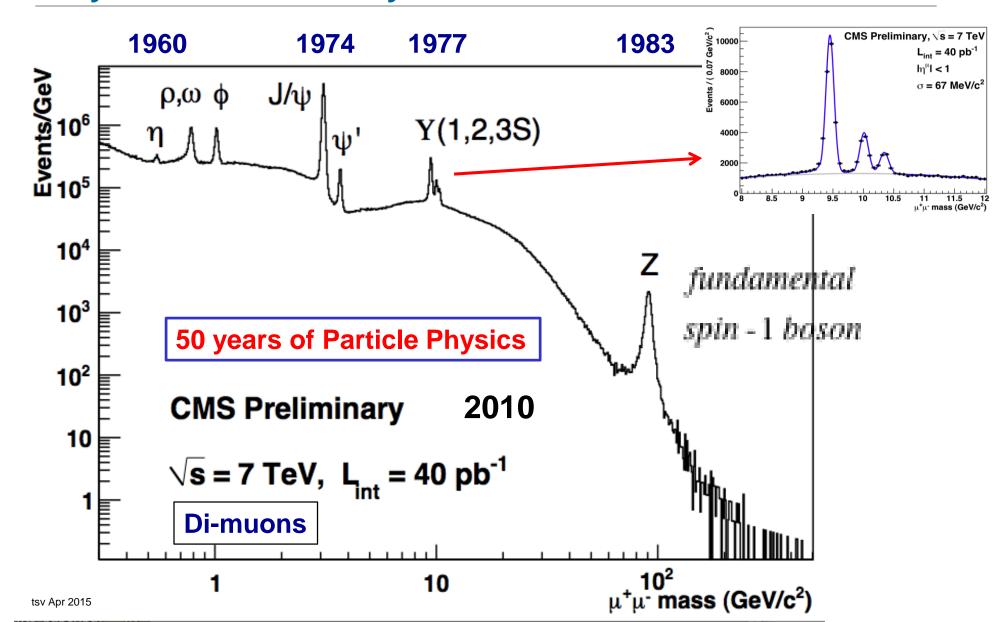

2012 Stable beams 36%

Mode: Proton Physics Fills: 2469 - 3457 [776 Fills] SB Time: 73 days 17 hrs 45 mins

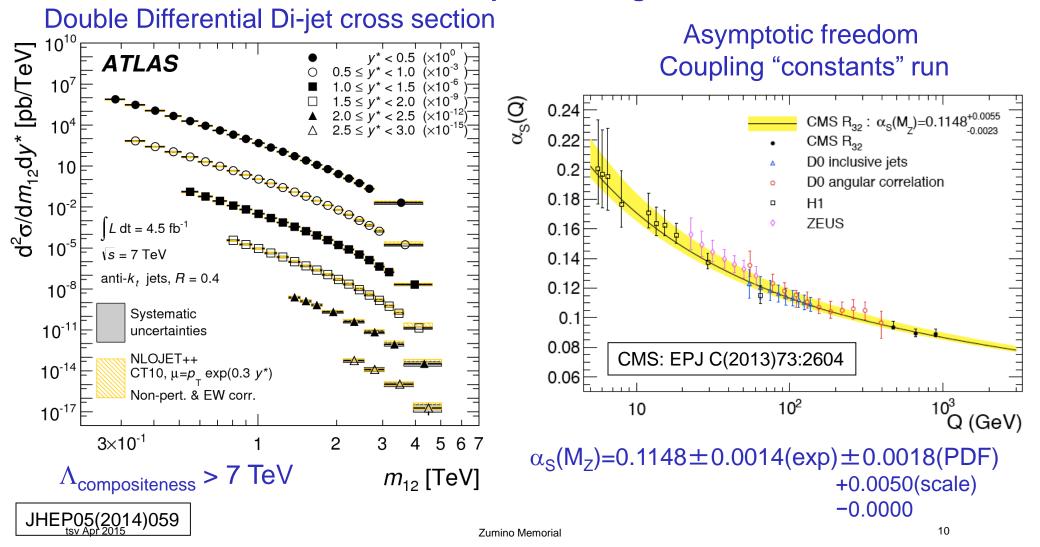
Access - No beam : 13.62%
 Machine setup : 27.75%
 Beam in : 14.94%
 Ramp + squeeze : 7.82%
 Stable beams: 35.87%

CMS Integrated Luminosity, pp

	Inner Tracking Detectors			Calorimeters				Muon Detectors				Magnets	
S	Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
	99.8	99.6	99.2	97.5	99.2	99.5	99.2	99.4	98.8	99.4	99.1	99.8	99.3
	Luminosity weighted relative detector uptime. Used for Physics > 90% of recorded data.												

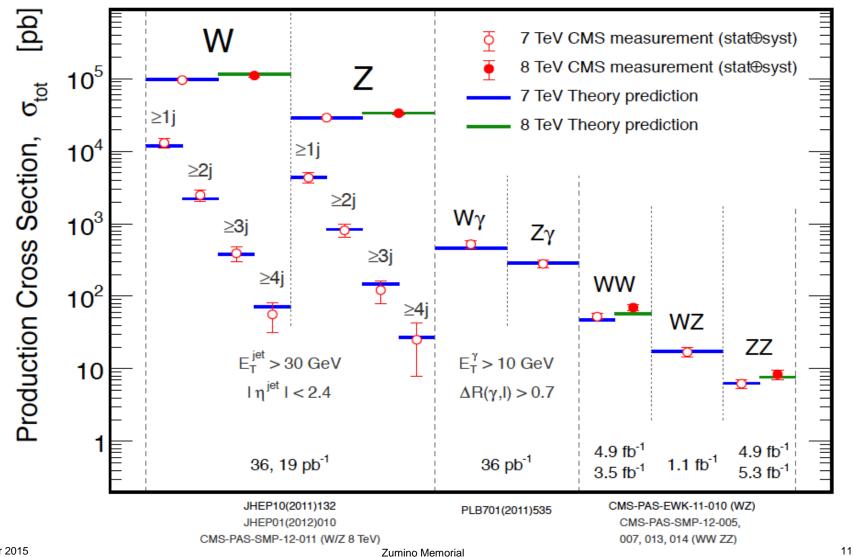

ATLA

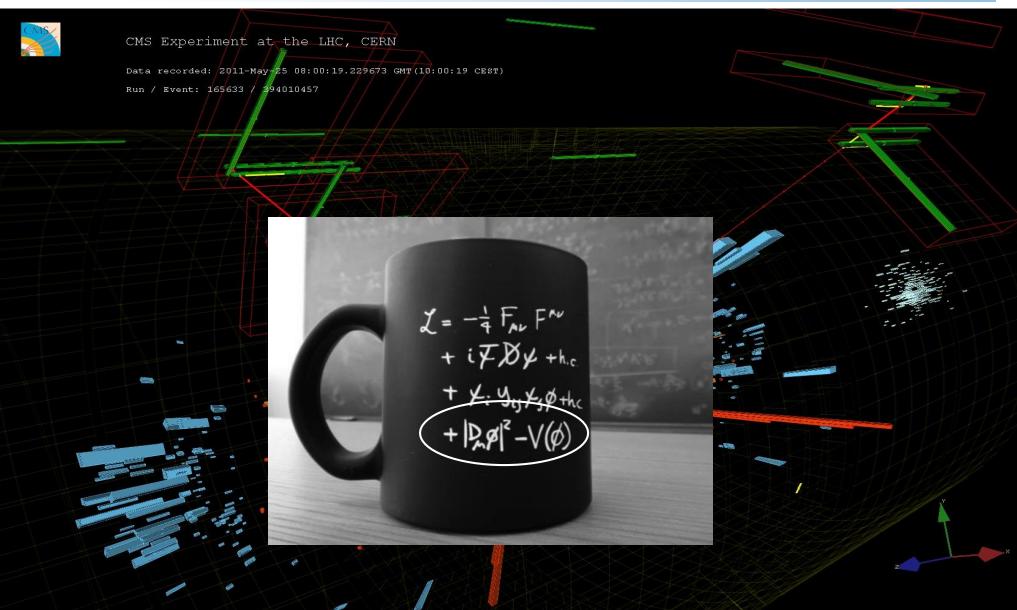
Do the experiments perform as designed?
 Is known physics correctly observed?
 Then look for new physics


We can only claim signals of new physics after having made measurements of already known physics that are consistent with the precise predictions of the Standard Model.

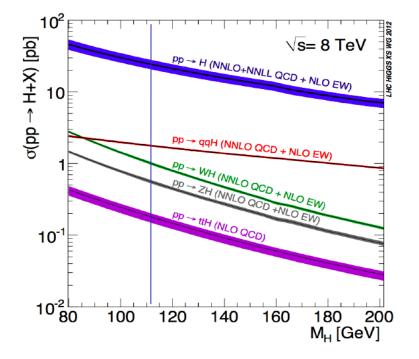
1. Performance of the Experiments 50 years of Particle Physics: The First Month at LHC Run I

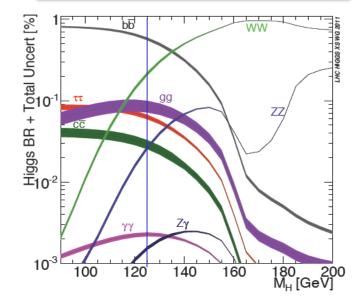
Routinely and successfully analyse physics at the high energy frontier in terms of quarks and gluons!




2. Electroweak Physics

CMS

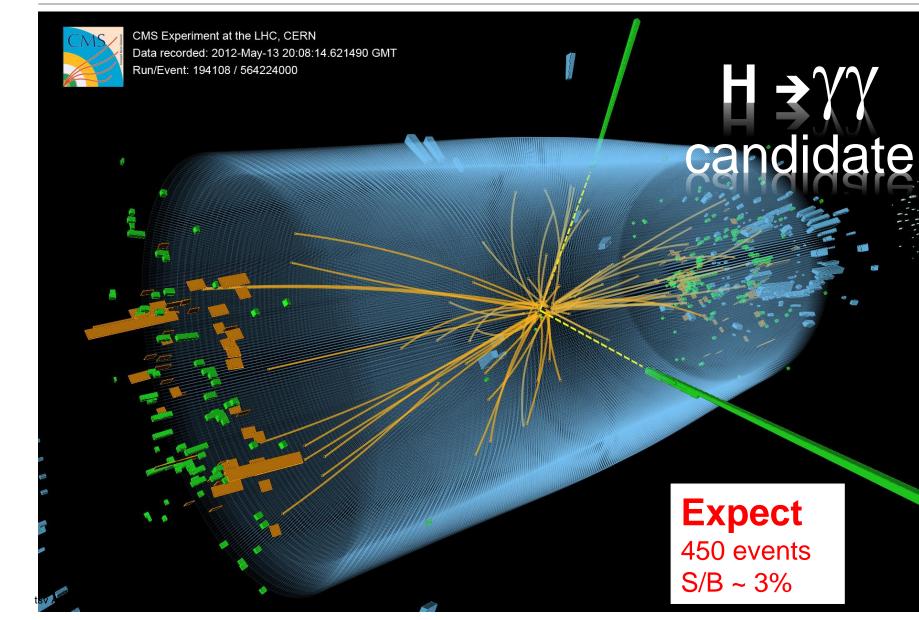

Search for the Higgs boson


SM Higgs Boson: Production Cross-section

Integrated Luminosity ~5 fb⁻¹ at √s=7TeV and ~ 20fb⁻¹ at √s=8TeV 2000 trillion pp collisions examined/Expt And potentially produced

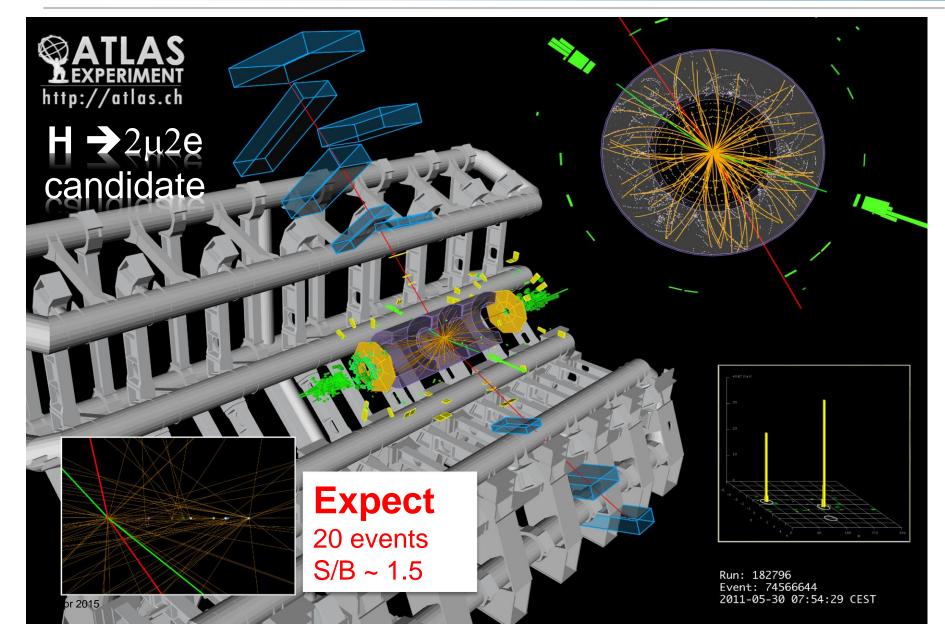
~ 600k SM Higgs bosons (m_H=125 GeV)

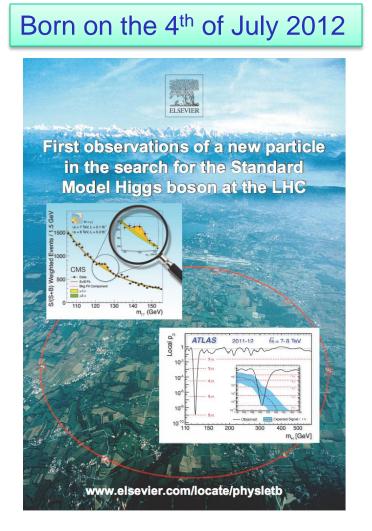
decay branching fraction



- Natural Width: $\Gamma_{H_{-125}} \sim \text{few MeV}$
- The best instrumental mass resolution achievable is ~1GeV in only two channels with decay Branching Fractions:

 $H \rightarrow \gamma \gamma$ is 2 per mille $H \rightarrow ZZ \rightarrow 4I$ is ~10⁻⁴





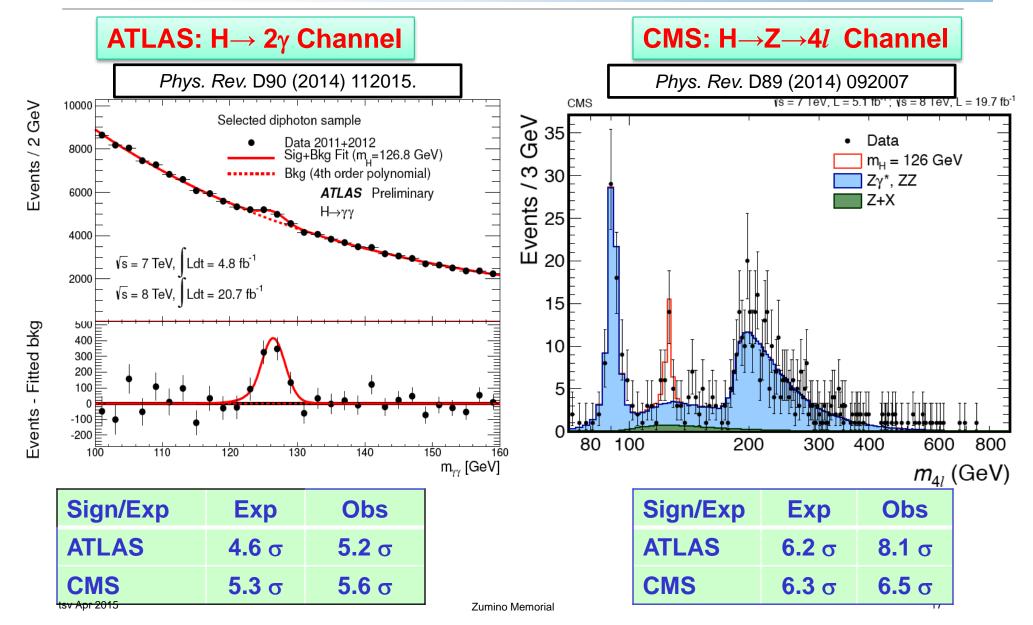
$H \rightarrow ZZ^{(*)} \rightarrow 2\mu 2e$ Channel

