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Introduction

» In particle physics we deal with three kinds of symmetries.

» They all leave the action invariant, but have different physical
consequences.

» GLOBAL symmetries as isotopic spin (if m, = my) in 2-flavor
QCD.

» Unique vacuum annihilated by the symmetry gener.: Q4/0) =0

» Particles are classified according to multiplets of this symmetry
and all particles of a multiplet have the same mass.

» If my = my, QCD is invariant under an SU(2)y flavor symmetry.
» and the proton and the neutron would have the same mass.

» This is not the case because the quark mass matrix breaks
explicitly SU(2) (my # mg).
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» Then, we have the GLOBAL spontaneously broken symmetries.

» For zero quark mass, QCD with two flavors is invariant under
SU(2), x SU(2)pg.

» Degenerate vacua: Q,[0) = |0').

Not realized in the spectrum, but presence in the spectrum of

massless particles, called Goldstone bosons.

They are the pions in QCD with 2 flavors.

This is one physical consequence of the spontaneous breaking.

Another one is the existence of low-energy theorems.

The 7mm scattering amplitude is fixed at low energy.

Actually the scattering amplitude for massless pions is zero at low

energy because Goldstone bosons interact with derivative

coupling (shift symmetry « Adler zeroes).

» If one introduces a mass term, breaking explicitly chiral symmetry
and giving a small mass to the pion, one gets the two Weinberg
scattering lengths:

v

vVvyyvVYyVvyy

m; my

e ; az —_ —
327 Fﬁ 167 FE
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» Finally, we have the LOCAL gauge symmetries for massless spin
1 and spin 2 particles.

» Local gauge invariance is necessary to reconcile the theory of
relativity with quantum mechanics.

» It allows a fully relativistic description, eliminating, at the same
time, the presence of negative norm states in the spectrum of
physical states.

» Although described by A,, and G,,,, both photons and gravitons
have only two physical degrees of freedom in d=4.

» Another consequence of gauge invariance is charge conservation
that, however, follows from the global part of the gauge group.

» Yet another physical consequence of local gauge invariance is the

existence of low-energy theorems for photons and gravitons:
[F. Low, 1958; S. Weinberg, 1964]
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» Let us consider Compton scattering on spinless particles.
» The scattering amplitude M, is gauge invariant:

ki'My, = ky M, =0

» The previous conditions determine the scattering amplitude for
zero frequency photons and one gets the Thompson

cross-section:
2
8r [ € 87Tr2
o = —_— —_— = —_—
T=73 \me? 39

where rg is the classical radius of a point particle of mass m and
charge e.
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» The interest on the soft theorems was recently revived by
[Cachazo and Strominger, arXiv:1404.1491[hep-th]].

» They study the behavior of the n-graviton amplitude when the
momentum g of one graviton becomes soft (g ~ 0).

» The leading term O(g~") was shown to be universal by Weinberg
in the sixties.

» They suggest a universal formula for the subleading term O(g°).

» They speculate that, as the leading term, it may be a consequence
of BMS symmetry of asymptotically flat space-times.

» In this seminar we show that the first three leading terms of order
g, q°, g are a direct consequence of gauge invariance.

» This result is valid for an arbitrary space-time dimension d.

» In the second part study soft theorems in string theory, in
particular for dilaton and B,,, .
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One photon and n scalar particles

(a) (b)

» The scattering amplitude M, (q; k1 . .. kn), involving one photon
and n scalar particles, consists of two pieces:

AL(q; ki, ... kn Ze,‘ n(ki, ... ki+q,... kn)

+ Nﬁ(q,k1,...,kn).
» and must be gauge invariant for any value of q:

n
quAn = YeiTn(kh---aki‘{'Qa---akn)+QuNﬁiq?k1a---,kni =0
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» Expanding around q = 0, we have
& 5,
o:Ze,- {Tn(kh...,k, )“’“ak To(ky, ... ki, ... Kkn)

+ quNE(q = 0Ky, ... kn) + O(GP).

