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Introduction

I In particle physics we deal with three kinds of symmetries.
I They all leave the action invariant, but have different physical

consequences.
I GLOBAL symmetries as isotopic spin (if mu = md ) in 2-flavor

QCD.
I Unique vacuum annihilated by the symmetry gener.: Qa|0〉 = 0
I Particles are classified according to multiplets of this symmetry

and all particles of a multiplet have the same mass.
I If mu = md , QCD is invariant under an SU(2)V flavor symmetry.
I and the proton and the neutron would have the same mass.
I This is not the case because the quark mass matrix breaks

explicitly SU(2) (mu 6= md ).
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I Then, we have the GLOBAL spontaneously broken symmetries.
I For zero quark mass, QCD with two flavors is invariant under

SU(2)L × SU(2)R.
I Degenerate vacua: Qa|0〉 = |0′〉.
I Not realized in the spectrum, but presence in the spectrum of

massless particles, called Goldstone bosons.
I They are the pions in QCD with 2 flavors.
I This is one physical consequence of the spontaneous breaking.
I Another one is the existence of low-energy theorems.
I The ππ scattering amplitude is fixed at low energy.
I Actually the scattering amplitude for massless pions is zero at low

energy because Goldstone bosons interact with derivative
coupling (shift symmetry↔ Adler zeroes).

I If one introduces a mass term, breaking explicitly chiral symmetry
and giving a small mass to the pion, one gets the two Weinberg
scattering lengths:

a0 =
7mπ

32πF 2
π

; a2 = − mπ

16πF 2
π
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I Finally, we have the LOCAL gauge symmetries for massless spin
1 and spin 2 particles.

I Local gauge invariance is necessary to reconcile the theory of
relativity with quantum mechanics.

I It allows a fully relativistic description, eliminating, at the same
time, the presence of negative norm states in the spectrum of
physical states.

I Although described by Aµ and Gµν , both photons and gravitons
have only two physical degrees of freedom in d=4.

I Another consequence of gauge invariance is charge conservation
that, however, follows from the global part of the gauge group.

I Yet another physical consequence of local gauge invariance is the
existence of low-energy theorems for photons and gravitons:
[F. Low, 1958; S. Weinberg, 1964]
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I Let us consider Compton scattering on spinless particles.
I The scattering amplitude Mµν is gauge invariant:

kµ1 Mµν = kν2 Mµν = 0

I The previous conditions determine the scattering amplitude for
zero frequency photons and one gets the Thompson
cross-section:

σT =
8π
3

(
e2

mc2

)2

=
8π
3

r2
cl

where rcl is the classical radius of a point particle of mass m and
charge e.
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I The interest on the soft theorems was recently revived by
[Cachazo and Strominger, arXiv:1404.1491[hep-th]].

I They study the behavior of the n-graviton amplitude when the
momentum q of one graviton becomes soft (q ∼ 0).

I The leading term O(q−1) was shown to be universal by Weinberg
in the sixties.

I They suggest a universal formula for the subleading term O(q0).
I They speculate that, as the leading term, it may be a consequence

of BMS symmetry of asymptotically flat space-times.
I In this seminar we show that the first three leading terms of order

q−1,q0,q are a direct consequence of gauge invariance.
I This result is valid for an arbitrary space-time dimension d.
I In the second part study soft theorems in string theory, in

particular for dilaton and Bµν .
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One photon and n scalar particles

(a) (b)

I The scattering amplitude Mµ(q; k1 . . . kn), involving one photon
and n scalar particles, consists of two pieces:

Aµn(q; k1, . . . , kn) =
n∑

i=1

ei
kµi

ki · q
Tn(k1, . . . , ki + q, . . . , kn)

+ Nµ
n (q; k1, . . . , kn) .

I and must be gauge invariant for any value of q:

qµAµn =
n∑

i=1

eiTn(k1, . . . , ki + q, . . . , kn) + qµNµ
n (q; k1, . . . , kn) = 0
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I Expanding around q = 0, we have

0 =
n∑

i=1

ei

[
Tn(k1, . . . , ki , . . . , kn) + qµ

∂

∂kiµ
Tn(k1, . . . , ki , . . . , kn)

]
+ qµNµ

n (q = 0; k1, . . . , kn) +O(q2) .