PLB 716(2012)1, 30

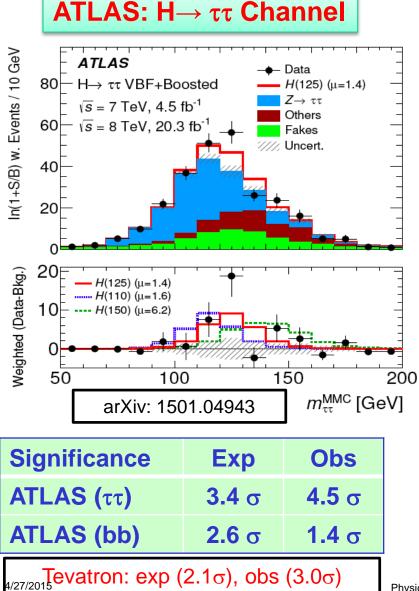
JULY 7TH-13TH 2012

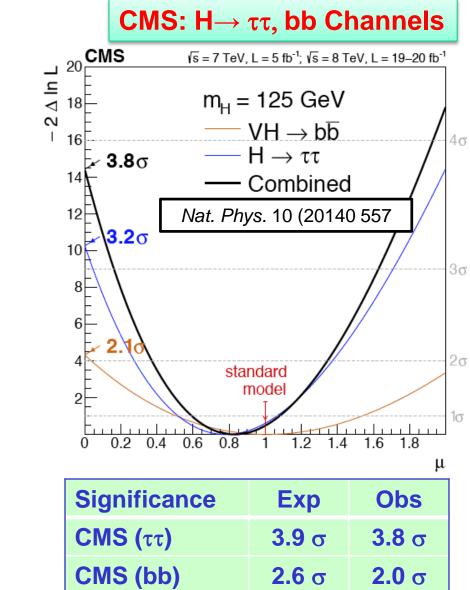
In praise of charter schools Britain's banking scandal spreads Volkswagen overtakes the rest A power struggle at the Vatican When Lonesome George met Nora

A giant leap for science

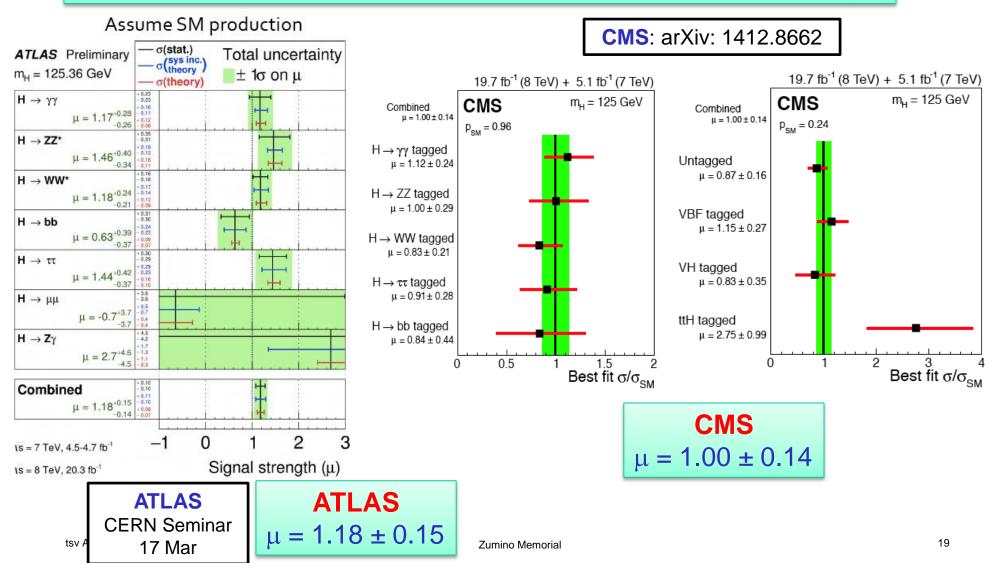

Economist.com

Finding the Higgs boson



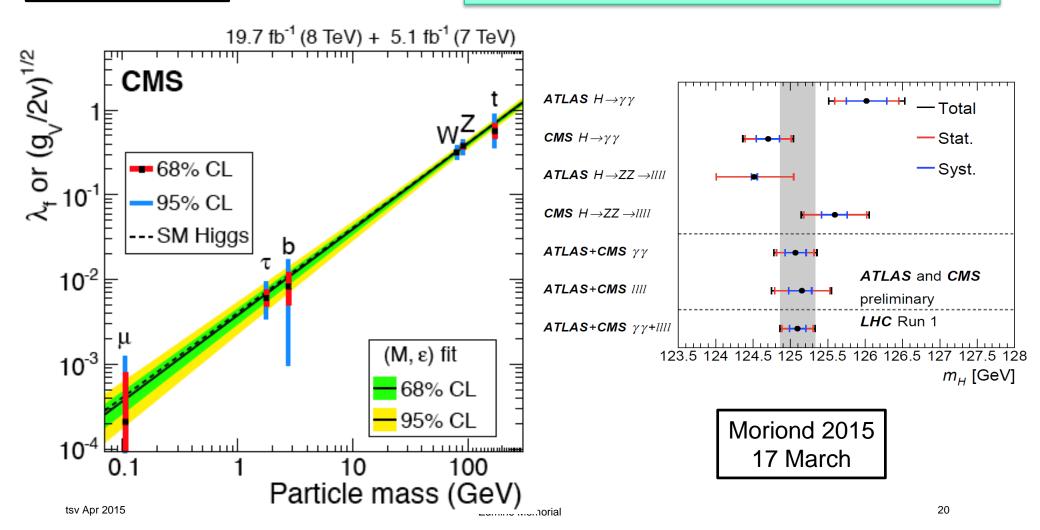

Situation Today: Higgs boson Decays to bosons

Situation Today: Higgs boson Decays to Fermions



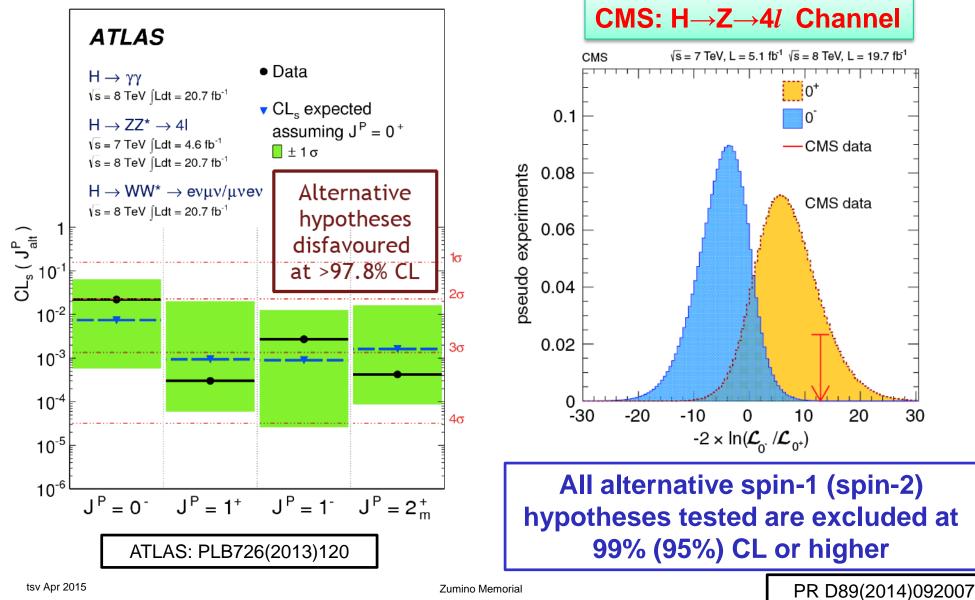
Physics Days 15 Helsinki tsv

Putting it all together: Signal Strength



Putting it all together: Mass and Couplings

arXiv: 1412.8662


 $M_{\rm H}$ = 125.09 ± 0.21 (stat) ± 0.11 (sys) GeV ATLAS and CMS: H→γγ and H→ZZ^(*) → 4/

Properties: Spin-Parity – 0⁺ Favoured

Zumino Memorial

What about new physics?

In a world of a SM Higgs boson, is there any room for new physics?

We believe there must be new physics

Some real and some virtual reasons to believe in new physics

Real reasons: dark matter & v masses Virtual reasons: naturalness

Physics Outlook: Questions for the LHC

1. SM contains too many apparently arbitrary features - presumably these should become clearer as we make progress towards a unified theory.

2. Clarify the e-w symmetry breaking sector SM has an unproven element: the generation of mass Higgs mechanism ->? or other physics ? Answer will be found at LHC energies

3. SM gives nonsense at LHC energies

e.g. why $M_{\gamma} = 0$ M_{W} , $M_{Z} \sim 100,000$ MeV!

Transparency from the early 90's

Probability of some processes becomes greater than 1 !! Nature's slap on the wrist! Higgs mechanism provides a possible solution

4. Identify particles that make up Dark Matter

Even if the Higgs boson is found all is not completely well with SM alone: next question is "Why is (Higgs) mass so low"? *If a new symmetry (Supersymmetry) is the answer, it must show up at O*(**1TeV)**

5. Search for new physics at the TeV scale SM is logically incomplete – does not incorporate gravity Superstring theory stranatic concepts: supersymmetry, extra space-time dimen/sions ?

Searching for New Physics

Should we really expect new physics ?

- Ample observational evidence for physics Beyond the SM. Neutrino masses (oscillations), dark matter, matter-antimatter asymmetry, (Low Higgs boson mass?)
- **Previously theory "always" showed a nearby new physics scale** Next scale could be anywhere between 1 TeV and very high scale (10¹²-10¹⁵ GeV)
 - The new physics scale can be much lower than the scale Λ that we measure through precision physics Flavour violation $1 - 10^5 \text{ TeV}$ EDMs 1 - 100 TeVNeutrino masses $1 - 10^{12} \text{ TeV}$
- Precision BEH boson physics is particularly interesting and promising: This is a new world.
 - Excellent portal to new physics.

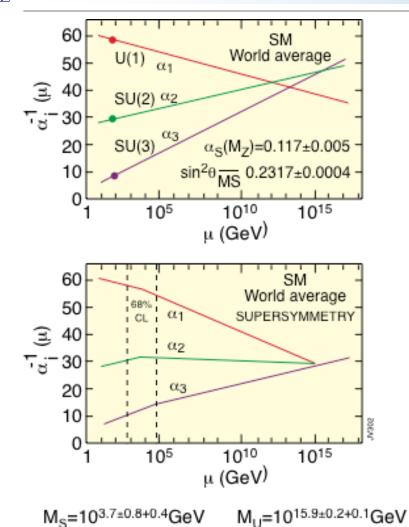
How can the mass of Higgs boson be anything small?

It should "resist" itself (since it couples to mass, it should couple to itself as well) Then it's mass should be "almost infinite" through quantum corrections.

$$m^{2}(p^{2})=m_{o}^{2}+\frac{1}{p}\phi^{J=1}+\frac{J=1/2}{\phi}+\frac{1}{\phi}$$

 $M_{H}^{2} \rightarrow M_{H}^{2}$ (bare) + c Λ^{2} (quadratic divergence in the mass!) Λ is the scale of the underlying theory (could be $M_{GUT} \sim 10^{15}$ GeV !) Requires incredibly unnatural fine tuning to keep M_{H} small !!

What can be done ?


L_{SSB} does not contain an elementary Higgs boson (now unlikely) OR

Somehow cancel quadratic divergences (invoke another symmetry – SUSY?) OR

Accept fine tuning!

Features of Supersymmetry

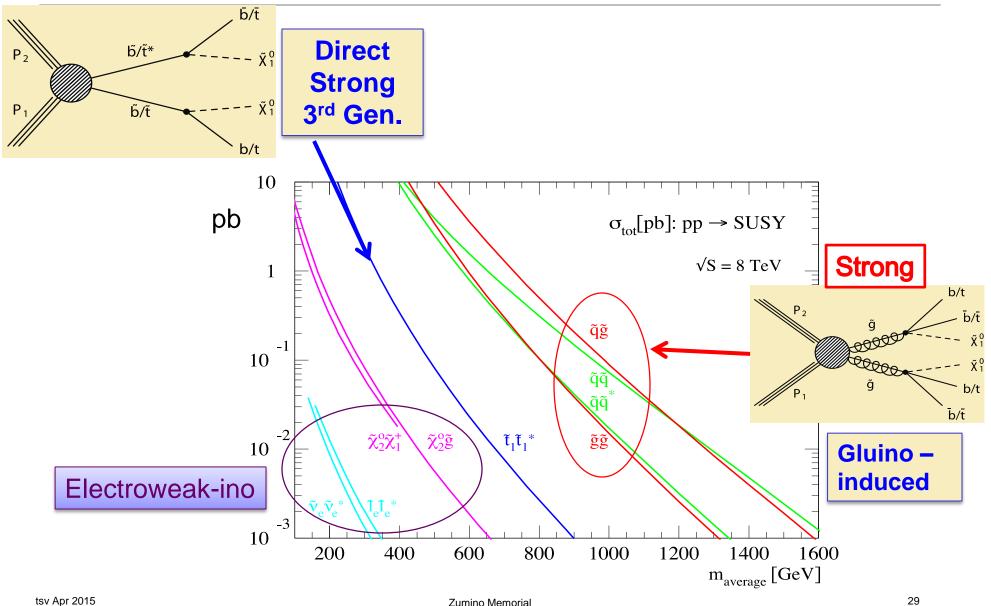
Supersymmetry can play an important role in:

Grand unification (strong + EW forces)

Proton decay

Heirarchy problem - why is the Higgs mass so low

Candidate for dark matter - lightest neutral sparticle


String theory requires supersymmetry (towards reconciling gravity and QM)

Is SUSY expected to do too much?

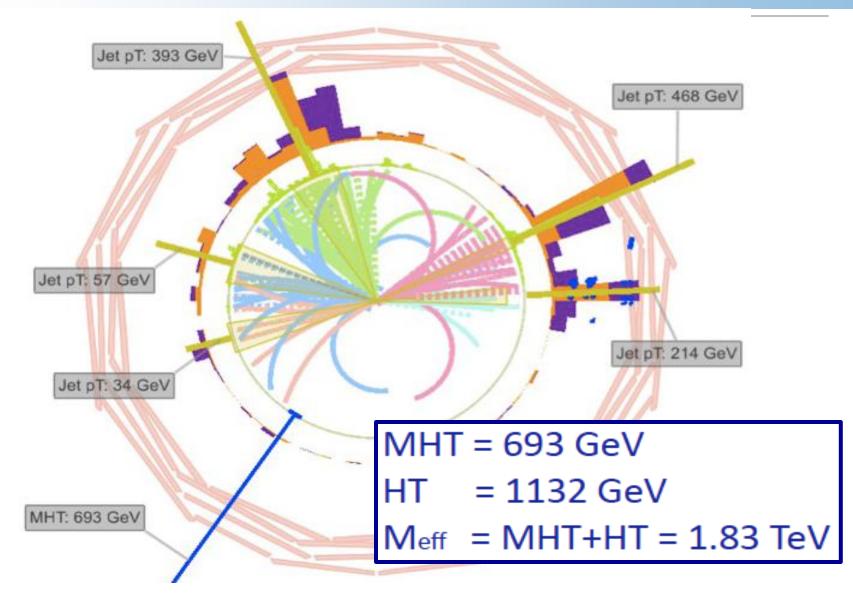
Zumino Memorial

CERN

SUSY "production"

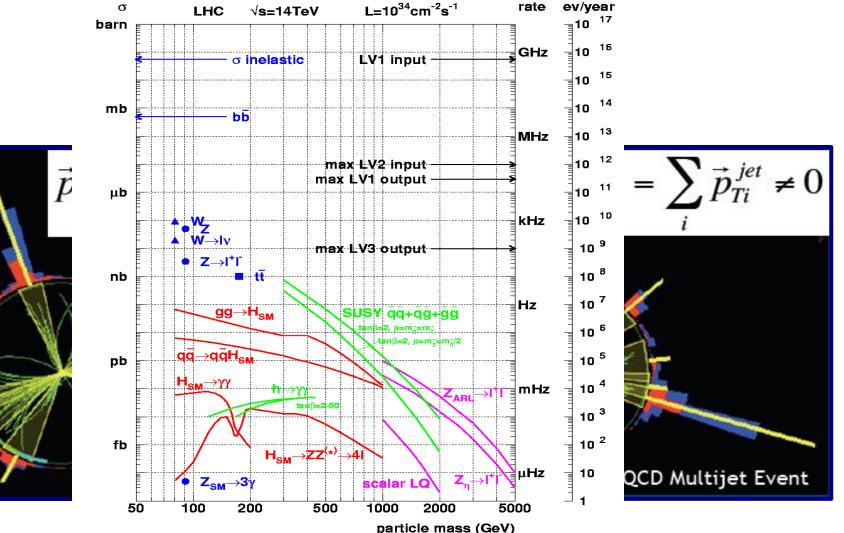
R_P conservation:

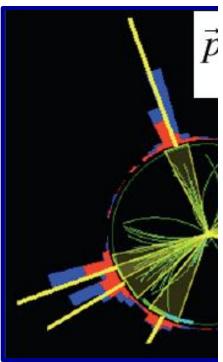
- Stable LSP, weakly interacting, "missing transverse energy" (E_T^{miss})
- Mostly strong production rich cascades; many jets, a few leptons
- When going after the stop: b-tagging