» At leading order, this equation is

n
Ze,-:o,
i=1

which is simply a statement of charge conservation
[Weinberg, 1964]
» At the next order, we have

quNﬁ(O;k'lr"a Zelquak k1) kn)

Paolo Di Vecchia (NBI+NO) Soft behavior © Cemn,27.042015  10/44



» This equation tells us that N, (0; k1, ..., kp) is entirely determined
in terms of T, up to potential pieces that are separately gauge
invariant.

» |t can be shown that they are of higher order in g.
» We can therefore remove the g, leaving

NE(0; Ky, ..., kn Ze’ak To(k, ... kn),

thereby determining N/ (0; kq, .. ., k,) as a function of the
amplitude without the photon.
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» Inserting this into the original expression yields

n
(= . v
=1

where

0 0
L TR
S <k' ok, 3kiu>

is the orbital angular-momentum operator.

» The amplitude with a soft photon with momentum q is entirely
determined, up to O(q°), in terms of the amplitude T,(kq1, ..., ks),
involving n scalar particles and no photon.

» This goes under the name of F. Low’s low-energy theorem.
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» Low’s theorem for photons is unchanged at loop level.

» Can we get any further information at higher orders in the soft
expansion?
» One order further in the expansion, we find the extra condition,

12’7:6' 6727-(/( k)—|- LN#(OK k) =0
2i:1 Iququakiuakiy n\K1,...,Kn qul/aqV Ky, n)— .

» This implies

n
02 ONE  ONZY
;e/mrn(kh...,kn)‘F {867,, + aqﬂ} (0; ky,...,kn) =0,
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» Gauge invariance determines only the symmetric part of the

quantity g’;’f (0; ki,... k).

» The antisymmetric part is not fixed by gauge invariance.
» Then, up to this order, we have

An(g; ki, ..., kn)

' q
P k;-q 2 pak,'p
1 [ONE  ONY ,
39 | ot~ G| @ik ko) + OLP)



» Get an amplitude by contracting A, (q; ki, - . ., k,) with the photon
polarization eg,.

» Soft-photon limit:

A K, ka) = [S@ + SN Tokr, ... kn) + O(a),

where
n
ki-e
SO = g-—3
,.z_; "ki-q
n uv
M — EquavY;
S =-i) g Pt

i=1

where J*” is the angular momentum.

Paolo Di Vecchia (NBI+NO) Soft behavior © Cemn,27.042015  15/44



One graviton and n scalar particles
» In the case of a graviton scattering on n scalar particles, one can

write
N KkPkY
M#V(q;k‘l?"'?kn) = ; kll__Ian(k1?"'7ki+qa---7kn)
+ NY(g, k..., kn),
» NA(q; k1,. .., ka) is symmetric under the exchange of 1 and v.

» On-shell gauge invariance implies
0=q.My(q; ki, ... kn)

n
:Zkinn(kh"'7ki+qa"'7kn)+q,uNﬁy(q;k17"-7kn)'
i=1

» More precisely, gauge invariance imposes:
q.My"(q. ki) = 1(q, k))q" = q. (Mp" — f(ki)n"") =0
but the extra term is irrelevant for gravitons: e/z'n,,, = 0.

Paolo Di Vecchia (NBI+NO) Soft behavior © Cemn,27.042015  16/44



» At leading order in g, we then have

n

> K=o,

i=1

» It is satisfied due to momentum conservation.

» Different couplings to different particles would have prevented the
leading term to vanish: Gravitons have universal coupling
[Weinberg, 1964].

» At first order in g, one gets
Zkyak,u n(ki,. ... kn) + NEY (0 Ky, ... kn) =0,

» while at second order in q, it gives

ONE”  ONR'Y B
Z {9k ok 8k Tn(k1,...,kn)+[aqp + oq, (0;ky, ..., kn) =0.
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» As for the photon, this is true up to gauge-invariant contributions
to N,

» However, the requirement of locality prevents us from writing any
expression that is local in g and not sufficiently suppressed in q.