I At leading order, this equation is

n∑
i=1

ei = 0 ,

which is simply a statement of charge conservation
[Weinberg, 1964]

I At the next order, we have

qµNµ
n (0; k1, . . . , kn) = −

n∑
i=1

eiqµ
∂

∂kiµ
Tn(k1, . . . , kn) .
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I This equation tells us that Nµ
n (0; k1, . . . , kn) is entirely determined

in terms of Tn up to potential pieces that are separately gauge
invariant.

I It can be shown that they are of higher order in q.
I We can therefore remove the qµ leaving

Nµ
n (0; k1, . . . , kn) = −

n∑
i=1

ei
∂

∂kiµ
Tn(k1, . . . , kn) ,

thereby determining Nµ
n (0; k1, . . . , kn) as a function of the

amplitude without the photon.
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I Inserting this into the original expression yields

Aµn(q; k1, . . . , kn) =
n∑

i=1

ei

ki · q
[
kµi − iqνJµνi

]
Tn(k1, . . . , kn) +O(q) ,

where

Jµνi ≡ i
(

kµi
∂

∂kiν
− kνi

∂

∂kiµ

)
is the orbital angular-momentum operator.

I The amplitude with a soft photon with momentum q is entirely
determined, up to O(q0), in terms of the amplitude Tn(k1, . . . , kn),
involving n scalar particles and no photon.

I This goes under the name of F. Low’s low-energy theorem.
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I Low’s theorem for photons is unchanged at loop level.
I Can we get any further information at higher orders in the soft

expansion?
I One order further in the expansion, we find the extra condition,

1
2

n∑
i=1

eiqµqν
∂2

∂kiµ∂kiν
Tn(k1, . . . , kn) + qµqν

∂Nµ
n

∂qν
(0; k1, . . . , kn) = 0 .

I This implies

n∑
i=1

ei
∂2

∂kiµ∂kiν
Tn(k1, . . . , kn) +

[
∂Nµ

n

∂qν
+
∂Nν

n
∂qµ

]
(0; k1, . . . , kn) = 0 ,
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I Gauge invariance determines only the symmetric part of the
quantity ∂Nν

n
∂qµ

(0; k1, . . . , kn).
I The antisymmetric part is not fixed by gauge invariance.
I Then, up to this order, we have

Aµn(q; k1, . . . , kn)

=
n∑

i=1

ei

ki · q

[
kµi − iqνJµνi

(
1 +

1
2

qρ
∂

∂kiρ

)]
Tn(k1, . . . , kn)

+
1
2

qν

[
∂Nµ

n

∂qν
− ∂Nν

n
∂qµ

]
(0; k1, . . . , kn) + O(q2) .
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I Get an amplitude by contracting Aµn(q; k1, . . . , kn) with the photon
polarization εqµ.

I Soft-photon limit:

An(q; k1, . . . , kn)→
[
S(0) + S(1)

]
Tn(k1, . . . , kn) +O(q) ,

where

S(0) ≡
n∑

i=1

ei
ki · εq

ki · q
,

S(1) ≡ −i
n∑

i=1

ei
εqµqνJµνi

ki · q
,

where Jµνi is the angular momentum.

Paolo Di Vecchia (NBI+NO) Soft behavior Cern, 27.04.2015 15 / 44



One graviton and n scalar particles
I In the case of a graviton scattering on n scalar particles, one can

write

Mµν
n (q; k1, . . . , kn) =

n∑
i=1

kµi kνi
ki · q

Tn(k1, . . . , ki + q, . . . , kn)

+ Nµν
n (q; k1, . . . , kn) ,

I Nµν
n (q; k1, . . . , kn) is symmetric under the exchange of µ and ν.

I On-shell gauge invariance implies

0 = qµMµν
n (q; k1, . . . , kn)

=
n∑

i=1

kνi Tn(k1, . . . , ki + q, . . . , kn) + qµNµν
n (q; k1, . . . , kn) .