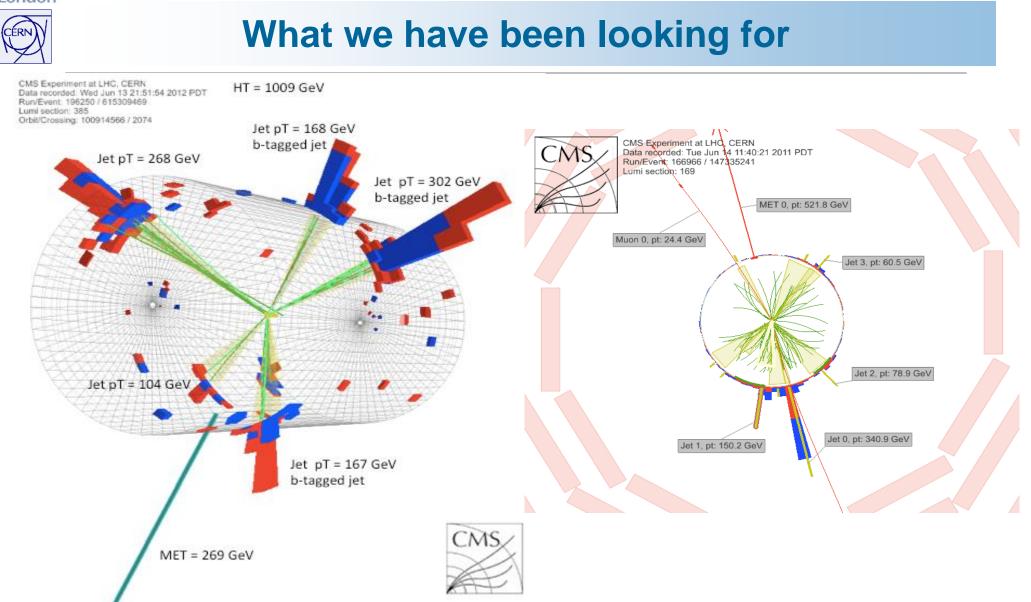

• R_P violation:

- The dreaded possibility (harder, except in corners of possibility space)
- Hadronic modes: to first order, no ME_T (very hard); Leptonic modes more promising
- Strong production, but several interesting new EWK-ino production mechanisms; even more jets and leptons
- Prompted by R_P violation, but still possible with R_P conservation: exotic SUSY particles
 - Long-lived particles (some are even "stable")

P. Sphicas, Latsis Symposium 2013

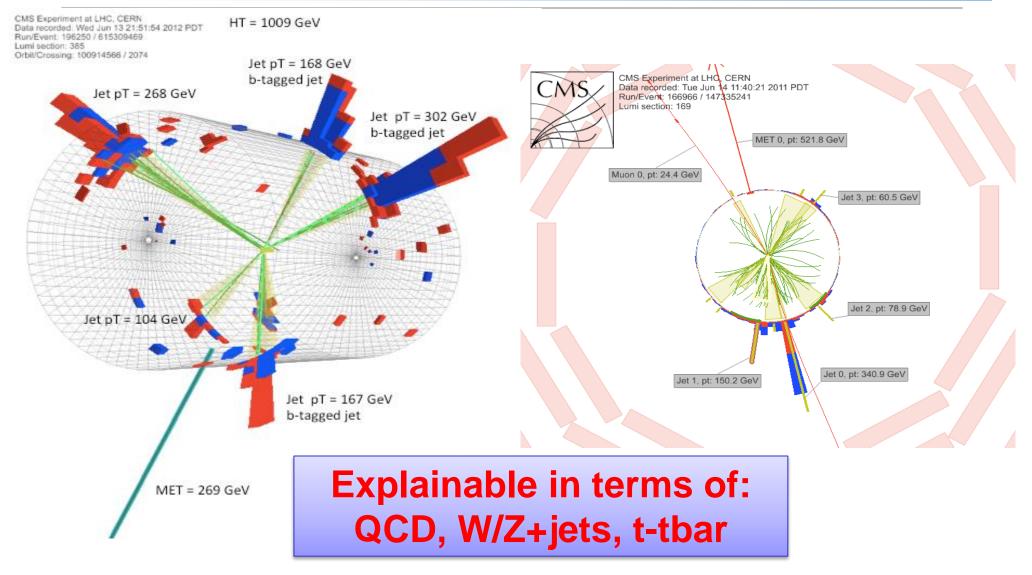

What it [could look/looks?] like. Spectacular!

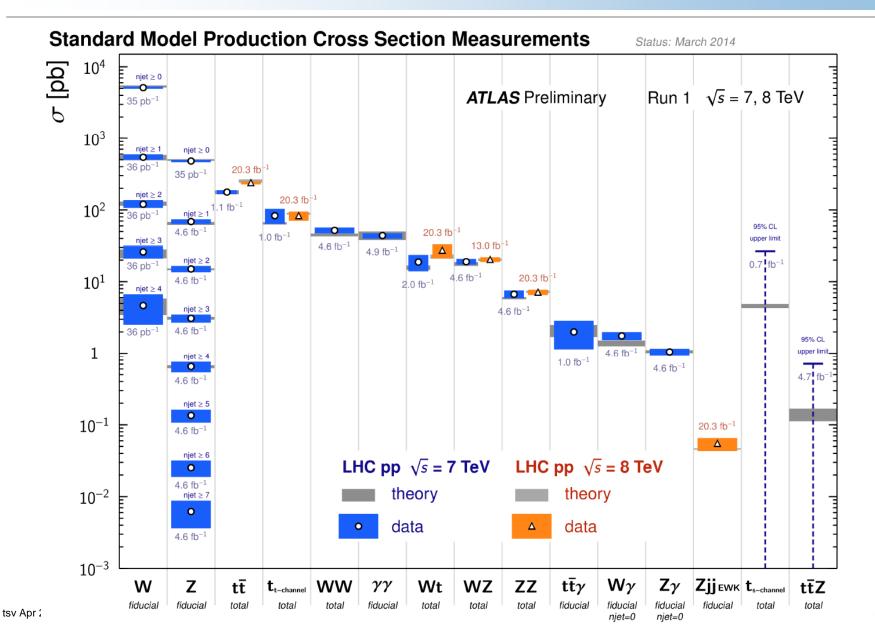




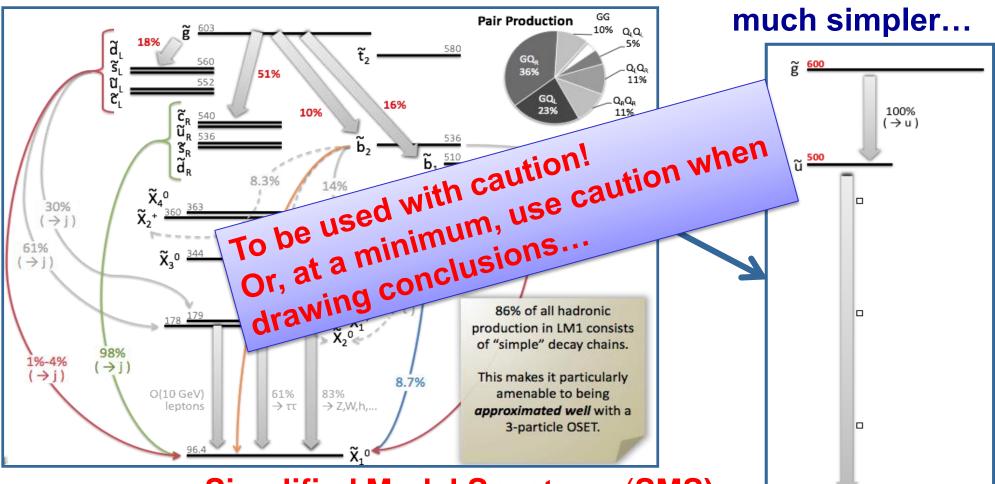
The challenge from the Standard Model

• Understatement: the problem with jets – the huge production rate




What we have found

Understand SM Backgrounds: W/Z+jets; ttbar

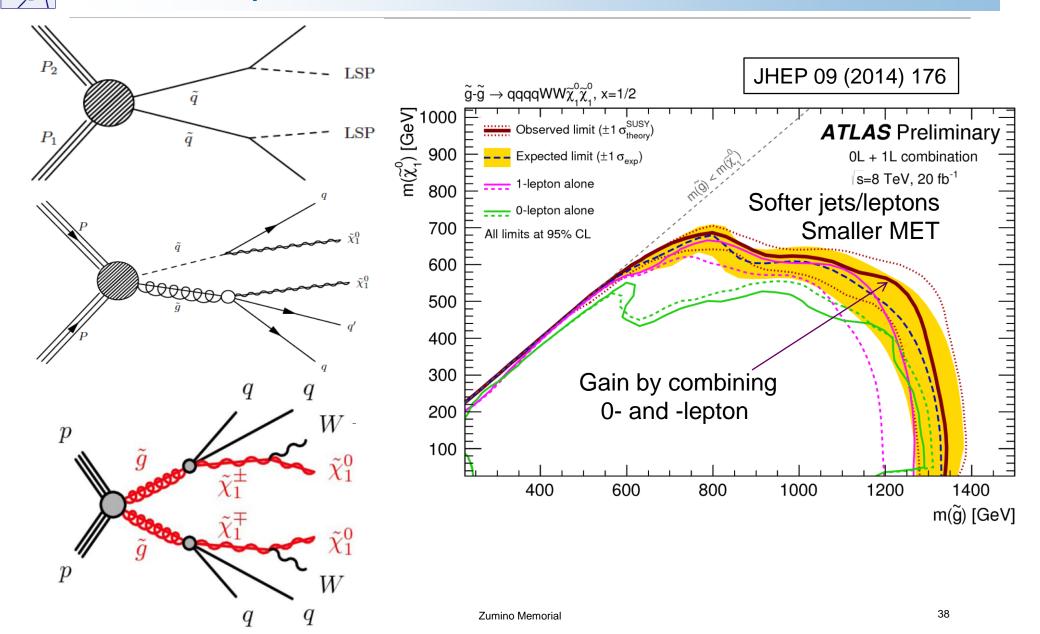

35

Interpreting SUSY searches

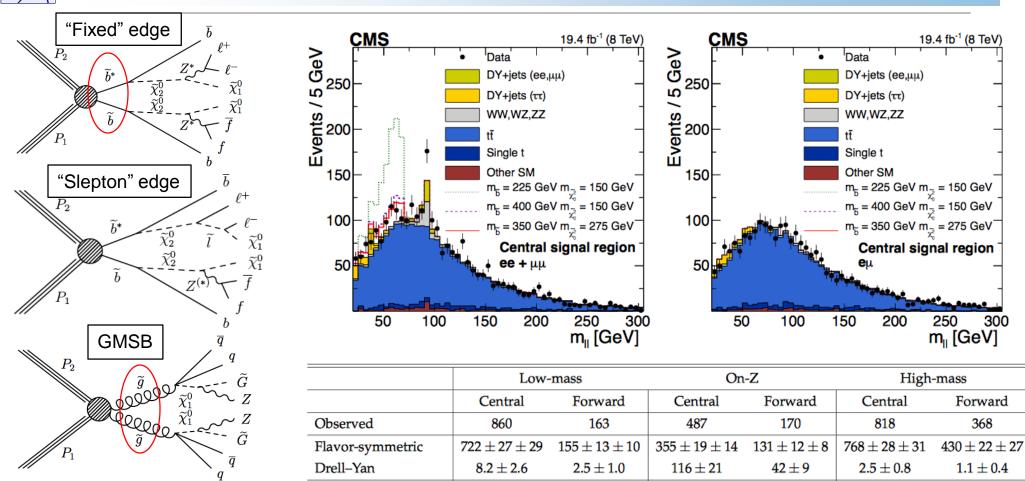
R_P Conservation: Simplified Model Spectra

CMSSM

Simplified Model Spectrum (SMS) with 3 particles, 2 decay modes


Zumino Memorial

 $\tilde{\chi}_{1}^{0}$


What we put in:

ATLAS: R_P Conservation: 0- and 1-lepton+Jets+MET

To be followed in Run 2!