» Using the previous equations, we write the expression for a soft
graviton as

ML (q: ki . . . kn)

n
_ ki L iy [hP 1
_Iz;qu |:kl —quJ,- 1 +§qaé?T,-a Tn(k1,...,kn)

1 ONE”  ONEY
+7qp -
2 0q, oq,
» This is essentially the same as for the photon except that there is
a second Lorentz index in the graviton case.
» Unlike the case of the photon, the antisymmetric quantity in the

last line of the previous equation can also be determined from the
amplitude T,(ki,...,kn) without the graviton.

}(O;k1,...,kn)+(9(q2).
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» From the equation above (implied by gauge invariance) +
remembering that N;"” is a symmetric matrix, one gets the
following relation:

ONG”  ON
oqu  0qp

n
Z 0
—1 JlupaklyTn(k‘],,kn):[ :|(O,k1,,kn),
i=1

which fixes the antisymmetric part of the derivative of N4 in terms
of the amplitude T,(ki,..., k) without the graviton.
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» Using the previous equation, we can then rewrite the terms of
O(q) as follows:

M (G: 1, ko) o)

Z 9vq- [k;/Jyp 0 kaJHP 9 :| Tn(k1,...,kn)

" 0k, ok,
_ I %% | oy @ ey O
o2 ; e 4 g, — )
s 0 .
_J#Pkl 8le (J/"’pk ) (9/(”/] Tn(k1 sy kn)

1 ?
= — - . [V O Ayl VO n
2;,(/_(7{((& Q)" q — g'n”7) - qu)akg

— qu;‘quJ;’U] Tn(ki,. .., kn).

» Finally, we contract with the physical polarization tensor of the soft
graviton, g,
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» We see that the physical-state conditions
q“ew/ = qyfuy =0 ; ’r]ﬂye,ul/ =0
set to zero the terms that are proportional to »*¥, g* and g".

» We are then left with the following expression for the graviton soft
limit of a single-graviton, n-scalar amplitude:

Mn(g: k1, Kn) =[S + 8D+ S Tk, ..., k) + O(¢P),

» where

500 — i Eu;kﬂ:;j ,
-

i=1

3(1):,-2'7:W’
-

i=1
5@ — 1N~ fw @90

23 ki-q
» These soft factors follow entirely from gauge invariance.
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Soft limit of (n + 1)-gluon amplitude

» We consider a tree-level color-ordered amplitude where gluon
(n+ 1) becomes soft with g = k1.

» Being the amplitude color-ordered, we have to consider only the
two poles with the soft particle attached to the two adjacent legs.

» We proceed as before.



» Contract with external polarization vectors:

Ani1(qi ke, ... Kn) — [S“’) + S(”} An(ki, ... kn) +0(q),

where
S(O) — k1 *Eq _ kn “Eq
V2(ki-q) v2(kn-q)
JH /d
S = _je qg< 1 - n )
¥ \V2(ki-q) V2(kn- Q)
» Here
J;LJ = Lf},o’ + S;,LO"
where

0 0 0 0
" =il k! .y B = el —&f :
! : < " Ok, : 6kiu> ’ SI I <6I Ogiq K agi,u)

Paolo Di Vecchia (NBI+NO) Soft behavior © Cemn,27.042015  23/44



Soft limit of (n + 1)-graviton amplitude

Moi1(q ki, kr) =[SO + 8O + SO My(ks, .., kn) + O(cP),

50) — i 5#;";’“5/” :
.

i=1

s = _ Z 5W£ng‘j

?

i=1

2 5uvqp‘j qUJW
S@ — 22 _

where JI'7 = L1"7 4 SI'” and (¢/"V = €l'¢?)

9 9 ? 0
L — ko 1=ilel —ef )
L —’<kf ok, ' ok ) X _'<5’ ey 8%)

These soft factors follow from gauge invariance and agree with those
computed by Cachazo and Strominger.
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What about soft theorems in string theory?

» In superstring the soft theorems have been investigated by
B.U.W. Schwab, arXiv:1406.4172 and arXiv:1411.6661
M. Bianchi, Song He, Yu-tin Huang and Congkao Wen,
arXiv:1406.5155.