I More precisely, gauge invariance imposes:

qµMµν
n (q, ki) = f (q, ki)qν =⇒ qµ (Mµν

n − f (ki)η
µν) = 0

but the extra term is irrelevant for gravitons: εµνG ηµν = 0.
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I At leading order in q, we then have
n∑

i=1

kµi = 0 ,

I It is satisfied due to momentum conservation.
I Different couplings to different particles would have prevented the

leading term to vanish: Gravitons have universal coupling
[Weinberg, 1964].

I At first order in q, one gets
n∑

i=1

kνi
∂

∂kiµ
Tn(k1, . . . , kn) + Nµν

n (0; k1, . . . , kn) = 0 ,

I while at second order in q, it gives
n∑

i=1

kνi
∂2

∂kiµ∂kiρ
Tn(k1, . . . , kn) +

[
∂Nµν

n

∂qρ
+
∂Nρν

n

∂qµ

]
(0; k1, . . . , kn) = 0 .

Paolo Di Vecchia (NBI+NO) Soft behavior Cern, 27.04.2015 17 / 44



I As for the photon, this is true up to gauge-invariant contributions
to Nµν

n .
I However, the requirement of locality prevents us from writing any

expression that is local in q and not sufficiently suppressed in q.
I Using the previous equations, we write the expression for a soft

graviton as

Mµν
n (q; k1 . . . kn)

=
n∑

i=1

kνi
ki · q

[
kµi − iqρJ

µρ
i

(
1 +

1
2

qσ
∂

∂kiσ

)]
Tn(k1, . . . , kn)

+
1
2

qρ

[
∂Nµν

n

∂qρ
− ∂Nρν

n

∂qµ

]
(0; k1, . . . , kn) +O(q2) .

I This is essentially the same as for the photon except that there is
a second Lorentz index in the graviton case.

I Unlike the case of the photon, the antisymmetric quantity in the
last line of the previous equation can also be determined from the
amplitude Tn(k1, . . . , kn) without the graviton.
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I From the equation above (implied by gauge invariance) +
remembering that Nµν

n is a symmetric matrix, one gets the
following relation:

−i
n∑

i=1

Jµρi
∂

∂kiν
Tn(k1, . . . , kn) =

[
∂Nρν

n

∂qµ
− ∂Nµν

n

∂qρ

]
(0; k1, . . . , kn) ,

which fixes the antisymmetric part of the derivative of Nµν
n in terms

of the amplitude Tn(k1, . . . , kn) without the graviton.
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I Using the previous equation, we can then rewrite the terms of
O(q) as follows:

Mµν
n (q; k1, . . . , kn)

∣∣
O(q)

= − i
2

n∑
i=1

qρqσ
ki · q

[
kνi Jµρi

∂

∂kiσ
− kσi Jµρi

∂

∂kiν

]
Tn(k1, . . . , kn)

= − i
2

n∑
i=1

qρqσ
ki · q

[
Jµρi kνi

∂

∂kiσ
−
(
Jµρi kiν

) ∂

∂kiσ

−Jµρi kσi
∂

∂kiν
+
(
Jµρi kσi

) ∂

∂kiν

]
Tn(k1, . . . , kn)

=
1
2

n∑
i=1

1
ki · q

[(
(ki · q)(ηµνqσ − qµηνσ)− kµi qνqσ

) ∂

∂kσi

− qρJ
µρ
i qσJνσi

]
Tn(k1, . . . , kn) .

I Finally, we contract with the physical polarization tensor of the soft
graviton, εqµν .
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I We see that the physical-state conditions

qµεµν = qνεµν = 0 ; ηµνεµν = 0

set to zero the terms that are proportional to ηµν , qµ and qν .
I We are then left with the following expression for the graviton soft

limit of a single-graviton, n-scalar amplitude:

Mn(q; k1, . . . , kn)→
[
S(0) + S(1) + S(2)

]
Tn(k1, . . . , kn) +O(q2) ,

I where

S(0) ≡
n∑

i=1

εµνkµi kνi
ki · q

,

S(1) ≡ −i
n∑

i=1

εµνkµi qρJ
νρ
i

ki · q
,

S(2) ≡ −1
2

n∑
i=1

εµνqρJ
µρ
i qσJνσi

ki · q
.

