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CCWZ: a gem in the field theory

Goldstone theorem: a massless state associated to each generator of 
spontaneously broken global symmetries: Nambu-Goldstone bosons

non-linear realization of local symmetries 

CCWZ: low energy effective theory of NGB and their derivative couplings 
- among themselves, to gauge bosons, to fermions - in the broken phase

1. why composite Higgs bosons as PNGB 

2. basics of CCWZ in a nut (very incomplete) 

3. CCWZ theory of composite PNGB Higgs 

4. extension to 2 composite Higgs  doublets    
A)  new problems ;   B)  the models

Summary:



COMPOSITENESS:  

Indeed, in a theory (e.g., QCD) strongly coupled at a scale Λs , the composite particles  
have masses O(Λs). 

However, the extraordinary agreement between a large number of SM predictions  
and their very precise measurements and experimental limits require a composite scale 

way above the Fermi scale and the Higgs mass, Λs > a few TeV 

Step 1: 
  

the Higgs is a massless composite NGB, with no potential V(h)=0,  
of a strongly coupled theory, with a global symmetry G spontaneously 

 broken into a symmetry  H that includes with the SM symmetries. 

Their effective theory is given by the CCWZ theory, including  
the couplings to SM fields 

Why composite NGB Higgs boson

hierarchy problem: scalar masses are sensitive to higher scales and must be protected.  
A general framework to protect scalars with respect to large scales is



Why composite PNGB Higgs boson(s)

  

Step 2 

The symmetry G is broken by :  
1) the couplings to the SM SU(2)xU(1) gauge bosons  
2) the couplings to the SM fermions (mostly the top) 

The resulting Coleman-Weinberg effective potential 
 provides an approximation for V(Higgs) 

Pseudo-NGB get masses and a scalar potential from radiative  corrections in the  
presence of interactions that explicitly break the global symmetry (Coleman-Weinberg) 

The Higgs potential defines the scale v=174 Gev and the Higgs mass mh =125 GeV,  
and models depend on choices of the embeddings of SM particles into the CCWZ



SPONTANEOUS BREAKING OF THE SYMMETRY 

Constraints on composite Higgs doublets

+parameters... +constraints...

+ symmetries (discrete,...) !

tree-level contributions to flavour changing  
and CP violations from two Higgs exchange

tree level anomalous T-parameter  
with 2 or more composite Higgses

tree level corrections from compositeness
solution: custodial symmetry

solution: Weinberg-Glashow

solution: custodial symmetry for bL
ΔT << 1

F C N C

Zbb couplings



YANG-MILLS QUANTUM FIED THEORY:

GAUGE PRINCIPLE: LOCAL SYMMETRIES

SPONTANEOUS BREAKING OF THE SYMMETRY

⇒ composite sector must have more symmetry 

          A     both SU(2)L and O(3)C   ⇒  O(4) = SU(2)LxSU(2)R 

 B        2 Higgs vev’s must align to preserve O(3)C    

                ⇒    more symmetry:  another SU(2), parities

Custodial symmetry

ρ = 1 - ⍺T⩬ 1   ⇔  ∆IC = 0    ⇔  custodial symmetry    

O(3)Custodial  : ∆IC = 0 ∆IC = 0, 2
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couplings of the Higgs(ses) to the electroweak vector bosons



CCWZ aide-mémoire 

The defining property of the effective CCWZ Lagrangian is its  
local H invariance, obtained by using this property of  U. 

G generators: {T i} 2 algH ; {Xa} 2 G/H

Global G broken into H ⊃ SU(2)LxU(1)

NGB ϕa(x) are associated to a local parameterization of G/H elements

⇧(�(x)) =
X

a

�
a

(x)
f

Xa 2 G/H U = ei⇧(x) 2 G

ϕa(x) < 2   f  where f defines the limit of applicability of CCWZ.⇡

Basic property:   
g U(�(x)) = U(�0(x)) h(�(x), g) �0 = �0(�, g)

where a global is replaced by a local h(�(x), g) 2 Hg 2 G



{ Under local H transformations  h(x)  dµa transform linearly as ϕa(x) 
Eµa transforms as gauge fields