» Soft theorems for gluons and gravitons are of course satisfied, as
one can check computing explicitly the amplitude.

» Study the soft theorems for other massless particles as the dilaton
and the B, .
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Soft theorem for dilaton and B,

v

The field theory action for the dilaton and B, :

1 d -2 v 1
Sstring = Zl%j/d x\v/—G e ¢ R+4G* Hgb&,qﬁ = ﬁHﬁVp
There is no gauge invariance for the dilaton as for the graviton.
Therefore, we don’t expect low-energy theorems for the dilaton.
No long range force associated with the B,,,, (no term of o(g™)).
We cannot use its gauge invariance as for gravitons.

On the other hand, the soft dilaton behavior in string theory goes
back to the 70s [Ademollo et al , 1975] and [Shapiro, 1975].

vV v v v .Y
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» In string theory the scattering amplitudes involving a graviton or a
dilaton or a Kalb-Ramond field are all obtained from the same
two-index tensor M"”(q; k;) by saturating it with a polarization
tensor satisfying respectively the following conditions:

Graviton (g) — eg” B =)
Dilaton (¢) == €' =n""-q"q" —q"q"
Kalb-Ramond (B,,) = € = —€g

where g is, similarly to g, a lightlike vector suchthatq- g =1.
» The soft theorem for a dilaton can, in principle, be computed
starting from the expression that we obtained for the graviton.

» But now we cannot neglect extra terms proportional to n*” as we
did in the case of a graviton.
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» Imposing ¢*M,,, = g"M,,, = 0, for the graviton we got:
MY (q; ky - . . Kn)

n k-V )

1< 1 )
_ . MY ~O A VO el AV AT
+2§ki‘q[((kl q)(n"q” — g'n"?) k,qq)akl_a

- qu;U«quJIlIO':| Tn(k‘] g e ey kn) .

and we have neglected the terms in the third line because the
graviton polarization satisfies the identities:
Q" ew = q € =n""eu =0
» More precisely, gauge invariance imposes:
9.Mn"(q. ki) = f(q. k)q” = qu (Mp” — f(ki)n"") = 0

» The extra term with n*¥ is irrelevant for the graviton, but not for the
dilaton.
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» Because of this we cannot in general get low-energy theorems for
the dilaton.

» But, let us forget for a moment this problem, and compute the
amplitude with a massless closed string state and n closed string
tachyons:

MHY le'7z1 dzzf H |z Z,‘O/kikj / d2z 12[ 1z z,’o/qu
n ey E— i — Zj —Zj
dVabe i<j i=1

><az:z Z,ZZ Z

i=1

» We have explicitly computed the first three terms of order g7, g°
and q'.
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» The calculation is rather long and at the end we get the following
expression:

n

" ko ok ki, q° 0 0
v ; . TNy v - k.

i=1 i=1
1 < qpq"[ < B) b ) 9
+=Y —— |k, | ki — k;
2[2_; k,q ! ’“8k,~p Ipak,'u 6/(,'0

a o\ o
~Kio (k’“ ok, Kio ak,-u) ak,-,,]} Tn

where

87 /K n—2 L}, dZZ' ol g
To= = (3%) Hg\}abc 11z -z %%
i#]
is the correctly normalized n-tachyon amplitude.
» This is precisely the expression obtained from gauge invariance
with the general argument imposing the conditions:
quM* = g, M* = 0.
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» By saturating it with the graviton polarization one gets, of course,
the previous general expression.
» By saturating it with the dilaton “polarization”

Cuy = (nuu - quau - quau) ) q2 = 572 =0 ; qE] =1
> one gets (m? = — %)

a/

n m?(1_|_qpi+1q q° 92 )
(0) (1) (2 _— _ : ki, ' 21" 0k, 0kKi,
S +8V+S > P

i=1
n

d
— > Ky +2
; " dki,,

" 92 1 92
Kkge— 4 kg L
+ ; ( w9 5ok, 2 Ki9) ak,-uak,ﬂ)

+ 0(g?)