I These soft factors follow entirely from gauge invariance.
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Soft limit of (n + 1)-gluon amplitude

I We consider a tree-level color-ordered amplitude where gluon
(n + 1) becomes soft with q ≡ kn+1.

I Being the amplitude color-ordered, we have to consider only the
two poles with the soft particle attached to the two adjacent legs.

I We proceed as before.
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I Contract with external polarization vectors:

An+1(q; k1, . . . , kn)→
[
S(0) + S(1)

]
An(k1, . . . , kn) +O(q) ,

where

S(0) ≡
k1 · εq√
2 (k1 · q)

−
kn · εq√
2 (kn · q)

,

S(1) ≡ −iεqµqσ

(
Jµσ1√

2 (k1 · q)
− Jµσn√

2 (kn · q)

)
.

I Here

Jµσi ≡ Lµσi + Sµσ
i ,

where

Lµνi ≡ i
(

kµi
∂

∂kiν
− kνi

∂

∂kiµ

)
, Sµσ

i ≡ i
(
εµi

∂

∂εiσ
− εσi

∂

∂εiµ

)
.
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Soft limit of (n + 1)-graviton amplitude

Mn+1(q; k1, . . . , kn) =
[
S(0) + S(1) + S(2)

]
Mn(k1, . . . , kn) +O(q2) ,

S(0) ≡
n∑

i=1

εµνkµi kνi
ki · q

,

S(1) ≡ −i
n∑

i=1

εµνkµi qρJ
νρ
i

ki · q
,

S(2) ≡ −1
2

n∑
i=1

εµνqρJ
µρ
i qσJνσi

ki · q
.

where Jµσi ≡ Lµσi + Sµσ
i and (εµνi ≡ ε

µ
i ε
ν
i )

Lµσi ≡ i
(

kµi
∂

∂kiσ
− kσi

∂

∂kiµ

)
, Sµσ

i ≡ i
(
εµi

∂

∂εiσ
− εσi

∂

∂εiµ

)
.

These soft factors follow from gauge invariance and agree with those
computed by Cachazo and Strominger.
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What about soft theorems in string theory?

I In superstring the soft theorems have been investigated by
B.U.W. Schwab, arXiv:1406.4172 and arXiv:1411.6661
M. Bianchi, Song He, Yu-tin Huang and Congkao Wen,
arXiv:1406.5155.

I Soft theorems for gluons and gravitons are of course satisfied, as
one can check computing explicitly the amplitude.

I Study the soft theorems for other massless particles as the dilaton
and the Bµν .
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Soft theorem for dilaton and Bµν

I The field theory action for the dilaton and Bµν :

Sstring =
1

2κ̂2
d

∫
ddx

√
−G e−2φ

[
R + 4Gµν∂µφ∂νφ−

1
2 · 3!

H2
µνρ

]
I There is no gauge invariance for the dilaton as for the graviton.
I Therefore, we don’t expect low-energy theorems for the dilaton.
I No long range force associated with the Bµν (no term of O(q−1)).
I We cannot use its gauge invariance as for gravitons.
I On the other hand, the soft dilaton behavior in string theory goes

back to the 70s [Ademollo et al , 1975] and [Shapiro, 1975].
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I In string theory the scattering amplitudes involving a graviton or a
dilaton or a Kalb-Ramond field are all obtained from the same
two-index tensor Mµν(q; ki) by saturating it with a polarization
tensor satisfying respectively the following conditions:

Graviton (gµν) =⇒ εµνg = ενµg ; ηµνε
µν
g = 0

Dilaton (φ) =⇒ εµνd = ηµν − qµq̄ν − qν q̄µ

Kalb-Ramond (Bµν) =⇒ εµνB = −ενµB

where q̄ is, similarly to q, a lightlike vector such that q · q̄ = 1.
I The soft theorem for a dilaton can, in principle, be computed

starting from the expression that we obtained for the graviton.
I But now we cannot neglect extra terms proportional to ηµν as we

did in the case of a graviton.
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I Imposing qµMµν = qνMµν = 0, for the graviton we got:

Mµν
n (q; k1 . . . kn)

=
n∑

i=1

kνi
ki · q

[
kµi − iqρJ

µρ
i

]
Tn(k1, . . . , kn)