 771 ± 42

 47^{+49}_{-50}

0.9*σ*

 431 ± 35

 -62^{+37}_{-39}

 $< 0.1 \sigma$

 173 ± 17

 -3^{+20}_{-21}

< 0.1 \sigma

 471 ± 32

 16^{+37}_{-38}

 0.4σ

arXiv:1502.06031

 730 ± 40

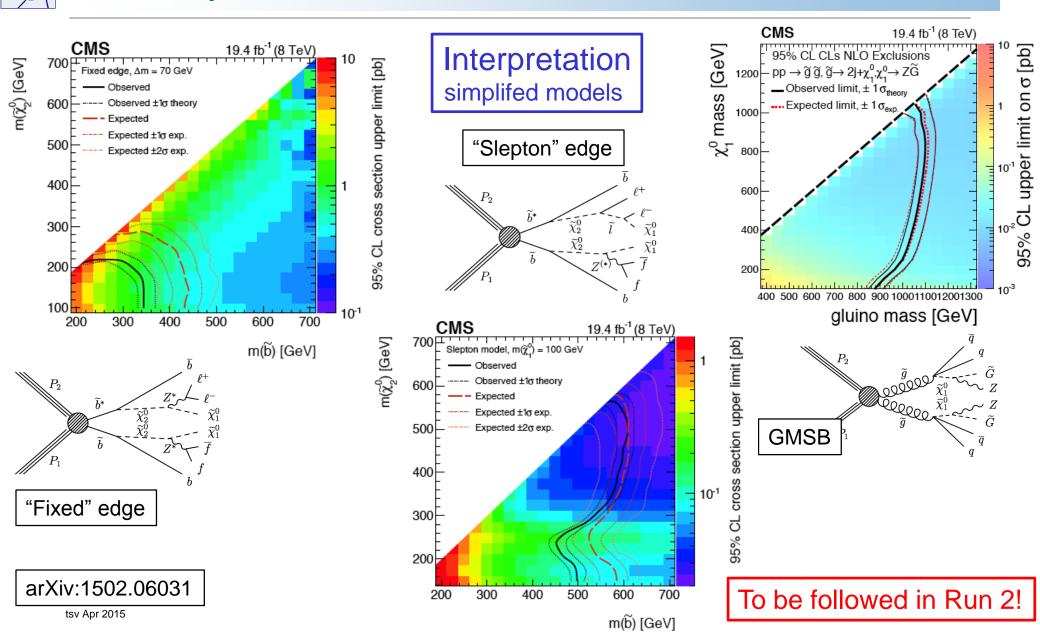
 130^{+48}_{-49}

 2.6σ

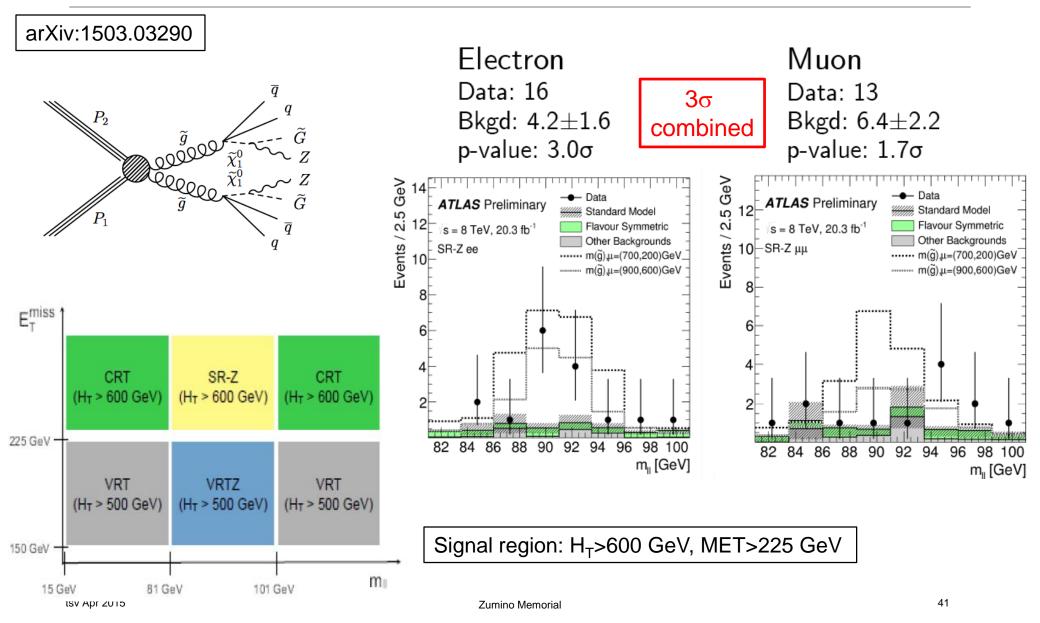
 158 ± 16

 5^{+20}_{-20}

 0.3σ

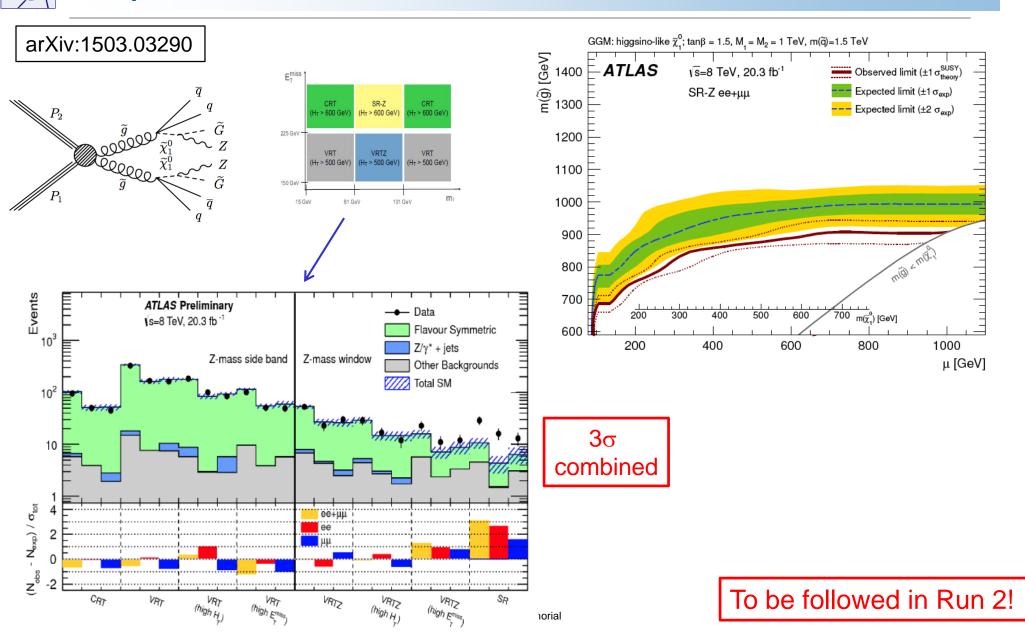

Total estimated

Significance


Observed-estimated

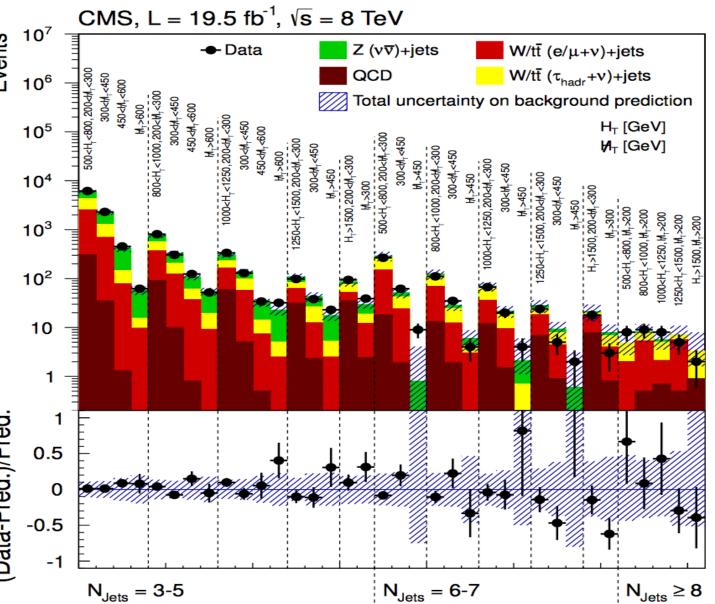
Imperial College London

CMS: R_P Conservation: (SFOS) di-lepton+Jets+MET



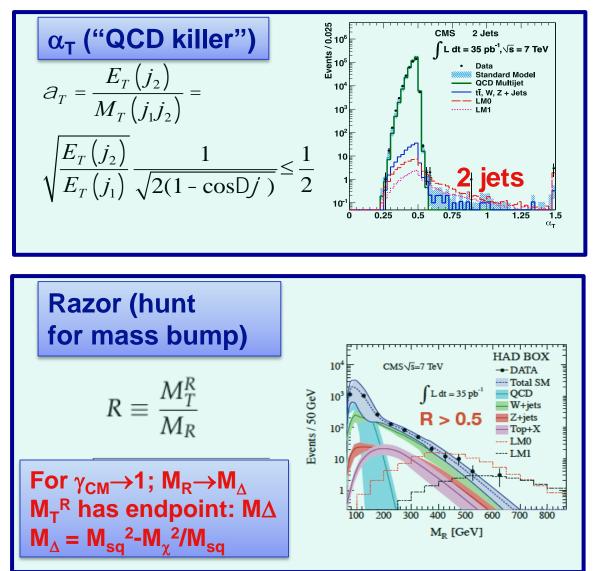
ATLAS: R_P Conservation: (SFOS) di-lepton+Jets+MET

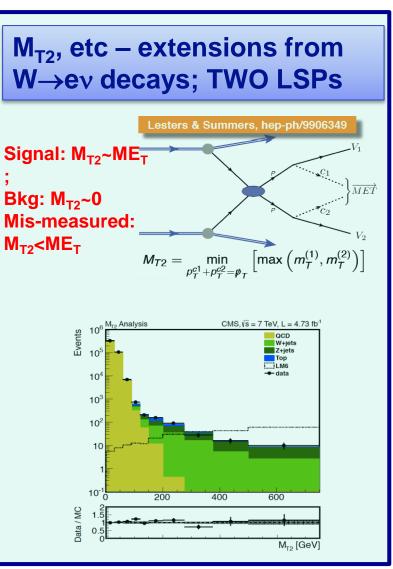
R_P Conservation: (SFOS) di-lepton + Jets + MET



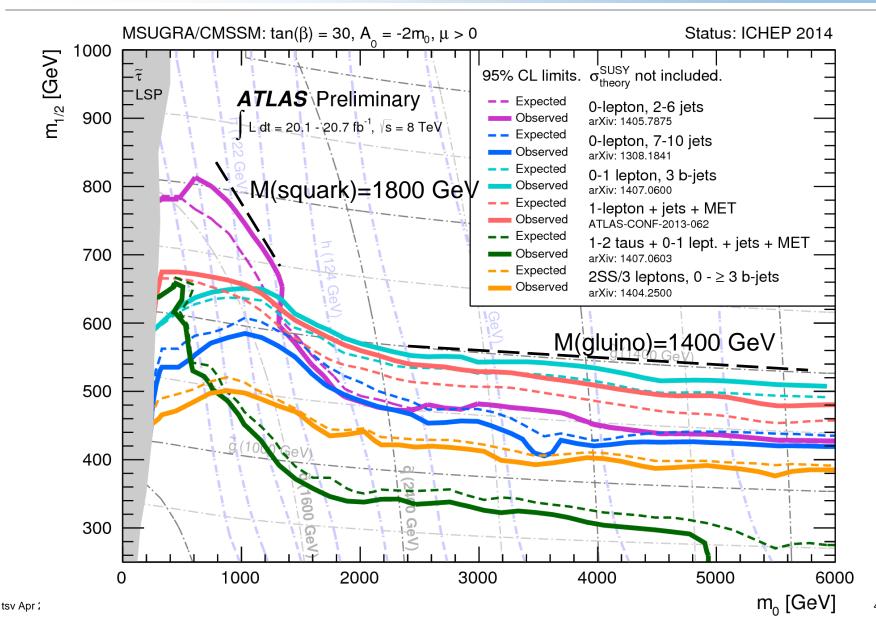
Remarkable agreement: Data-SM

tsv Apr 2015





Considerable ingenuity in developing new methods; e.g. event-topology variables



tsv Apr 2015

Zumino Memorial

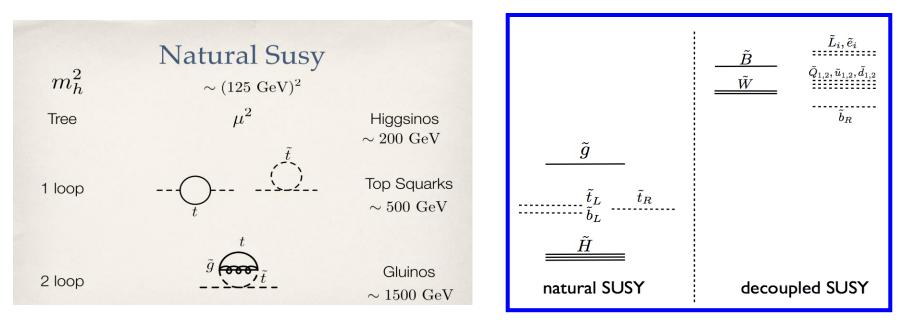
R_P Conservation: Summary of inclusive searches

45

Do [should] we still believe in SUSY

P. Sphicas, Latsis Symposium 2013

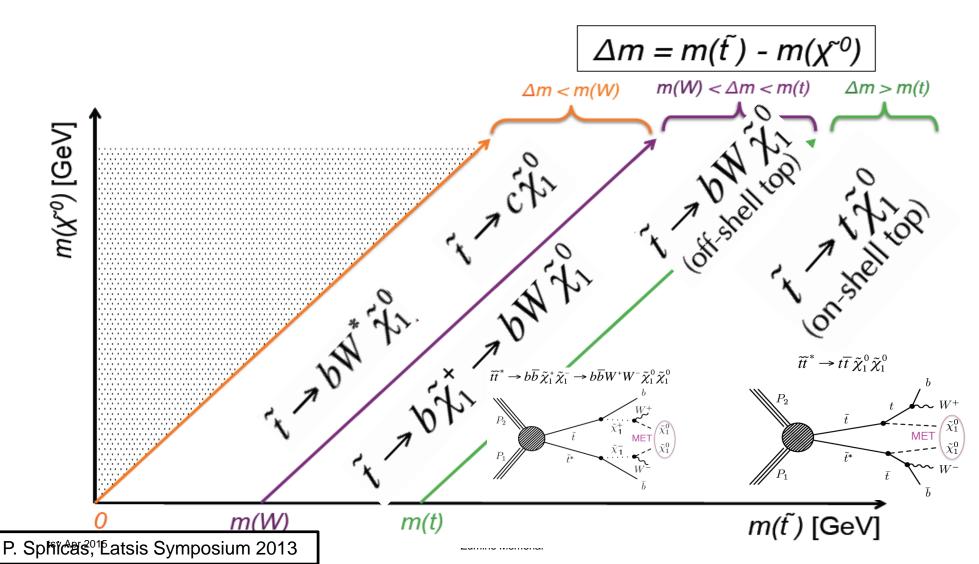
- 1. SUSY no-lose theorem: so many new parameters $(N_{MSSM} = N_{SM} + 105)$ that it can never be declared dead (even the CMSSM); unless naturalness arguments used
- 2. Can it be that nature has missed opportunity to solve three major pending issues (M_H; Dark Matter; couplings) in one swoop?
 - Three goods for the price of two [one new principle (B→F; F→B) and one unknown symmetry-breaking mechanism]
- Alternative theories solve only one or two of these issues so it allows consideration of less "powerful" versions of SUSY


As long as it solves the naturalness issue (which conveniently implies weakscale SUSY)

Assuming it's there, but it has escaped. How?

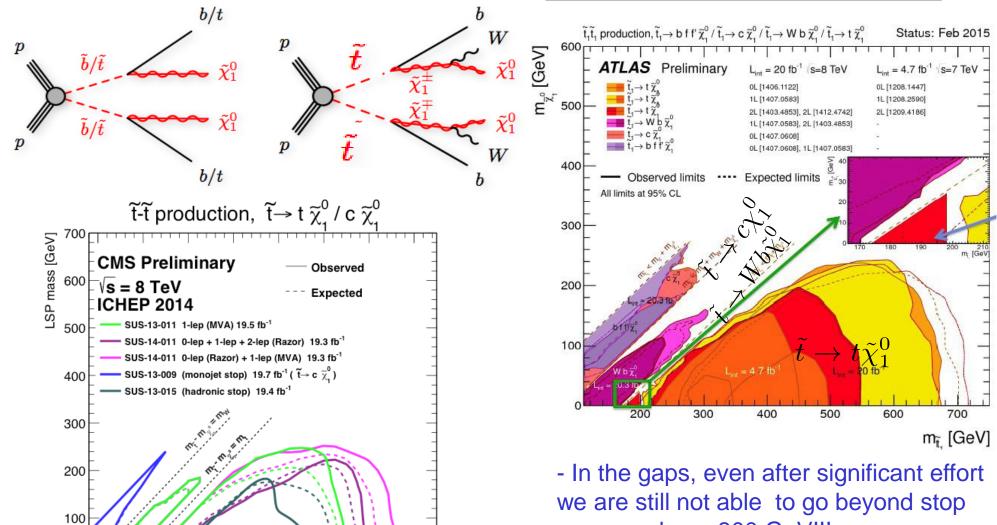
Natural relationship between Higgs & SUSY

- Previous limits not applicable when ME_T is small (Compressed spectra; R_P violation?!?)
- Other signatures that would have (easily!) escaped?
- A light top squark (stop) would suffice!



 Previous limits not applicable, due to (expected) different decays of the stop

R_P Conservation: Direct stop search


Top squark decays: in large region, ~ "top+ME_T"

London

R_P Conservation: Dedicated searches for direct stop-pair production

masses above 300 GeV!!!Analyses mainly rely on ISR to trigger the events.

800

500

100

200

300

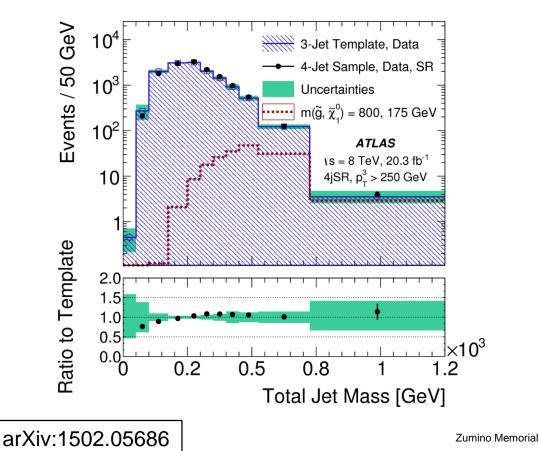
400

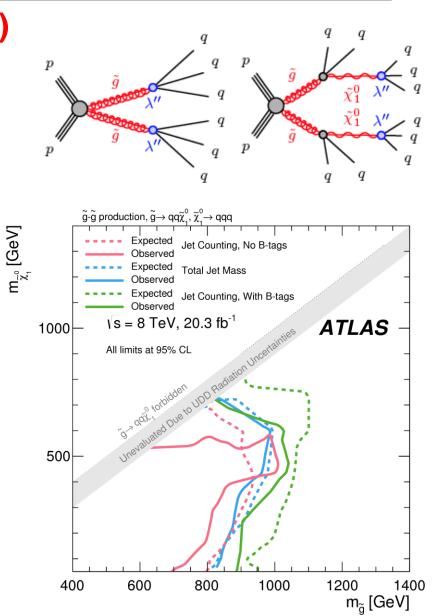
600

700

stop mass [GeV]

R_P violating SUSY

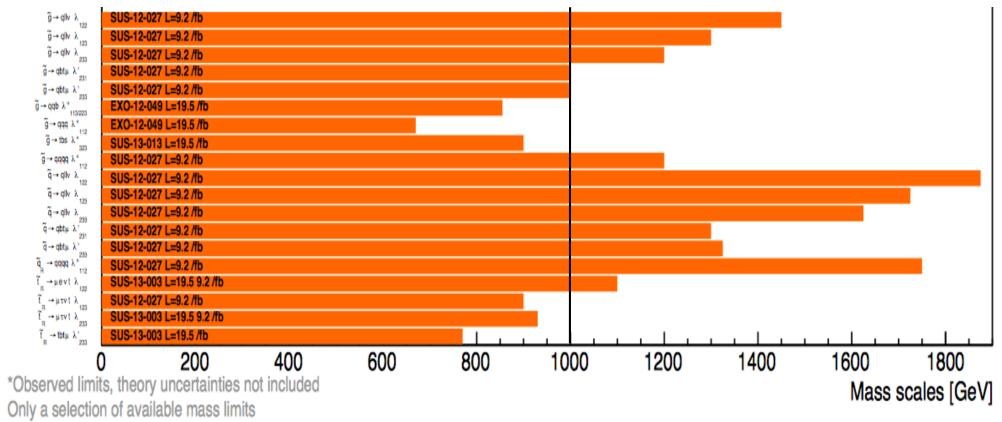

$$\Delta L = \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k$$



A test of RPV: with hadrons only

Hard... gluino → multi- jets (no MET)

- Search for excess in
 - ≥ 6,7 jets or large total (Fat-)jet mass
- Gluino excluded ≤ 900 GeV.