» B, not coupled to ntachyons (invariance under w.s. parity Q).
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» Soft behavior of a massless closed string in an amplitude involving
an arbitrary number of other massless closed strings
(bosonic+superstring) .

» In this case we have performed the calculation up to the O(g°).

» For the symmetric part of M,,, we get:

K'Y — SkVquJl — Skl'q,J7”
M'W(q klael - 'Vidz < ! qpqll( 2.1 qp ! ) Mn(kiaei)
i=1 !

where Mu(k;, €;) is the amplitude with n massless states,

J’Hu — L;,LV + S;u/ + S;ul/ 7

P ) 0 0
pwro_ K v g i
Lo =1 (k’ ok, am) X '( "oe, ‘96"#) |

= o, 0  _, 0 -
S =ilée — & — ;e =d'ey
8e,y 66,'M
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» By saturating with the polarization of the graviton, one gets (of
course) the soft behavior obtained from gauge invariance.
» If we instead saturate it with the polarization of the dilaton we get:

0

n
Mpi1 = kg !2 — Z ki“@T M+ O(q),
i=1 fie

» It can be written in a more suggestive way by observing that, in
general, M, has the following form:

o 87T /f/d n—2 L. . 1 gs
Mn = ? (E) Fn(\/oik,), Rg = 2% \/é
where F, is dimensionless and obviously satisfies the equation:

Zn:k- 0k ova-F
— Iﬂak’u n a\/& n -

(2m) 7 (Vo) 7

» One gets:

0 d-2 0
Mn+1 = R¢g |:—\/O78\/J + Tgsaigs Mn+O(Q) .
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v

Same result if we include massless open strings (on a Dp-brane).

» No extra term proportional to n** is needed to reproduce the
previous amplitude.

» The amplitude of a soft dilaton is obtained from the amplitude
without a dilaton by a simultaneous rescaling of the Regge slope
o/ and the string coupling constant gs.

» Same rescaling that leaves Newton’s constant invariant:

0 d—2 0
—\/aa\/a—f‘Tgsaigs Hdzo

» No fundamental dimensionless constant in string theory.

» From it we can rewrite the soft dilaton theorem:
d-2 d

M1 = HdTT%Mn +0(q) ; gs=e™
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» Apply to the case n = 5 with 5 dilatons:

n
0
M5 = Kqd (2 = Z kiuak'> M4 aF O(Q)
i=1 I

where

r(1— 48r(1 — gr(1 — «t
M4—2/<;d(tu—|—su 3t> r( O14)( 4)( 4)
s r T

t (1+ 221+ r(1 + %)

» In the field theory limit (o/ — 0), one gets zero because one has a
homogenous function of degree 2.

» In string theory one gets a non-trivial right-hand-side.

Paolo Di Vecchia (NBI+NO) Soft behavior © Cemn,27.042015  35/44



Soft theorem for B,

» In order to formulate a soft theorem for the antisymmetric tensor
we have to make a distinction between the momentum of the
holomorphic part, which we call k;, from that of the
anti-holomorphic part, which we call k;.

» This means that the amplitude M,(k;, €;; ki, €), on which the soft
operator acts, is a function of both k; and k;.

» Together with the operators L;, S; and S;, we then also introduce:

o =ik d g2
OKki, oki,

» In terms of these operators, the soft behavior for B,,, reads:

kY Go(Li + Siy* Ky qp(Li+ S))*
aki gk

n
: B
Mn1 = _IEQ.UVKJdZ

i=1

M (k;, €i; ki, €) P 0(q)
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» Itis equal to

kv i
Myt = —i€g kg E [ (Li— L)y + /'(,ZP(S/ — Sj)*
i

x Mn(Ki, i; ki, Ei)’ _+0(q)-

» As expected from Weinberg’s general argument, we do not get
any term of O(g~1), corresponding to a long range force, but there
are several terms of O(q°).

» It is not clear how to get the soft operator of the antisymmetric
field by directly using its own gauge symmetry, as it has been
done for the graviton.