CCWZ Lagrangian 

Additional fields transforming linearly under H are introduce by the redefinition:

in algG                    in G/H                 in algH       

U†(�)@µU(�) = da
µ(�) Xa + Ei

µ(�) T i

The locally invariant CCWZ Lagrangian is  a general  
function of  dµ, Eµν, and their covariant derivatives  

Dµ = @µ + iEµ(�) + WµIntroduce the covariant derivative: 

                   and the field strength in algH:      Eµν(ϕ)     

LCCWZ = f2(tr dµdµ+ expansion in powers of f�1@µ)

ˆ

 = U(�) , so that, under G, g ˆ

 = U 0h(�, g) 



L = f2@µuT@µu+ higher derivatives

composite ‘SM’ Higgs: O(5) / O(4)

non-linear realization of local O(4)

global  O(5)→O(4)  @ Λ ∼ f

O(5)/O(4) = 4 of O(4)Higgs ~ (2,2)  ⟷

u = U(�a)u0 uT
0 = (00001) uTu = 1 uT@µu = 0

5d sphere5-vector

5d sphere

U(�a) = exp

✓
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◆
Ma5 2 O(5)/O(4)



Couplings to the SM gauge bosons

O(5) / O(4) phenomenology

Dµ = @µ � igWi
µTi

µ � ig0BµY

u = U(�u0 =
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sin2('/f) =
v2

f2
measures the deviations from the SM (“compositeness”)

The NGB Lagrangian describes the interactions between the Higgs and its  
NGB partners that correspond to longitudinal components W and Z by the 
equivalence theorem and deviations from the SM predictions are O(v2/f2)

non-linear Higgs Lagrangian

L = f2Dµu†Dµu



2 composite Higgs doublets models

2 Higgs

2 (2,2)

O(6)                 SU(5)                 Sp(6)             O(9)

O(4)xO(2)       SU(4)xU(1)       Sp(4)x Sp(2)       O(8)   

1 complex 1 complex    2 quaternions 2 real

1 Higgs
O(5) 
O(4)

Sp(4) 
 Sp(2)x Sp(2) =

NB:  many extensions with O(4) singlet PNGB = axion-like, 
disregarded because not easy to make the axion invisible



Method to check for O(3)C in G

Consider cosets G/H1 ⇥ H2 with H2 = ;, U(1), SU(2) and as coordinates p or-

thonormal vectors u↵
(↵ = 1, . . . , p) in some representation of G with p = 1 for

H2 = ;, U(1) and p = 2 for H2 = O(2), SU(2).

Define: u↵
(�) = U(�)u↵

(0) where G acts as u ! guh†2(g, ⇠), when organized in

a matrix of p columns, so that u(0) is invariant under G/H1 ⇥ H2.

With U†@µU = idµ + iEµ one finds

@µu†@µu = tr dµdµ
+ c0trE(2)

µ E(2)µ

u†@µu†u@µu†u = c1trE(2)
µ E(2)µ.

where the components in the H1 directions were projected out and the E(2)
µ E(2)µ

term of H2 is eliminated in the combination:

LPNGB = f2tr dµdµ
= f2tr

✓
@µu†@µu� c0

c1
u†@µu @µu†u

◆

The O(3)C violating contribution to the T� parameter is proportional to c0/c1

is so obtained.



uuuuuuuu

G   H T O(3)c
ψL	  

ψR
 Zbb FCNC

Type axion

 O(6)  O(4)xO(2) ✘ ✘ 6 ✔ ✘ ✔

O(6)  O(4)xO(2)xZ2 ✔ ✘ 6 ✔     I ✔

 SU(5)  SU(4)xU(1) ✘ ✘ 10 ✔  II ✔
 Sp(6)  Sp(4)x Sp(2) ✔ ✔ 14 ✔   ✘ ✔

O(9)  O(8)     ✔ ✔ 16 ✔   I ✔
O(9)  O(8)     ✔ ✔ 16 ✔   II ✘

Summary for two Higgs models



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Supersymmetry	  and	  Supergravity	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Bruno	  ZUMINO	  
Abstract:	  

A	  discussion	  of	  recent	  attempts	  to	  relate	  N	  =	  1	  Supersymmetry	  	  
	  	  	  	  	  	  	  	  	  	  	  	  and	  Supergravity	  to	  particle	  phenomenology.	  