+
1
2

n∑
i=1

1
ki · q

[(
(ki · q)(ηµνqσ − qµηνσ)− kµi qνqσ

) ∂

∂kσi

− qρJ
µρ
i qσJνσi

]
Tn(k1, . . . , kn) .

and we have neglected the terms in the third line because the
graviton polarization satisfies the identities:

qµεµν = qνεµν = ηµνεµν = 0

I More precisely, gauge invariance imposes:

qµMµν
n (q, ki) = f (q, ki)qν =⇒ qµ (Mµν

n − f (ki)η
µν) = 0

I The extra term with ηµν is irrelevant for the graviton, but not for the
dilaton.
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I Because of this we cannot in general get low-energy theorems for
the dilaton.

I But, let us forget for a moment this problem, and compute the
amplitude with a massless closed string state and n closed string
tachyons:

Mµν
n ∼

∫ ∏n
i=1 d2zi

dVabc

∏
i<j

|zi − zj |α
′ki kj

∫
d2z

n∏
i=1

|z − zi |α
′ki q

×α′
n∑

i=1

kµi
z − zi

n∑
i=1

kνi
z̄ − z̄i

I We have explicitly computed the first three terms of order q−1, q0

and q1.
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I The calculation is rather long and at the end we get the following
expression:

Mµν
n (q; k1 . . . kn) = κd

{
n∑

i=1

kiµkiν

kiq
+

n∑
i=1

kiνqρ

kiq

(
kiµ

∂

∂kiρ
− kiρ

∂

∂kiµ

)

+
1
2

n∑
i=1

qρqσ

kiq

[
kiν

(
kiµ

∂

∂kiρ
− kiρ

∂

∂kiµ

)
∂

∂kiσ

−kiσ

(
kiµ

∂

∂kiρ
− kiρ

∂

∂kiµ

)
∂

∂kiν

]}
Tn

where

Tn =
8π
α′

(κd

2π

)n−2
∫ ∏4

i=1 d2zi

dVabc

∏
i 6=j

|zi − zj |
α′
2 ki kj

is the correctly normalized n-tachyon amplitude.
I This is precisely the expression obtained from gauge invariance

with the general argument imposing the conditions:
qµMµν = qνMµν = 0.
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I By saturating it with the graviton polarization one gets, of course,
the previous general expression.

I By saturating it with the dilaton “polarization”

εµν = (ηµν − qµq̄ν − qν q̄µ) ; q2 = q̄2 = 0 ; qq̄ = 1

I one gets (m2
i = − 4

α′ )

S(0) + S(1) + S(2) = −
n∑

i=1

m2
i

(
1 + qρ ∂

∂kiρ
+ 1

2qρqσ ∂2

∂kiρ∂kiσ

)
kiq

−
n∑

i=1

kiµ
d

dkiµ
+ 2

+
n∑

i=1

(
−kiµqσ

∂2

∂kiµ∂kiσ
+

1
2

(kiq)
∂2

∂kiµ∂kiµ

)
+ O(q2)

I Bµν not coupled to n tachyons (invariance under w.s. parity Ω).
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I Soft behavior of a massless closed string in an amplitude involving
an arbitrary number of other massless closed strings
(bosonic+superstring) .

I In this case we have performed the calculation up to the O(q0).
I For the symmetric part of Mµν we get:

Mµν
S (q; ki , εi) = κd

n∑
i=1

(
kµi kνi −

i
2kνi qρJ

µρ
i −

i
2kµi qρJ

νρ
i

qki

)
Mn(ki , εi)

where Mn(ki , εi) is the amplitude with n massless states,

Jµνi = Lµνi + Sµν
i + S̄µν

i ,

Lµνi = i
(

kµi
∂

∂kiν
− kνi

∂

∂kiµ

)
, Sµν

i = i
(
εµi

∂

∂εiν
− ενi

∂

∂εiµ

)
,

S̄µν
i = i

(
ε̄µi

∂

∂ε̄iν
− ε̄νi

∂

∂ε̄iµ

)
; εµνi ≡ ε

µ
i ε̄
ν
i
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I By saturating with the polarization of the graviton, one gets (of
course) the soft behavior obtained from gauge invariance.