» It is not really a soft theorem because the amplitude M, (k;, €;; ki, &)
is not a physical amplitude before we act with the soft operators.

» |t is nevertheless easy to show that it is gauge invariant.
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» Under a gauge transformation for the Kalb-Ramond field,
egm, — egm, + g"x» — 9" xu, the amplitude changes as follows

n
SOM, — SIM, +igyx, > [(Li + S — (L + é’)ﬂ
i=1

x Mn(ki, €i; ki, &)

k=k
» The extra term vanishes as a consequence of the identity

n n

;(Li + S)* Mn(ki, €;; ki, &) i ;(Zi + 5" Mi(Ki, €i; ki, €) s

which can be proved by a direct calculation, ensuring gauge
invariance of the amplitude.
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Comments on loop corrections: gauge theory
» At one-loop the amplitude will have in general IR and UV
divergences.
» We are not giving here a complete study of them.

» The one-loop contributions have been classified into the
factorizing ones and the non-factorizing ones.

» We will concentrate here to the factorizing ones.
» They modify the vertex present in the pole term.
» For the gauge theory they are of the type shown in the figure.
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a a a a
O
‘l
O 000 4 = noo+ no o+ Iz
\.‘
n n n n

» They have been computed in QCD and are given by:

pfact _ i1 1) (1 Ir\ll,; )(q ka)" [(6"'63)_ (ka- Q)

/23 (47)2
[Z. Bern, V. Del Duca, C.R. Schmidt, 1998]
[Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt, 1999]
It is both IR and UV finite and the limit ¢ — 0 has been taken.
It is non-local because of the pole in (gka).
It is gauge invariant under the substitution ¢, — q.
It does not contribute to the leading soft behavior.

vV v vy
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» Attaching to it the rest of the amplitude

fact !

_TJH
. 2q-ka‘7’

» J"is a conserved current:
(9 + Ka)uJ" =0,

assuming that all the remaining legs are contracted with on-shell
polarizations.

» We can trade k5 with g and we get immediately:
i

fact - 0
T 0(q°),

» No leading O(%) correction from the factorizing contribution to the
one-loop soft functions.
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Comments on loop corrections: gravity

a a a a
T 7 1
@vw S }f\m by }me At }w@wmﬁ
n n n n

» A similar calculation can be done for the gravity case.

» We consider only the case in which scalar fields circulate in the
loop.

» The result of this calculation is:

v fact,s ] K 1 ca)(Kaen
D = (4;y <2>330“€n_€d__(qajﬁhﬂ>}

% ((q-ca)(ka - en) = (en- ca)(q - ka) | KRG + O(cP).
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» As in the gauge-theory case, the diagrams D#»-facts contract into a
conserved current:

(ka+ )" T = f(kisei)(Ka+ Q)v s (Ka+ Q)" T = f(Ki,€i)(ka+ Q) -
» This means

ka ks T = (ka+ 9)"(Ka + §)" T + O(9)
= f(ki, i) (ka+ 9)° + O(q) = 2f(k;, €)q - ka + O(q) = O(9)

» We therefore have

Dﬂu,factszq kaj’W = O(Q)

» No modification of the two first leading terms.

» As in QCD, we expect that the contribution of other particles
circulating in the loop will not modify this result.
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Conclusions
» We have extended Low’s proof of the universality of sub-leading
behavior of photons to non-abelian gauge theory and to gravity.

» On-shell gauge invariance fully determines the first sub-leading
soft-gluon and the first two sub-leading soft-graviton behavior at
tree level.

» Factorizing one-loop contributions preserve the leading behavior
in gauge theories and the first two leading behaviors in gravity.

» One computes the low-energy behavior of M,,, by imposing the
Egs. ¢“M,,, = q"M,,, = 0.

» Saturating M,,, with the polarization of Graviton/Dilaton, one gets

automatically their soft behavior.

This is the result for all amplitudes we have looked at: BCJ/KLT?

We get also a kind of soft theorem for B,,,,.

Extend our considerations to one-loop diagrams.

Study the double-soft behavior both in field and string theory.
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