Summary of RPV (with leptons) (e.g. CMS)

Summary of CMS RPV SUSY Results*

Probe *up to* the quoted mass limit

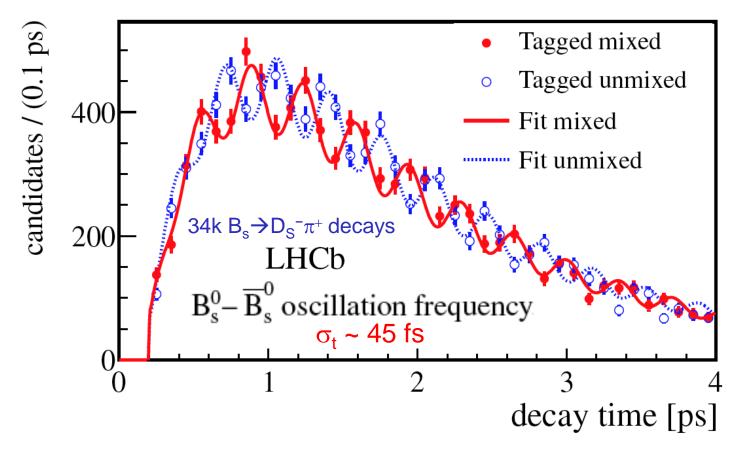
Imperial College London

tsv A

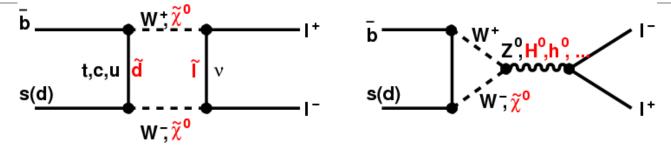
A dizzying exclusion map

ATLAS SUSY Searches* - 95% CL Lower Limits

$\begin{array}{c} \tilde{g}_{3}^{\tilde{g}}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi} \\ \tilde{g}_{3}^{\tilde{g}}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi} \\ \tilde{g}_{3}^{\tilde{g}}, \tilde{g} \rightarrow q q \tilde{\chi} \\ \tilde{g}_{3}^{\tilde{g}}, \tilde{g} \rightarrow q \tilde{\chi} \\ \tilde{g}_{3}^{\tilde{g}}, \tilde{\chi}$	$\begin{split} \tilde{\chi}_{1}^{0} & \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{\chi}_{1}^{0} & \tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{\chi}_{1}^{0} & \tilde{q}qW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{\chi}_{1}^{\pm} \rightarrow qW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{r} & \text{NLSP} \\ \text{in o NLSP} \\ \text{in o NLSP} \\ \text{jgsino NLSP} \\ \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ \gamma \\ 0 \\ 1e, \mu \\ 2e, \mu \\ 1.2 \\ \tau + 0.1 \\ \ell \\ 2 \\ \gamma \\ 1e, \mu + \gamma \\ \gamma \\ 2e, \mu \\ (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1e, \mu \\ 0.1 \\ e, \mu \\ 0 \\ 1.2 \\ e, \mu \\ 2e, \mu \\ 2e, \mu \\ 0 \\ 1e, \mu \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	1 b 0-3 jets mono-jet 3 b 7-10 jets 3 b 3 b 2 b 0-3 b 1-2 b 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20 20 20.3 20.3 20.	\$\bar{q}\$ \$\bar{q}\$ \$\bar{q}\$ \$\bar{250 GeV}\$ \$\bar{k}\$ \$\bar{k}\$	1.2 Te 1.32 1.32 1.28 619 GeV 900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34	$\begin{split} \mathbf{m}(\widehat{q}) - \mathbf{m}(\widehat{k}_{1}^{0}) &= \mathbf{n}(c) \\ 3 \ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &= 0 \ \mathrm{GeV} \\ \mathbf{gV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< 0 \ \mathrm{GeV} \ \mathbf{m}(\widehat{k}_{1}^{0}) &< 0 \ \mathrm{GeV} \ \mathbf{m}(\widehat{k}_{1}^{0}) &< 0 \ \mathrm{GeV} \\ \mathbf{1.6 \ TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{50 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{50 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{50 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{20 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{20 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{20 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{1.8 \times 10^{-4} \ eV} \\ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{300 \ GeV} \\ \mathbf{4 \ TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{400 \ GeV} \\ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{400 \ GeV} \\ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{300 \ GeV} \\ \mathbf{m}(\widehat{k}) &< \mathbf{10 \ GeV}$	gen. \tilde{q})=m(2 nd gen. \tilde{q}) \tilde{k}^{+})=0.5(m(\tilde{k}_{1}^{0})+m(\tilde{g})) λ , m(\tilde{g})=m(\tilde{q})=1.5 TeV	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014 ATLAS-CONF-2012 1211.1167 ATLAS-CONF-2012 1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} \bar{q}\bar{q}\gamma, \bar{q} \rightarrow \bar{q}\tilde{\chi}\\ \bar{q}\tilde{q}\gamma, \bar{q} \rightarrow \bar{q}\tilde{\chi}\\ \bar{q}\tilde{q}\gamma, \bar{q} \rightarrow \bar{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde$	$\begin{array}{c} & \tilde{q} \tilde{k}_{1}^{0} (\text{compressed}) \\ & \tilde{q} \tilde{k}_{1}^{0} \\ & \tilde{q} \tilde{k}_{1}^{+} \rightarrow q q W^{\pm} \tilde{k}_{1}^{0} \\ & \tilde{q} \tilde{k}_{1}^{+} \rightarrow q W^{\pm} \tilde{k}_{1}^{0} \\ & \tilde{k} \text{ NLSP} \\ & \tilde{k} \text{ NLSP} \\ & \text{ino NLSP} \\ & \text{ggsino-bino NLSP} \\ & \text{ggsino-bino NLSP} \\ & \text{ggsino NLSP} \\ & \text{ggsino NLSP} \\ & \tilde{k}_{1}^{0} \\ & \tilde{k}_{1}^{0} \\ & \rightarrow \tilde{k}_{1}^{1} \\ & \tilde{k}_{1}^{0} \\ & \tilde{k}_{1}^{0$	$\begin{array}{c} 1 \ \gamma \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 1 \ -2 \ r + 0 \ -1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (SS) \\ 1 \ -2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ -1 \ e, \mu \\ 0 \\ -1 \ e, \mu \end{array}$	0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 b 0-3 jets mono-jet 3 b 7-10 jets 3 b 7-10 jets 3 b 2 b 0-3 b 1-2 b 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20 20 20.3 20.3 4.8 4.8 5.8 20.3 20.1 20.1 20.1 20.1 20.3	\$\vec{k}{2}\$	1.33 1.2 Te 1.32 1.28 619 GeV 900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34	$\begin{split} \mathbf{m}(\widehat{q}) - \mathbf{m}(\widehat{k}_{1}^{0}) &= \mathbf{n}(c) \\ 3 \ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &= 0 \ \mathrm{GeV} \\ \mathbf{gV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< 0 \ \mathrm{GeV} \ \mathbf{m}(\widehat{k}_{1}^{0}) &< 0 \ \mathrm{GeV} \ \mathbf{m}(\widehat{k}_{1}^{0}) &< 0 \ \mathrm{GeV} \\ \mathbf{1.6 \ TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{50 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{50 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{50 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{20 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{20 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{20 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{1.8 \times 10^{-4} \ eV} \\ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{300 \ GeV} \\ \mathbf{4 \ TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{400 \ GeV} \\ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{400 \ GeV} \\ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{300 \ GeV} \\ \mathbf{m}(\widehat{k}) &< \mathbf{10 \ GeV}$	$(\tilde{\chi}^{\pm})=0.5(m(\tilde{\chi}_1^0)+m(\tilde{g}))$	1411.1559 1405.7875 1501.03555 1407.0603 ATLAS-CONF-2012 1211.1167 ATLAS-CONF-2012 1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} \bar{q}\bar{q}\gamma, \bar{q} \rightarrow \bar{q}\tilde{\chi}\\ \bar{q}\tilde{q}\gamma, \bar{q} \rightarrow \bar{q}\tilde{\chi}\\ \bar{q}\tilde{q}\gamma, \bar{q} \rightarrow \bar{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{\chi}\\ \bar{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde{q}\tilde$	$\begin{array}{c} & \tilde{q} \tilde{k}_{1}^{0} (\text{compressed}) \\ & \tilde{q} \tilde{k}_{1}^{0} \\ & \tilde{q} \tilde{k}_{1}^{+} \rightarrow q q W^{\pm} \tilde{k}_{1}^{0} \\ & \tilde{q} \tilde{k}_{1}^{+} \rightarrow q W^{\pm} \tilde{k}_{1}^{0} \\ & \tilde{k} \text{ NLSP} \\ & \tilde{k} \text{ NLSP} \\ & \text{ino NLSP} \\ & \text{ggsino-bino NLSP} \\ & \text{ggsino-bino NLSP} \\ & \text{ggsino NLSP} \\ & \text{ggsino NLSP} \\ & \tilde{k}_{1}^{0} \\ & \tilde{k}_{1}^{0} \\ & \rightarrow \tilde{k}_{1}^{1} \\ & \tilde{k}_{1}^{0} \\ & \tilde{k}_{1}^{0$	$\begin{array}{c} 0\\ 1e,\mu\\ 2e,\mu\\ 1{-}2\tau+0{-}1\ell\\ 2\gamma\\ 1e,\mu+\gamma\\ \gamma\\ 2e,\mu(Z)\\ 0\\ 0\\ 0\\ 0\\ 0{-}1e,\mu\\ 0{-}1e,\mu\\ 0\\ 2e,\mu(SS)\\ 1{-}2e,\mu\\ 2e,\mu\\ 0{-}1e,\mu\\ 2e,\mu\\ 0{-}1e,\mu\\ \end{array}$	2-6 jets 3-6 jets 0-3 jets 0-2 jets - - - - - - - - - - - - -	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20 20.3 20.3 20.3 4.8 4.8 4.8 20.3 20.1 20.1 20.1 20.1 20.3	\$\vec{k}{2}\$	1.2 Te 1.32 1.28 619 GeV 900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34 1.3	$\begin{split} \mathbf{m}(\widehat{q}) - \mathbf{m}(\widehat{k}_{1}^{0}) &= \mathbf{n}(c) \\ 3 \ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &= 0 \ \mathrm{GeV} \\ \mathbf{gV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< 0 \ \mathrm{GeV} \ \mathbf{m}(\widehat{k}_{1}^{0}) &< 0 \ \mathrm{GeV} \ \mathbf{m}(\widehat{k}_{1}^{0}) &< 0 \ \mathrm{GeV} \\ \mathbf{1.6 \ TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{50 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{50 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{50 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{20 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{20 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{20 \ GeV} \\ \mathbf{m}(\widehat{k}_{1}^{0}) &> \mathbf{1.8 \times 10^{-4} \ eV} \\ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{300 \ GeV} \\ \mathbf{4 \ TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{400 \ GeV} \\ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{400 \ GeV} \\ \mathbf{TeV} & \mathbf{m}(\widehat{k}_{1}^{0}) &< \mathbf{300 \ GeV} \\ \mathbf{m}(\widehat{k}) &< \mathbf{10 \ GeV}$	$(\tilde{\chi}^{\pm})=0.5(m(\tilde{\chi}_1^0)+m(\tilde{g}))$	1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014 ATLAS-CONF-2012 1211.1167 ATLAS-CONF-2012 1502.0151 1407.0600 1308.1841 1407.0600
$\begin{array}{c} \mbox{GGMSB}(\tilde{k}^{1})\mbox{GGM}(\tilde{k})\$	$ \begin{split} & \overline{q} \tilde{k}_{1}^{0} \rightarrow q q W^{\pm} \tilde{k}_{1}^{0} \\ & q \ell \ell l / \ell v / v v \tilde{k}_{1}^{0} \\ & \bar{q} \ell \ell \ell \ell v / v v \tilde{k}_{1}^{0} \\ & \bar{n} LSP \\ & \text{no NLSP} \\ & \text{no NLSP} \\ & \text{ggsino-bino NLSP} \\ & \text{ggsino NLSP} \\ & \text{ggsino NLSP} \\ & \text{otherwise} \\ & \overline{k}_{1}^{0} \\ & \overline{k}_{1}^{$	$\begin{array}{c} 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau + 0 - 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ - 1 \ e, \mu \\ 0 \\ 1 - 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 - 2 \ e, \mu \\ 0 \\ - 1 \ e, \mu \end{array}$	3-6 jets 0-3 jets 0-2 jets - - 1 b 0-3 jets mono-jet 3 b 7-10 jets 3 b 2 b 0-3 b 1-2 b 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20 20.3 20.3 4.8 4.8 5.8 20.3 20.1 20.1 20.1 20.1 20.1 20.3	 <i>φ φ</i>	1.2 Te 1.32 1.28 619 GeV 900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34 1.3	eV m(t_1^{(2)}) < 300 GeV, m(t_1^{(2)}) = 0 GeV	,	1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014 ATLAS-CONF-2012 1211.1167 ATLAS-CONF-2012 1502.01518 1407.0600
$\begin{array}{c} \mbox{GGMSB}(\tilde{k}^{1})\mbox{GGM}(\tilde{k})\$	$\begin{array}{c} \bar{q} \tilde{t}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{k}_{1}^{0} \\ \bar{q} (\ell \ell (\ell v) v) \tilde{k}_{1}^{0} \\ \bar{r} \text{ NLSP} \\ \text{ in o NLSP} \\ \text{ ino NLSP} \\ \text{ggsino-bino NLSP} \\ \text{ggsino NLSP} \\ \text{o LSP} \\ \hline \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1-2 \ \tau + 0 - 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ -1 \ e, \mu \\ 0 \\ -1 \ e, \mu \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ -1 \ e, \mu \end{array}$	0-3 jets 0-2 jets 1 b 0-3 jets mono-jet 3 b 7-10 jets 3 b 2 b 0-3 b 1-2 b 0-2 jets	- Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20 20.3 20.3 4.8 4.8 5.8 20.3 20.1 20.3 20.1 20.1 20.1 20.3	 <i>φ φ</i>	1.32 619 GeV 900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34 1.3	$\begin{array}{cccc} 2 \text{TeV} & m(\tilde{r}_1^0) = 0 \text{GeV} \\ \textbf{1.6 TeV} & \tan\beta > 20 \\ \hline \textbf{TeV} & m(\tilde{r}_1^0) > 50 \text{GeV} \\ m(\tilde{r}_1^0) > 50 \text{GeV} \\ m(\tilde{r}_1^0) > 20 \text{GeV} \\ m(NLSP) > 200 \text{GeV} \\ m(\tilde{c}_1^0) > 1.8 \times 10^{-4} \text{eV} \\ \hline \textbf{TeV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ m(\tilde{r}_1^0) < 350 \text{GeV} \\ \textbf{4 TeV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \text{TeV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GeV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 \text{GV} \\ \hline \textbf{1 eV} & m(\tilde{r}_1^0) < 400 $,	1501.03555 1407.0603 ATLAS-CONF-2014 ATLAS-CONF-2012 1211.1167 ATLAS-CONF-2012 1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} \mbox{GGMSB}(\tilde{k}^{1})\mbox{GGM}(\tilde{k})\$	$\begin{array}{c} q(\ell\ell/\ell_{1}^{\prime}\nu_{1}^{\prime}\chi_{1}^{0}\\ \tilde{r} \text{ NLSP})\\ \text{no NLSP})\\ \text{no NLSP})\\ \text{ggsino-bino NLSP})\\ \text{ggsino NLSP})\\ \text{scale } \\ \tilde{r}_{1}^{0}\\ r$	$\begin{array}{c} 1{-}2\ \tau + 0{-}1\ \ell \\ 2\ \gamma \\ 1\ e, \mu + \gamma \\ \gamma \\ 2\ e, \mu \ (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ -1\ e, \mu \\ 0{-}1\ e, \mu \\ 0 \\ 2\ e, \mu \ (SS) \\ 1{-}2\ e, \mu \\ 2\ e, \mu \\ 0{-}1\ e, \mu \end{array}$	0-2 jets 1 b 0-3 jets mono-jet 3 b 7-10 jets 3 b 2 b 0-3 b 1-2 b 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 4.8 5.8 20.3 20.1 20.3 20.1 20.1 20.1 20.1 20.1 20.3	 <i>φ φ</i>	1.28 619 GeV 900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34 1.3	$\begin{array}{cccc} \textbf{2 TeV} & m(\xi_1^0) {=} 0 \mbox{ GeV} \\ \textbf{1.6 TeV} & tan\beta {>} 20 \\ \hline \textbf{TeV} & m(\xi_1^0) {>} 50 \mbox{ GeV} \\ m(\xi_1^0) {>} 50 \mbox{ GeV} \\ m(KLSP) {>} 200 \mbox{ GeV} \\ m(\tilde{C}) {>} 1.8 {\times} 10^{-4} \mbox{ eV} \\ \hline \textbf{TeV} & m(\xi_1^0) {<} 400 \mbox{ GeV} \\ m(\xi_1^0) {<} 350 \mbox{ GeV} \\ \hline \textbf{4 TeV} & m(\xi_1^0) {<} 400 \mbox{ GeV} \\ \hline \textbf{teV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GeV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 \mbox{ GV} \\ \hline \textbf{1 eV} & m(\xi_1^0) {<} 300 $,	1407.0603 ATLAS-CONF-2014 ATLAS-CONF-2012 1211.1167 ATLAS-CONF-2012 1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} \mbox{GGMSB}(\tilde{k}^{1})\mbox{GGM}(\tilde{k})\$	$\begin{array}{l} \widehat{NLSP} \\ \operatorname{ino} \operatorname{NLSP} \\ \operatorname{ino} \operatorname{NLSP} \\ \operatorname{ggsino-bino} \operatorname{NLSP} \\ \operatorname{ggsino-bino} \operatorname{NLSP} \\ \operatorname{ggsino} \operatorname{NLSP} \\ \operatorname{b} \mathcal{K}^{0}_{1} \\ \rightarrow \mathcal{K}^{1}_{1} \\ \rightarrow \mathcal{K}^{1}_{1} \\ \mathcal{K}^{0}_{1} \\ \mathcal{K}^{0}_{1} \\ \mathcal{K}^{0}_{1} \\ \mathcal{K}^{0}_{1} \\ \mathcal{K}^{0}_{1} \end{array}$	$\begin{array}{c} 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \ e, \mu \\ 0 \\ 1 \\ -2 \ e, \mu \ (SS) \\ 1 \\ -2 \ e, \mu \\ 0 \\ -1 \\ e, \mu \\ 0 \\ -1 \\ e, \mu \end{array}$	1 b 0-3 jets mono-jet 3 b 7-10 jets 3 b 3 b 2 b 0-3 b 1-2 b 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 4.8 4.8 5.8 20.3 20.1 20.1 20.1 20.1 20.1 20.1 20.3	 <i>φ φ</i>	619 GeV 900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34 1.3	TeV m(l ² 1)>50 GeV m(l ² 1)>50 GeV m(l ² 1)>50 GeV m(l ² 1)>220 GeV m(NLSP)>200 GeV m(l ² 1)>1.8 × 10 ⁻⁴ eV m(l ² 1)<400 GeV	I	ATLAS-CONF-2014 ATLAS-CONF-2012 1211.1167 ATLAS-CONF-2012 1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} GGM \text{ (bino}\\ GGM \text{ (bino)}\\ G \text{ (bino)} \text{ (bino)} (bino) (bino$	no NLSP) ino NLSP) ggsino-bino NLSP) ggsino NLSP) $\rightarrow b \bar{k}_{1}^{0}$ $\rightarrow b \bar{k}_{1}^{0}$ $\rightarrow t \bar{k}_{1}^{\pm}$ $b \bar{k}_{1}^{\pm}$ $b \bar{k}_{1}^{\pm}$ $b \bar{k}_{1}^{0}$ or \bar{k}_{1}^{0} \bar{k}_{1}^{0}	$\begin{array}{c} 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (SS) \\ 1 \\ -2 \ e, \mu \\ 2 \\ e, \mu \\ 0 \\ -1 \ e, \mu \end{array}$	0-3 jets mono-jet 3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i> 2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	4.8 4.8 5.8 20.3 20.1 20.3 20.1 20.1 20.1 20.1 20.3	 <i>φ φ</i>	619 GeV 900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34 1.3	$\label{eq:response} \begin{array}{ c c c c c c c } \hline TeV & m(t_1^{(2)}) > 50 \; GeV \\ m(t_1^{(2)}) > 50 \; GeV \\ m(VLSP) > 200 \; GeV \\ m(VLSP) > 200 \; GeV \\ m(\tilde{C}) - 1.8 \times 10^{-4} \; eV \\ m(\tilde{C}) - 1.8 \times 10^{-4} \; eV \\ m(\tilde{C}) > 400 \; GeV \\ m(t_1^{(2)}) < 400 \; GeV \\ m(t_1^{(2)}) < 350 \; GeV \\ \hline TeV & m(t_1^{(2)}) < 400 \; GeV \\ \hline TeV & m(t_1^{(2)}) < 400 \; GeV \\ \hline \end{array}$	I	ATLAS-CONF-2012 1211.1167 ATLAS-CONF-2012 1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} \mbox{GGM} (\mbox{higg} \mbox{GGM} (\mbox{higg} \mbox{GGM} (\mbox{higg} \mbox{GGM} (\mbox{higg} \mbox{GGM} (\mbox{higg} \mbox{GGM} \mbox{higg} \mbox{GGM} \mbox{higg} \mbox{GGM} \mbox{higg} \mbox{GGM} \mbox{higg} \mbox{GGM} \mbox{higg} \mbo$	ggsino-bino NLSP) ggsino NLSP) LSP $\rightarrow b \tilde{k}_{1}^{0}$ $\rightarrow t \tilde{k}_{1}^{0}$ $b \tilde{k}_{1}^{0}$ $b \tilde{k}_{1}^{0}$ $b \tilde{k}_{1}^{0}$ or $t \tilde{k}_{1}^{0}$ $t \tilde{k}_{1}^{0}$	$\begin{array}{c} \gamma \\ 2 e, \mu (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 e, \mu \\ 0 \\ -1 e, \mu \\ 0 \\ 2 e, \mu (SS) \\ 1 \\ -2 e, \mu \\ 2 e, \mu \\ 0 \\ -1 e, \mu \end{array}$	0-3 jets mono-jet 3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i> 2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes	4.8 5.8 20.3 20.1 20.3 20.1 20.1 20.1 20.1 20.3	 <i>φ φ</i>	619 GeV 900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34 1.3	m(t ⁰ ₁)>50 GeV m(t ⁰ ₁)>220 GeV m(V)>220 GeV m(LSP)>200 GeV m(d ⁰ ₁)>1.8 × 10 ⁻⁴ eV m(t ⁰ ₁)<400 GeV	I	1211.1167 ATLAS-CONF-2012 1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} {\rm GGM} \ ({\rm higg} \\ {\rm GGM} \ ({\rm higg} \\ {\rm Gravitino\ L} \\ {\rm GGM} \ ({\rm higg} \\ {\rm Gravitino\ L} \\ {\rm S} \rightarrow b \bar{b} \bar{\lambda}_1^0 \\ {\rm \bar{g}} \rightarrow t \bar{\lambda}_1^0 \\ {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 \rightarrow t \\ {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 \rightarrow t \\ {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 \rightarrow t \\ {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 \rightarrow t \\ {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 \rightarrow t \\ {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 \rightarrow t \\ {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 {\rm \bar{h}}_1 \rightarrow t \\ {\rm \bar{h}}_1 {\rm \bar{h}}_$	ggsino NLSP) $\rightarrow b \tilde{k}_{1}^{0}$ $\rightarrow i \tilde{k}_{1}^{1}$ $b \tilde{k}_{1}^{+}$ $b \tilde{k}_{1}^{0}$ or $i \tilde{k}_{1}^{0}$ $i \tilde{k}_{1}^{0}$	$\begin{array}{c} \gamma \\ 2 e, \mu (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 e, \mu \\ 0 \\ -1 e, \mu \\ 0 \\ 2 e, \mu (SS) \\ 1 \\ -2 e, \mu \\ 2 e, \mu \\ 0 \\ -1 e, \mu \end{array}$	0-3 jets mono-jet 