I If we instead saturate it with the polarization of the dilaton we get:

Mn+1 = κd

[
2−

n∑
i=1

kiµ
∂

∂kiµ

]
Mn +O(q) ,

I It can be written in a more suggestive way by observing that, in
general, Mn has the following form:

Mn =
8π
α′

(κd

2π

)n−2
Fn(
√
α′ki) , κd =

1

2
d−10

4

gs√
2

(2π)
d−3

2 (
√
α′)

d−2
2 ,

where Fn is dimensionless and obviously satisfies the equation:
n∑

i=1

kiµ
∂

∂kiµ
Fn =

√
α′

∂

∂
√
α′

Fn .

I One gets:

Mn+1 = κd

[
−
√
α′

∂

∂
√
α′

+
d − 2

2
gs

∂

∂gs

]
Mn +O(q) .
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I Same result if we include massless open strings (on a Dp-brane).
I No extra term proportional to ηµν is needed to reproduce the

previous amplitude.
I The amplitude of a soft dilaton is obtained from the amplitude

without a dilaton by a simultaneous rescaling of the Regge slope
α′ and the string coupling constant gs.

I Same rescaling that leaves Newton’s constant invariant:[
−
√
α′

∂

∂
√
α′

+
d − 2

2
gs

∂

∂gs

]
κd = 0

I No fundamental dimensionless constant in string theory.
I From it we can rewrite the soft dilaton theorem:

Mn+1 = κd
d − 2

2
d

dφ0
Mn +O(q) ; gs ≡ eφ0
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I Apply to the case n = 5 with 5 dilatons:

M5 = κd

(
2−

n∑
i=1

kiµ
∂

∂kiµ

)
M4 +O(q)

where

M4 = 2κ2
d

(
tu
s

+
su
t

+
st
u

)
Γ(1− α′s

4 )Γ(1− α′u
4 )Γ(1− α′t

4 )

Γ(1 + α′s
4 )Γ(1 + α′u

4 )Γ(1 + α′t
4 )

I In the field theory limit (α′ → 0), one gets zero because one has a
homogenous function of degree 2.

I In string theory one gets a non-trivial right-hand-side.
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Soft theorem for Bµν

I In order to formulate a soft theorem for the antisymmetric tensor
we have to make a distinction between the momentum of the
holomorphic part, which we call ki , from that of the
anti-holomorphic part, which we call k̄i .

I This means that the amplitude Mn(ki , εi ; k̄i , ε̄i), on which the soft
operator acts, is a function of both ki and k̄i .

I Together with the operators Li , Si and S̄i , we then also introduce:

L̄µνi = i

(
k̄µi

∂

∂k̄iν
− k̄νi

∂

∂k̄iµ

)
.

I In terms of these operators, the soft behavior for Bµν reads:

Mn+1 = −iεBq µνκd

n∑
i=1

[
kνi qρ(Li + Si)

µρ

qki
−

kνi qρ(L̄i + S̄i)
µρ

qki

]
Mn(ki , εi ; k̄i , ε̄i)

∣∣∣
k=k̄

+O(q)
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I It is equal to

Mn+1 = −iεBq µνκd

n∑
i=1

[
1
2

(Li − L̄i)
µν +

kνi qρ
kiq

(Si − S̄i)
µρ

]
×Mn(ki , εi ; k̄i , ε̄i)

∣∣∣
k=k̄

+O(q) .

I As expected from Weinberg’s general argument, we do not get
any term of O(q−1), corresponding to a long range force, but there
are several terms of O(q0).

I It is not clear how to get the soft operator of the antisymmetric
field by directly using its own gauge symmetry, as it has been
done for the graviton.

I It is not really a soft theorem because the amplitude Mn(ki , εi ; k̄i , ε̄i)
is not a physical amplitude before we act with the soft operators.

I It is nevertheless easy to show that it is gauge invariant.
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I Under a gauge transformation for the Kalb-Ramond field,
εBq µν → εBq µν + qµχν − qνχµ, the amplitude changes as follows

Ŝ(1)Mn → Ŝ(1)Mn + iqρχµ
n∑

i=1

[
(Li + Si)

µρ − (L̄i + S̄i)
µρ
]

×Mn(ki , εi ; k̄i , ε̄i)
∣∣∣
k=k̄

.