3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i> 2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes	4.8 5.8 20.3 20.1 20.3 20.1 20.1 20.1 20.1 20.3	 <i>φ φ</i>	900 GeV 690 GeV 865 GeV 1.25 T 1.1 TeV 1.34 1.3	$\begin{split} m(\tilde{r}_{1}^{0}) >& 220 \text{ GeV} \\ m(\text{NLSP}) >& 200 \text{ GeV} \\ m(\tilde{G}) >& 1.8 \times 10^{-4} \text{ eV} \\ \hline \text{TeV} & m(\tilde{r}_{1}^{0}) <& 400 \text{ GeV} \\ m(\tilde{r}_{1}^{0}) <& 350 \text{ GeV} \\ \hline \text{4 TeV} & m(\tilde{r}_{1}^{0}) <& 400 \text{ GeV} \\ \hline \text{1 TeV} & m(\tilde{r}_{1}^{0}) <& 300 \text{ GeV} \\ \hline \end{split}$	I	1211.1167 ATLAS-CONF-2012 1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} {\rm GGM} \ (higg \\ {\rm Gravitino} \ L \\ \hline \\ {\rm geod} \ {\rm Geod} \ (higg \\ {\rm Gravitino} \ L \\ \hline \\ {\rm geod} \ {\rm geod$	ggsino NLSP) $\rightarrow b \tilde{k}_{1}^{0}$ $\rightarrow i \tilde{k}_{1}^{1}$ $b \tilde{k}_{1}^{+}$ $b \tilde{k}_{1}^{0}$ or $i \tilde{k}_{1}^{0}$ $i \tilde{k}_{1}^{0}$	$\begin{array}{c} 2 \ e, \mu \ (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (SS) \\ 1 \ -2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ -1 \ e, \mu \end{array}$	0-3 jets mono-jet 3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i> 2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes	5.8 20.3 20.1 20.3 20.1 20.1 20.1 20.1 20.3	 <i>φ φ</i>	690 GeV 865 GeV 1.25 T 1.1 TeV 1.34 1.3	$\begin{split} & m(NLSP){>}200~GeV \\ & m(\tilde{\mathcal{C}}){>}1.8\times10^{-4}~eV \\ & TeV & m(\tilde{\mathcal{C}}_1^0){<}400~GeV \\ & m(\tilde{\mathcal{C}}_1^0){<}350~GeV \\ & 4~TeV & m(\tilde{\mathcal{C}}_1^0){<}400~GeV \\ & TeV & m(\tilde{\mathcal{C}}_1^0){<}300~GeV \\ \end{split}$	I	ATLAS-CONF-2012 1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} \mbox{Gravitino L} \\ \hline \\ $	$\rightarrow b \tilde{\chi}_{1}^{0}$ $\rightarrow b \tilde{\chi}_{1}^{0}$ $\rightarrow b \tilde{\chi}_{1}^{0}$ $b \tilde{\chi}_{1}^{0}$ $b \tilde{\chi}_{1}^{0}$ $b \tilde{\chi}_{1}^{0}$ $c \tilde{\chi}_{1}^{0}$ $c \tilde{\chi}_{1}^{0}$	0 0 0-1 <i>e</i> , <i>μ</i> 0-1 <i>e</i> , <i>μ</i> 2 <i>e</i> , <i>μ</i> (SS) 1-2 <i>e</i> , <i>μ</i> 2 <i>e</i> , <i>μ</i> 0-1 <i>e</i> , <i>μ</i>	mono-jet 3 b 7-10 jets 3 b 3 b 2 b 0-3 b 1-2 b 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.1 20.3 20.1 20.1 20.1 20.1 20.3	 <i>φ φ</i>	865 GeV 1.25 T 1.1 TeV 1.34 1.34	$\begin{split} m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV} \\ \text{TeV} & m(\tilde{F}_1^1) < 400 \text{ GeV} \\ m(\tilde{F}_1^1) < 350 \text{ GeV} \\ \text{4 TeV} & m(\tilde{F}_1^0) < 400 \text{ GeV} \\ \text{7 EV} & m(\tilde{F}_1^0) < 400 \text{ GeV} \end{split}$	I	1502.01518 1407.0600 1308.1841 1407.0600
$\begin{array}{c} \bar{s} \rightarrow i \bar{k}_{1}^{0} \stackrel{0}{\otimes} - i \bar{k}_$		0 0-1 e, µ 0-1 e, µ 0 2 e, µ (SS) 1-2 e, µ 2 e, µ 0-1 e, µ	7-10 jets 3 <i>b</i> 3 <i>b</i> 2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets	Yes Yes Yes Yes Yes Yes	20.3 20.1 20.1 20.1 20.3	\$\vec{x}{\vec{x}}\$ \$x	1.1 TeV 1.34 1.3	$ \begin{array}{c} {\sf m}(\tilde{\xi}_1^0) < 350 \ {\rm GeV} \\ {\rm 4 \ TeV} \qquad {\sf m}(\tilde{\xi}_1^0) < 400 \ {\rm GeV} \\ {\rm 5 \ TeV} \qquad {\sf m}(\tilde{\xi}_1^0) < 300 \ {\rm GeV} \\ \end{array} $		1308.1841 1407.0600
$\begin{array}{c} \bar{s} \rightarrow i \bar{k}_{1}^{0} \stackrel{0}{\otimes} - i \bar{k}_$		0-1 <i>e</i> , μ 0-1 <i>e</i> , μ 0 2 <i>e</i> , μ (SS) 1-2 <i>e</i> , μ 2 <i>e</i> , μ 0-1 <i>e</i> , μ	3 b 3 b 2 b 0-3 b 1-2 b 0-2 jets	Yes Yes Yes Yes Yes	20.1 20.1 20.1 20.3		1.3 ⁴ 1.3	4 TeV m(x̃ ₁ ⁰)<400 GeV		1407.0600
$\begin{array}{c} \begin{array}{c} \bar{a} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow \bar{b}_{1} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow \bar{b}_{1} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow \bar{b}_{1} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow \bar{b}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \rightarrow \bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \rightarrow \bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \rightarrow \bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \rightarrow \bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{2}\bar{c}_{2} \rightarrow \bar{c}_{1} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{$		0-1 <i>e</i> , μ 0 2 <i>e</i> , μ (SS) 1-2 <i>e</i> , μ 2 <i>e</i> , μ 0-1 <i>e</i> , μ	3 <i>b</i> 2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets	Yes Yes Yes Yes	20.1 20.1 20.3	 β β δ δ δ 	1.3 ⁴ 1.3	4 TeV m(x̃ ₁ ⁰)<400 GeV		
$\begin{array}{c} \begin{array}{c} \bar{a} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow \bar{b}_{1} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow \bar{b}_{1} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow \bar{b}_{1} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow \bar{b}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \rightarrow \bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \rightarrow \bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \rightarrow \bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \rightarrow \bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{2}\bar{c}_{2} \rightarrow \bar{c}_{1} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{2} \\ \bar{c}_{1}\bar{c}_{2}\bar{c}_{2}\bar{c}_{1}\bar{c}_{2}\bar{c}_{$		0-1 <i>e</i> , μ 0 2 <i>e</i> , μ (SS) 1-2 <i>e</i> , μ 2 <i>e</i> , μ 0-1 <i>e</i> , μ	3 <i>b</i> 2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets	Yes Yes Yes Yes	20.1 20.1 20.3	ğ δ ₁ δ.	1.3	TeV $m(\tilde{\chi}_1^0)$ <300 GeV		1407.0600
$ \begin{array}{c} \delta_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t_1 \\ \delta_1 \tilde{b}_1, \tilde{t}_1 \rightarrow t_2 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow 0 \\ \tilde{t}_1 \rightarrow 0 \\ \tilde{t}_1 \rightarrow 0 $		2 e, μ (SS) 1-2 e, μ 2 e, μ 0-1 e, μ	0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets	Yes Yes	20.3	\tilde{b}_1 \tilde{b}_2	100-620 GeV	- 0		
$\begin{array}{c} \mathbf{\hat{a}} \tilde{n}_{1}\tilde{n}_{1}, \tilde{n}_{1} \rightarrow t\tilde{e}^{2}\tilde{\mathcal{K}} \\ \tilde{n}_{1}\tilde{n}_{1}\tilde{n}_{1}, \tilde{n}_{1} \rightarrow t\tilde{e}^{2}\tilde{\mathcal{K}} \\ \tilde{n}_{1}\tilde{n}_{1}\tilde{n}_{1}, \tilde{n}_{1} \rightarrow t\tilde{e}^{2}\tilde{\mathcal{K}} \\ \tilde{n}_{1}\tilde{n}_$	$b\tilde{\chi}_{1}^{\pm}$ $Wb\tilde{\chi}_{1}^{0}$ or $t\tilde{\chi}_{1}^{0}$ $t\tilde{\chi}_{1}^{0}$ $c\tilde{\chi}_{1}^{0}$	1-2 <i>e</i> , μ 2 <i>e</i> , μ 0-1 <i>e</i> , μ	1-2 <i>b</i> 0-2 jets	Yes		ĥ,		m(˜1)<90 GeV		1308.2631
$\begin{array}{c} \mathbf{d} \\ \mathbf{d} \\ \mathbf{h}_{1} \mathbf{h}_{1}, \mathbf{h}_{1} \rightarrow \mathbf{t}_{2} \mathbf{X} \\ \mathbf{h}_{1} \mathbf{h}_{1}, \mathbf{h}_{1} \rightarrow \mathbf{t}_{2} \mathbf{h}_{2} \mathbf{h}_{2} \mathbf{h}_{2} \mathbf{h}_{1} \mathbf{h}_{1} \\ \mathbf{h}_{2} \mathbf{h}_{2}$	$Wb\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0} t\tilde{\chi}$	2 e,μ 0-1 e,μ	0-2 jets		4.7		275-440 GeV	$m(\tilde{\chi}_1^{\pm})=2 m(\tilde{\chi}_1^0)$		1404.2500
$\begin{array}{c} \mathbf{d} & \hat{\eta}_1 \hat{\eta}_1, \hat{\eta}_1 \to \mathbf{d}^2 \\ \hat{\eta}_1 \hat{\eta}_1, \hat{\eta}_1 \to \mathbf{d}^2 \\ \hat{\eta}_1 \hat{\eta}_1, \hat{\eta}_1 \to \mathbf{d}^2 \\ \hat{\eta}_1 \hat{\eta}_1 (\text{natural} \\ \hat{\eta}_2 \hat{\eta}_2, \hat{\eta}_2 \to \hat{\eta}_1 \\ \\ \hat{\eta}_1 \hat{\eta}_1 \hat{\eta}_1 \hat{\eta}_1 + \hat{\eta}_2 \to \hat{\eta}_1 \\ \hat{\eta}_1 \hat{\eta}_1 \hat{\eta}_1 \hat{\eta}_2 + \hat{\eta}_2 \hat{\eta}_2 \\ \hat{\eta}_1 \hat{\eta}_1 \hat{\eta}_2 \hat{\eta}_2 \hat{\eta}_2 \\ \hat{\eta}_2 \hat{\eta}_2 \hat{\eta}_2 \hat{\eta}_2 \\ \\ \end{array}$	$t \tilde{\chi}_1^0 \\ c \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	,			ĩ ₁ 110-167 GeV	230-460 GeV	$m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0})$	$\tilde{\chi}_{1}^{0}$)=55 GeV	1209.2102, 1407.
$\begin{array}{c} \mathbf{d} \\ \mathbf{d} \\ \mathbf{h}_{1} \mathbf{h}_{1}, \mathbf{h}_{1} \rightarrow \mathbf{t}_{2} \mathbf{X} \\ \mathbf{h}_{1} \mathbf{h}_{1}, \mathbf{h}_{1} \rightarrow \mathbf{t}_{2} \mathbf{h}_{2} \mathbf{h}_{2} \mathbf{h}_{2} \mathbf{h}_{1} \mathbf{h}_{1} \\ \mathbf{h}_{2} \mathbf{h}_{2}$	$t \tilde{\chi}_1^0 \\ c \tilde{\chi}_1^0$		101	Yes	20.3	<i>ī</i> ₁ 90-191 GeV	215-530 GeV	$m(\tilde{\chi}_1^0)=1 \text{ GeV}$		1403.4853, 1412.
$ \begin{array}{c} \begin{array}{c} \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow c\tilde{x} \\ \tilde{r}_{1}\tilde{r}_{1} \left(natural \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{r}_{1} \\ \tilde{r}_{1} \left(natural \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{r}_{1} \\ \tilde{r}_{1} \left(\tilde{r}_{1} \left(natural \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{r}_{1} \right) \\ \tilde{r}_{1} \left(\tilde{r}_{1} \left(natural \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{r}_{1} \right) \\ \tilde{r}_{1} \left(\tilde{r}_{1} \left(\tilde{r}_{1} \right) \right) \\ \tilde{r}_{1} \left(\tilde{r}_{1} \left(\tilde{r}_{1} \right) \right) \\ \tilde{r}_{1} \left(\tilde{r}_{2} \left(\tilde{r}_{2} \right) \right) \\ \tilde{r}_{2} \left(\tilde{r}_{2} \left(\tilde{r}_{2} \right) \right) \\ \tilde{r}_{1} \left(\tilde{r}_{2} \left(\tilde{r}_{2} \right) \right) \\ \tilde{r}_{2} \left(\tilde{r}_{2} \left(\tilde{r}_{2} \left(\tilde{r}_{2} \right) \right) \\ \tilde{r}_{2} \left(\tilde{r}_$	$c \tilde{\chi}_1^0$	0 m	1-2 b	Yes	20	Ĩ1	210-640 GeV	$m(\tilde{\chi}_1^0)=1 \text{ GeV}$		1407.0583,1406.
$\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ \hline \\ \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ \\ & & \\ \hline \\ \\ \\ \hline \\ \\ \\ \\$	CMCD)		nono-jet/c-ta	ag Yes	20.3	<i>ι</i> ₁ 90-240 GeV		$m(\tilde{t}_1)-m(\tilde{\chi}_1^0) < 85 \text{ GeV}$	v	1407.0608
$\begin{array}{c} \mathbf{\hat{p}}_{12}, \mathbf{\hat{p}}_{2}, \mathbf{\hat{r}}_{2} \rightarrow \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1} \\ \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1} \\ \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1} \\ \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1} \\ \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{2}, \mathbf{\hat{r}}_{2}, \mathbf{\hat{r}}_{2} \\ \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{2}, \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{2}, \mathbf{\hat{r}}_{2}, \mathbf{\hat{r}}_{2} \\ \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{2}, \mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{2}, \mathbf{\hat{r}}_$	rai GMSB)	2 e, µ (Z)	1 <i>b</i>	Yes	20.3	ĩ	150-580 GeV	$m(\tilde{\chi}_1^0) > 150 \text{ GeV}$		1403.5222
$\begin{array}{c} \vec{x}_{1}^{+}\vec{x}_{1}^{-},\vec{x}_{1}^{+}\vec{-}\\ \vec{y}_{2}^{+}\vec{x}_{1}^{-},\vec{x}_{1}^{+}\vec{-}\\ \vec{y}_{2}^{-}\vec{x}_{2}^{+}\vec{x}_{2}^{-},\vec{x}_{1}^{+}\vec{-}\\ \vec{x}_{1}^{+}\vec{x}_{2}^{0}\rightarrow\vec{x}_{1}^{+}\vec{x}_{2}^{0}\rightarrow\vec{x}_{1}^{+}\vec{x}_{2}^{0}\rightarrow\vec{x}_{1}^{+}\vec{x}_{2}^{0}\rightarrow\vec{x}_{1}^{+}\vec{x}_{2}^{0}\rightarrow\vec{x}_{1}^{0}\vec{x}_{2}^{0},\vec{x}_{$		3 e, µ (Z)	1 <i>b</i>	Yes	20.3	ĩ ₂	290-600 GeV	m(𝑢1)<200 GeV		1403.5222
$ \begin{array}{c} \Sigma_{1}^{\dagger}\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\dagger}\tilde{X}_{2}^{0}\rightarrow\tilde{\ell}_{L}\nu\\ \tilde{X}_{1}^{\dagger}\tilde{X}_{2}^{0}\rightarrow\tilde{U}_{L}\tilde{X}_{1}^{\dagger}\tilde{X}_{2}^{0}\rightarrow\tilde{W}\tilde{X}\\ \tilde{X}_{1}^{\dagger}\tilde{X}_{2}^{0}\rightarrow\tilde{W}\tilde{X}\\ \tilde{X}_{2}^{\dagger}\tilde{X}_{3}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\\ \tilde{X}_{2}^{\dagger}\tilde{X}_{3}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\\ \tilde{X}_{2}^{\dagger}\tilde{X}_{3}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\\ \tilde{X}_{2}^{0}\tilde{X}_{3}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\\ \tilde{X}_{2}^{0}\tilde{X}_{3}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\\ \tilde{X}_{2}^{0}\tilde{X}_{3}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\\ \tilde{X}_{2}^{0}\tilde{X}_{3}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\tilde{X}_{2}^{0}\\ \tilde{X}_{2}^{0}\tilde{X}_{3}^{0}\tilde{X}_{2}^{0}\tilde{X}$	$\tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 <i>e</i> , µ	0	Yes	20.3		325 GeV	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$		1403.5294
$ \begin{array}{c} \underbrace{ \begin{array}{c} \underline{ x} } \\ \underline{ x} \\ x$	$\rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$	2 e, µ	0	Yes	20.3	$\tilde{\chi}_{1}^{\pm}$	140-465 GeV	$m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\ell}, \tilde{\nu})$	$\tilde{\nu}$)=0.5(m($\tilde{\chi}_{1}^{\pm}$)+m($\tilde{\chi}_{1}^{0}$))	1403.5294
$\begin{array}{c} \lambda_1^+ \lambda_2^- \rightarrow W \tilde{X} \\ \tilde{X}_1^+ \tilde{X}_2^0 \rightarrow W \tilde{X} \\ \tilde{X}_2^0 \tilde{X}_3^0, \tilde{X}_{2,3}^0 - 1 \\ \tilde{X}_2^0 \tilde{X}_3^0, \tilde{X}_{2,3}^0 - 1 \\ \end{array}$ $\begin{array}{c} \text{Direct } \tilde{X}_1^+ \tilde{X} \\ \text{Stable, sto} \\ \text{Stable, sto} \\ \text{Stable, sto} \\ \text{Stable, sto} \\ \text{GMSB, sta} \\ GMSB,$	$\rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$	2 τ	-	Yes	20.3		0-350 GeV	$m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})$	$\tilde{\nu}$)=0.5(m($\tilde{\chi}_{1}^{\pm}$)+m($\tilde{\chi}_{1}^{0}$))	1407.0350
$\begin{array}{c} \lambda_1 \chi_2 \rightarrow W \tilde{\chi} \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi} \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 - \tilde{\chi} \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0 - - \tilde{\chi} \\ \tilde{\chi}_3^0 \tilde{\chi}_3^0 $	$_{\rm L} \nu \tilde{\ell}_{\rm L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{\rm L} \ell(\tilde{\nu}\nu)$	3 e, µ	0	Yes	20.3	$\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$	700 GeV	$m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0, m(\tilde{\ell}, \tilde{\nu})$	\tilde{v})=0.5(m($\tilde{\chi}_{1}^{\pm}$)+m($\tilde{\chi}_{1}^{0}$))	1402.7029
$\begin{array}{c} \tilde{\chi}_1^{\dagger} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi} \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \\ \end{array}$ Subject $\tilde{\chi}_1^+ \tilde{\chi} \\ Stable, stop \\ Stable, g R \\ GMSB, sta \\ GMSB, sta \\ GMSB, \tilde{\chi}_1^0 \\ \tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \\ \end{array}$	$V \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$	2-3 e, µ	0-2 jets	Yes	20.3	$\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$	420 GeV	$m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)$)=0, sleptons decoupled	1403.5294, 1402.
$ \begin{array}{c} \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0} \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0} \\ \tilde{\chi}_{3}^{0} \tilde$	$V\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0}, h \rightarrow b\bar{b}/WW/\tau\tau$	$ _{\gamma\gamma}$ e, μ, γ	0-2 b	Yes	20.3	$\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}$ 250 GeV)=0, sleptons decoupled	1501.07110
Stable, stop Stable \tilde{g} R- GMSB, sta GMSB, \tilde{x}_{1}^{0} - $\tilde{q}\tilde{q}, \tilde{x}_{1}^{0} \rightarrow qq$	$_3 \rightarrow \tilde{\ell}_R \ell$	4 e,µ	0	Yes	20.3	$\tilde{\chi}^{0}_{2,3}$	620 GeV	$m(\tilde{\chi}_{2}^{0})=m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})$		1405.5086
$\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq$	$\tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$		1 jet	Yes	20.3	<i>x</i> [±] 270 Ge		$m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=160 \text{ M}$		1310.3675
$\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq$	topped g R-hadron	0	1-5 jets	Yes	27.9	ĝ	832 GeV	m($\tilde{\chi}_{1}^{0}$)=100 GeV, 10	μs<τ(ĝ)<1000 s	1310.6584
$\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq$		trk	-	-	19.1	ĝ	1.27			1411.6795
$\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq$	stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e$	e, μ) 1-2 μ	-	-	19.1	$\tilde{\chi}_{1}^{0}$	537 GeV	10 <tanβ<50< td=""><td></td><td>1411.6795</td></tanβ<50<>		1411.6795
$\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq$	$\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2γ	-	Yes	20.3	$\tilde{\chi}_{1}^{0}$	435 GeV	$2 < \tau(\tilde{\chi}_1^0) < 3 \text{ ns}, SPS8$	8 model	1409.5542
	$qq\mu$ (RPV)	1 μ , displ. vb	< -	-	20.3	$ ilde{q}$	1.0 TeV	1.5 < <i>c</i> τ<156 mm, B	$BR(\mu)=1, m(\tilde{\chi}_1^0)=108 \text{ GeV}$	ATLAS-CONF-201
	$\rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e + \mu$	2 <i>e</i> , <i>µ</i>	-	-	4.6	$\tilde{\nu}_{\tau}$		1.61 TeV λ'_{311} =0.10, λ_{132} =0.05		1212.1272
	$\rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e(\mu) + \tau$	$1 e, \mu + \tau$	-	-	4.6	ν _τ	1.1 TeV			1212.1272
Bilinear RF	DDV/CMCCM	2 e, µ (SS)	0-3 b	Yes	20.3	\tilde{q}, \tilde{g}		5 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP} < 1$		1404.2500
Bilinear RF $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow$			-	Yes	20.3	$\tilde{\chi}_1^{\pm}$	750 GeV	$m(\tilde{\chi}_{1}^{0})>0.2\times m(\tilde{\chi}_{1}^{\pm}), \lambda$		1405.5086
	$\rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_{e}$	$3e, \mu + \tau$	-	Yes	20.3	$\tilde{\chi}_1^{\pm}$	450 GeV	$m(\tilde{\chi}_{1}^{0})>0.2\times m(\tilde{\chi}_{1}^{\pm}), \lambda$		1405.5086
$\tilde{g} \rightarrow qqq$			6-7 jets	-	20.3	Ĩ	916 GeV	BR(t)=BR(b)=BR(c)	=0%	ATLAS-CONF-201
$\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow$	$\rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_{e}$	0	0.01	Yes	20.3	Ĩ	850 GeV			1404.250
<mark>er</mark> Scalar cha	$ \begin{array}{l} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_{e} \\ \overrightarrow{\tau} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{e}, e \tau \tilde{\nu}_{\tau} \end{array} $	0 2 <i>e</i> ,μ (SS)	0-3 b	Yes	20.3	ĉ	490 GeV	m(𝔅1)<200 GeV		1501.01325