I The extra term vanishes as a consequence of the identity

n∑
i=1

(Li + Si)
µρMn(ki , εi ; k̄i , ε̄i)

∣∣∣
k=k̄

=
n∑

i=1

(L̄i + S̄i)
µρMn(ki , εi ; k̄i , ε̄i)

∣∣∣
k=k̄

,

which can be proved by a direct calculation, ensuring gauge
invariance of the amplitude.
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Comments on loop corrections: gauge theory
I At one-loop the amplitude will have in general IR and UV

divergences.
I We are not giving here a complete study of them.
I The one-loop contributions have been classified into the

factorizing ones and the non-factorizing ones.
I We will concentrate here to the factorizing ones.
I They modify the vertex present in the pole term.
I For the gauge theory they are of the type shown in the figure.

a

n

µ
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=

n

a

µ +

n

a

µ +

n

a

µ

a

n

µ

I They have been computed in QCD and are given by:

Dµ,fact =
i√
2

1
3

1
(4π)2

(
1− nf

Nc
+

ns

Nc

)
(q−ka)µ

[
(εn·εa)−(q · εa)(ka · εn)

(ka · q)

]
[Z. Bern, V. Del Duca, C.R. Schmidt, 1998]
[Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt, 1999]

I It is both IR and UV finite and the limit ε→ 0 has been taken.
I It is non-local because of the pole in (qka).
I It is gauge invariant under the substitution εn → q.
I It does not contribute to the leading soft behavior.
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I Attaching to it the rest of the amplitude

Dfact
µ

−i
2q · ka

J µ ,

I J µ is a conserved current:

(q + ka)µJ µ = 0 ,

assuming that all the remaining legs are contracted with on-shell
polarizations.

I We can trade ka with q and we get immediately:

Dfact
µ

−i
2q · ka

J µ = O(q0) ,

I No leading O( 1
q ) correction from the factorizing contribution to the

one-loop soft functions.
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Comments on loop corrections: gravity

n

a

µ
ν =

n

a

µ
ν +

n

a

µ
ν +

n

a

µ
ν

I A similar calculation can be done for the gravity case.
I We consider only the case in which scalar fields circulate in the

loop.
I The result of this calculation is:

Dµν,fact,s =
i

(4π)2

(κ
2

)3 1
30

[
(εn · εa)− (q · εa)(ka · εn)

(q · ka)

]
×
(

(q · εa)(ka · εn)− (εn · εa)(q · ka)
)

kµa kνa +O(q2) ,
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I As in the gauge-theory case, the diagrams Dµν,fact,s contract into a
conserved current:

(ka + q)µJµν = f (ki , εi)(ka + q)ν , (ka + q)νJµν = f (ki , εi)(ka + q)µ .

I This means

kµa kνaJµν = (ka + q)µ(ka + q)νJµν +O(q)

= f (ki , εi)(ka + q)2 +O(q) = 2f (ki , εi)q · ka +O(q) = O(q)

I We therefore have

Dµν,fact,s i
2q · ka

Jµν = O(q) .

I No modification of the two first leading terms.
I As in QCD, we expect that the contribution of other particles

circulating in the loop will not modify this result.
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Conclusions
I We have extended Low’s proof of the universality of sub-leading

behavior of photons to non-abelian gauge theory and to gravity.
I On-shell gauge invariance fully determines the first sub-leading

soft-gluon and the first two sub-leading soft-graviton behavior at
tree level.

I Factorizing one-loop contributions preserve the leading behavior
in gauge theories and the first two leading behaviors in gravity.

I One computes the low-energy behavior of Mµν by imposing the
Eqs. qµMµν = qνMµν = 0.

I Saturating Mµν with the polarization of Graviton/Dilaton, one gets
automatically their soft behavior.

I This is the result for all amplitudes we have looked at: BCJ/KLT?
I We get also a kind of soft theorem for Bµν .
I Extend our considerations to one-loop diagrams.
I Study the double-soft behavior both in field and string theory.
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