*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

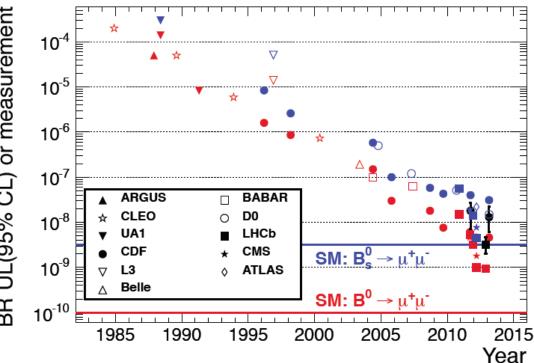
ATLAS Preliminary


LHCb and Rare Decays

 $\Delta m_{S} = 17.768 \pm 0.023 (stat) \pm 0.006 (syst) \text{ ps}^{-1}$

Supersymmetry and Rare B Decays: $B \rightarrow \mu\mu$

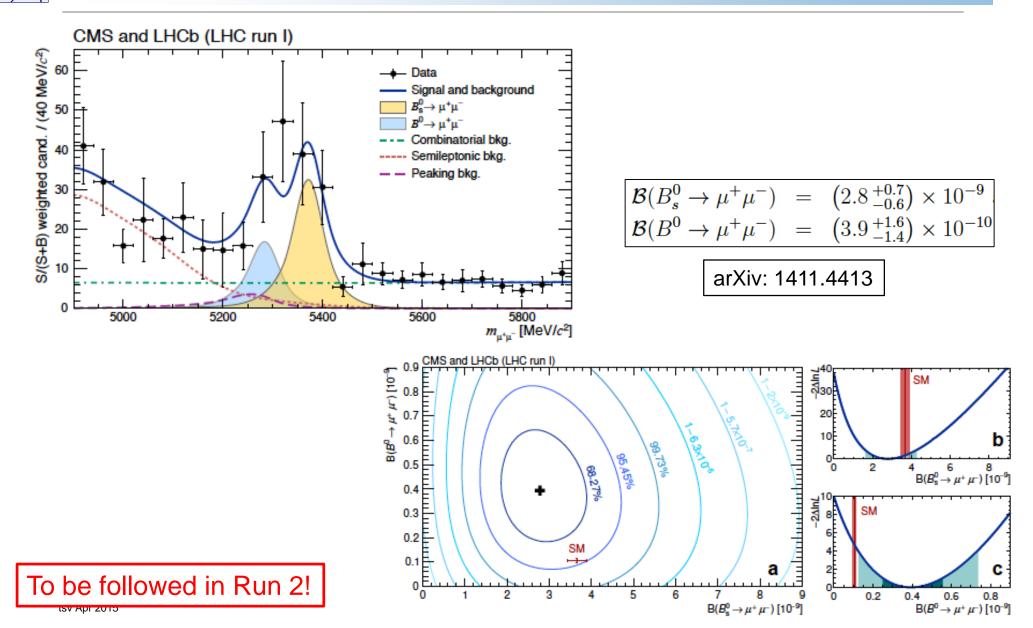
Sensitive to New Physics, can be strongly enhanced in SUSY with scalar H exchange Sensitive probe for MSSM with large tan β : $B(B_S \rightarrow \mu^+\mu^-) \sim \tan\beta^6 / M_A^4$

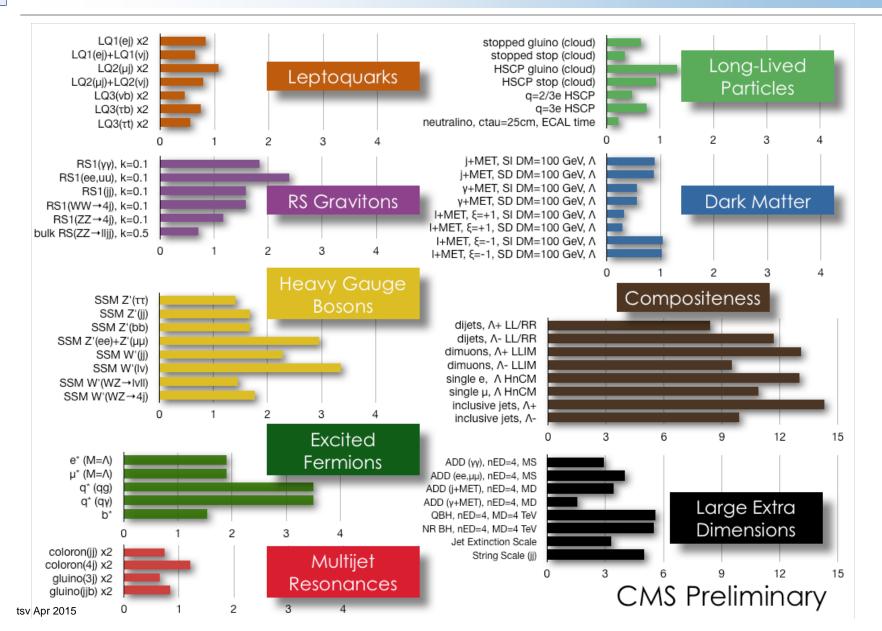

In Standard Model:

 $B(B_d \rightarrow \mu \mu) = (0.10 \pm 0.01) \times 10^{-9}$

 $B(B_s \rightarrow \mu \mu) = (3.2 \pm 0.2) \times 10^{-9}$

[A.J.Buras: arXiv:1012.1447]

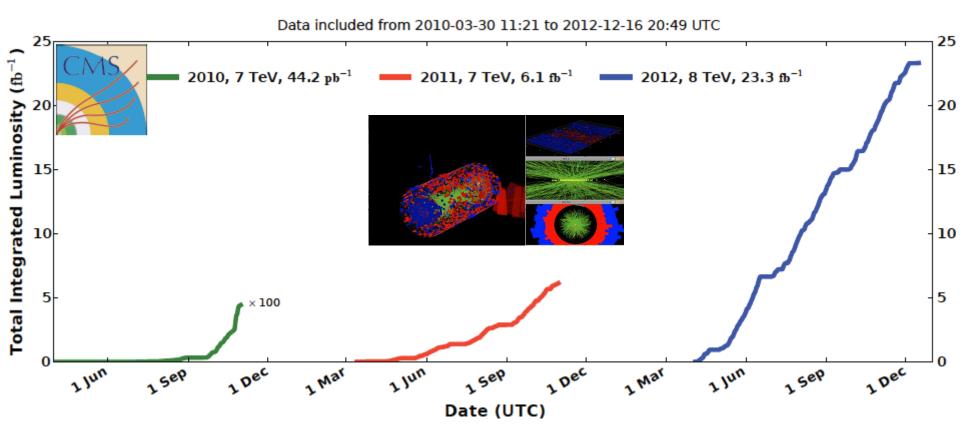


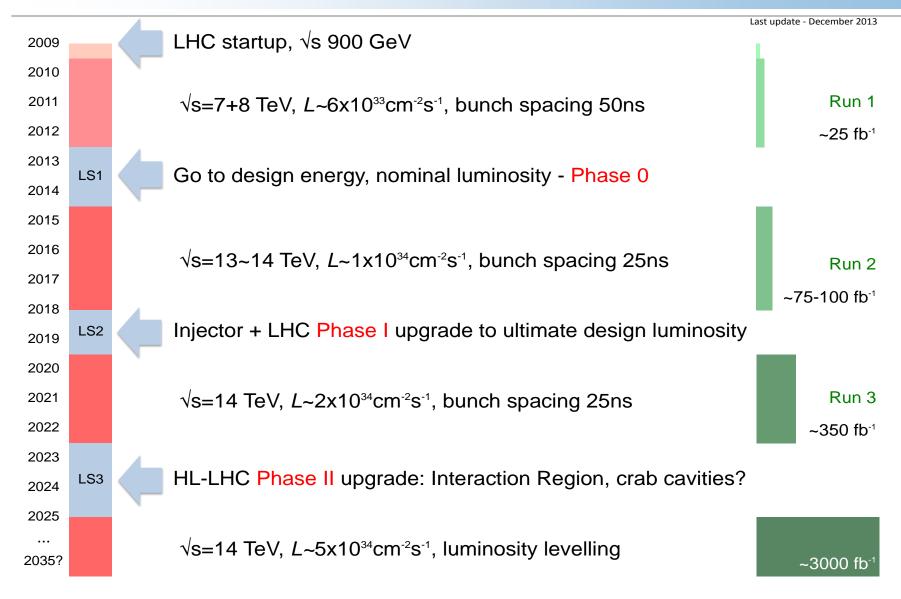

CERN

Observation of $B_S \rightarrow \mu \mu$

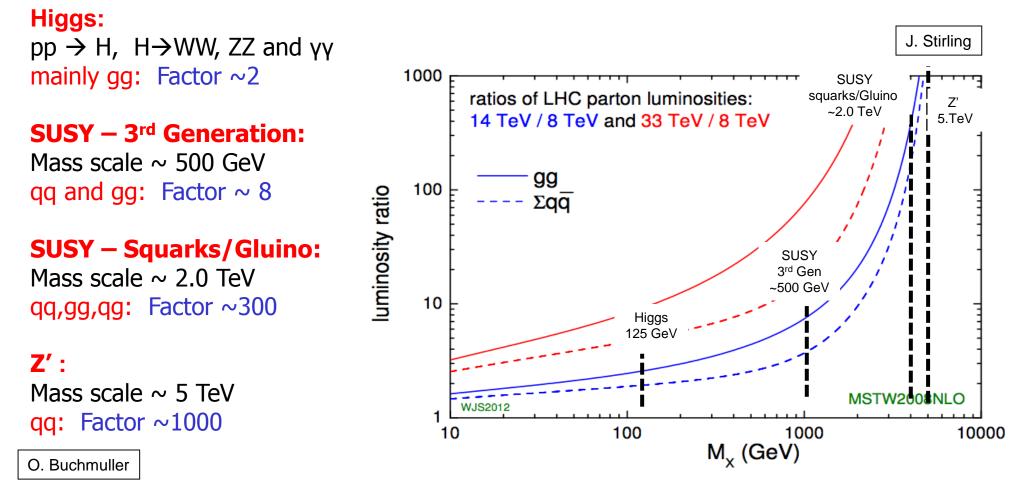
Another dizzying exclusion map

57


Outlook


An amazing three years

CMS Integrated Luminosity, pp



LHC roadmap to achieve full potential

14 TeV vs 8 TeV – Gain Factors

Use parton luminosities to illustrate the gain of 14 vs 8 TeV

For the searches increase in energy will help a lot!

Restarting the LHC at 13 TeV

Looking Ahead to Phase 1

Runs 2 and 3

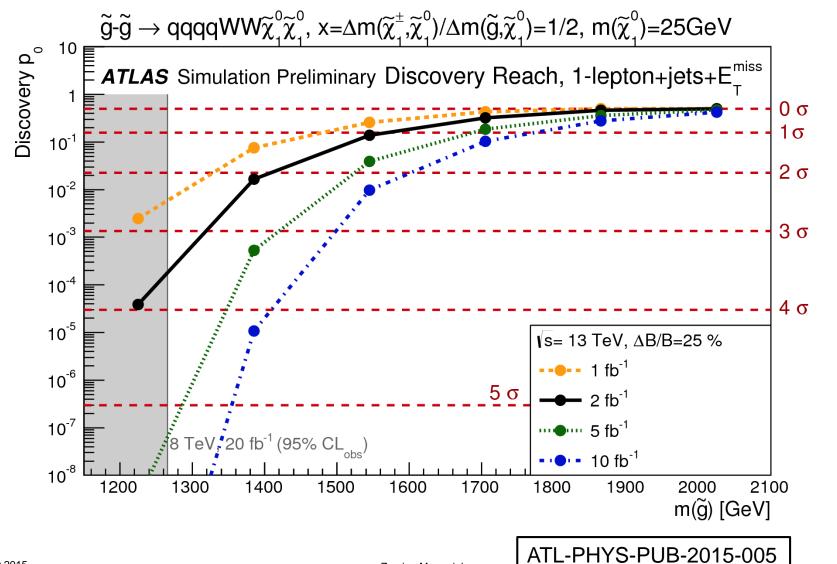
• Conduct detailed studies of the properties of the found Higgs boson. Run II will produce > 5M Higgs bosons

Search for exotic decays of Higgs boson?

1	Exp.	Κγ	ĸW	ĸZ	Кд	ĸb	κ _t	Kτ
)	ATLAS	[8,13]	[6, 8]	[7, 8]	[8, 11]	N/a	[20, 22]	[13, 18]
2	CMS	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]

Couplings Precision ~ 5-15%

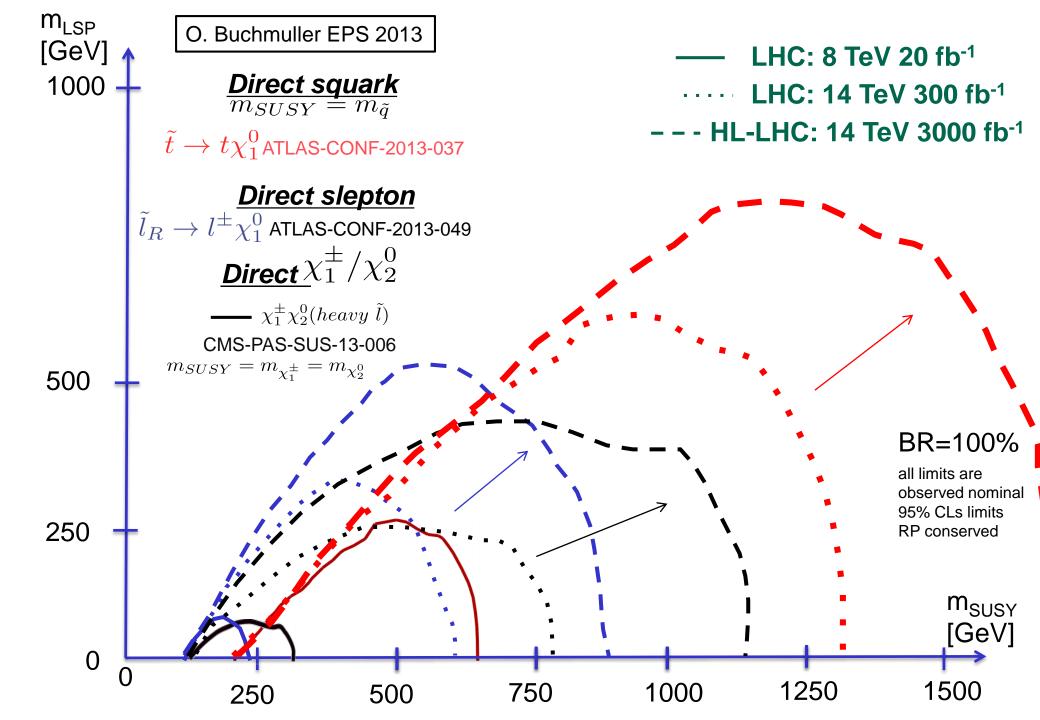
300 fb⁻¹


• Search for new physics: resonances, supersymmetry, exotica, yet unknown.

It is conceivable that we find new heavy particle(s) in Phase 1.

• Look for deviations from the standard model – precision SM measurements (e.g. tens of millions of top pairs produced/yr)

Looking Further Ahead to Phase 2 (HL-LHC)

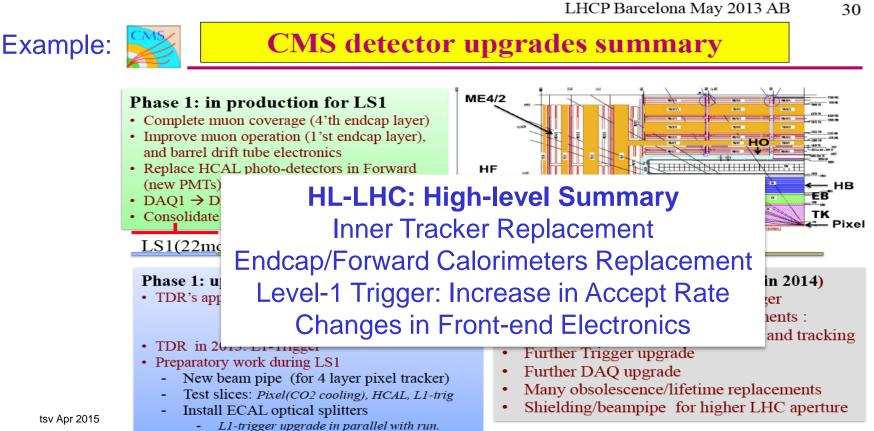

Topmost Priority – exploitation of the full potential of the LHC High luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design

	Conduct detailed studies of the properties of the found Higgs boson.												
	How much does it contribute to restoring unitarity in VBF (closure test												
	of SM), exotic decays, rare decays (e.g. $H \rightarrow \mu\mu$)												
	$HIC \rightarrow HL-LHC - a Higgs factory! 100M produced 3ab^{-1}$												
51	Phase 0	L(fb ⁻¹)	Exp.	κγ	ĸW	ĸZ	Кд	ĸb	κ _t	ĸτ	^κ Zγ	κμμ	
		300	ATLAS	[8,13]	[6, 8]	[7, 8]	[8, 11]	N/a	[20, 22]	[13, 18]	[78, 79]	[21, 23]	
	Run 2		CMS	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	
52	~75-100 fb ⁻¹ Phase I	3000	ATLAS	[5, 9]	[4, 6]	[4, 6]	[5, 7]	N/a	[8, 10]	[10, 15]	[29, 30]	[8, 11]	
			CMS	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	
	^{Run 3} ~350 fb ⁻ Couplings Precision ~ 2-10%. H self coupling ~30% (needs study)												

Continue searching for new physics. If new physics has been found by the end of Phase 1, associated particle(s) will be heavy. Then conduct detailed studies in Phase 3 (HL-LHC).

Phase

Zumino Memorial



Detector Challenge: Maintain/improve on detector performance achieved in Run I, under more hostile conditions.

Apply lessons from the past – a directed programme of R&D and prototyping before starting construction.

Summary/Outlook - Supersymmetry

- Supersymmetry remains, to this date, a well-motivated, much anticipated extension to the Standard Model of particle physics
 - Advent of the LHC: huge new ground within reach
 - A search is defined by its signature and by its background estimation method. Need to be data-driven AMAP
- By now in all searches we are carrying out thirdgeneration analyses (typically, second-gen and 8 TeV)
 - A huge number of analyses have been carried out
 - In some cases we are looking at third-generation analyses (both in terms of evolution and family ☺)
 - Nothing has turned up yet.
 - But there are grand hopes that something new is there!
 - There is Run 2 starting soon !

And of course, if history is a guide, we will find the unexpected.

Summary

- The construction of the Standard Model is a towering intellectual achievement of humankind
- Magnificent interplay between theory and experiment

•After 25 years of design, construction (LHC+Xpt) we are firmly in the 2nd half of the journey – that of exploitation of the full scientific potential.

- The accelerator and the experiments have operated very well.
- The LHC experiments are physics producing engines!
- A "massive" discovery has been made a Higgs boson.
 The boson appears just to be the one predicted by the SM.
- No evidence found yet of physics BSM. The Standard Model with a single "elementary" scalar doublet seems to work well (too well)

 The discovery of Higgs boson is just the start of the exploration of the Terascale. Lying ahead is an exciting programme - in equal parts:

- Precision measurements (not only of the new boson)
- Searches for new particles and phenomena
- We hope new physics will appear in Run II at 13-14 TeV.

sv Apr 2015