Clearly	  the	  best	  justiDication	  for	  all	  the	  recent	  theoretical	  work	  	  
based	  on	  N	  =	  1	  SUSY	  would	  be	  the	  experimental	  discovery	  of	  	  
SUSY	  partners	  of	  known	  particles.	  However,	  if	  the	  SUSY	  gap	  	  
is	  sufDiciently	  large	  no	  SUSY	  partners	  will	  be	  found	  for	  quite	  
	  a	  while.	  The	  appeal	  of	  supersymmetry	  is	  in	  its	  theoretical	  	  
beauty	  and	  elegance,	  but	  supersymmetry	  is	  a	  general	  framework	  
rather	  than	  a	  speciDic	  theory.	  What	  we	  need	  is	  an	  equally	  	  
appealing	  speciDic	  model	  whose	  consequences	  could	  be	  tested	  	  
experimentally,	  even	  if	  the	  supersymmetry	  gap	  is	  very	  large.	  

Last paragraph:

 @ICHEP ’83:



THANKS  A  LOT,   BRUNO
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YANG-MILLS QUANTUM

O(9) / O(8)

NON-LINEAR REALIZATION

COUPLINGS TO GAUGE BOSONS 

global  O(9)→O(8)  @ Λ ∼ f

O(9)/O(8) = 8s of O(8) ⊃ O(4) [xU(1)]PNGB HIGGS 2x(2,2) ⟷

9d spherereal 9-vector
u = U(�a)u0 uT

0 = (0...01) uTu = 1 uT@µu = 0

= (2,2)+1 + (2,2)−1
𝜙1I𝜙1

non-linear Higgs Lagrangian

L = f2DµuTDµu ρtree =1 ⟷  ỎTtree = 0⇒



QUARK HYPERCHARGE
O(4) x U(1)X

X(t) X(b) TR(tR) TR(bR) O(4) !

⅔ ౼⅓ 0 0 (1,1)
need
brane
mass

⅔ ⅔ 0 ౼1 (1,3) X=2B

33

Y = TR+X
X(𝜙) = 0

quark masses ⇒ X(qL) = X(qR)

3



ϕ1 ϕ1 ϕ1,11ϕ1,11 ϕ1,11 SU(5) / SU(4)xU(1)
EMBEDDING SM FERMIONS

SU(5) U(4) O(4)xU(1)

ϕ1+iϕ11 ∈ 4     (2, 2)  + i(2, 2)  t and b couple 
to two orthogonal 
combinations of 
ϕ1 and ϕ11     of

(Type II)
10

ψL ∈ 4*  (2, 2)  + i(2, 2)

ψR ∈ 6   (1, 3)  + (3, 1)

ϕ1+iϕ11

tR ,bR

tL

bL

Type II ⇒ no FCNC bL ∈ (2,2) ⇒ Zbbtree = ZbbSM&



YANG-MILLS QUANTUM

SU(5) / SU(4)xU(1)

NON-LINEAR REALIZATION

COUPLINGS TO GAUGE BOSONS 

SU(5)/U(4) = 4†+4 of U(4) ⊃ O(4) [xU(1)] HIGGS=2x(2,2) ⟷

= (2,2) + i(2,2)
𝜙1 + i𝜙1I

non-linear Higgs 
Lagrangian

 ΔTtree ≠ 0⇒

complex 5-vector
u = U(�a)u0 uT

0 = (00001) u†u = 1

L = f2Dµu†Dµu + f2(u†Dµu)2

(∆I = 2)

(�M2
Z)I=2

M2
Z

 O(v2/f2) (unnatural)



ϕ1 ϕ1 ϕ1,11ϕ1,11 ϕ1,11 O(9) / O(8)
EMBEDDING SM FERMIONS

O(9) O(8) O(4)xU(1)

9 ϕ1,11 ∈ 8s     (2, 2)+1  + (2, 2)−1

16
ψL ∈ 8c  (2, 2)−1  + (2, 2)+1

ψR ∈ 8v   (1, 3)0   + (3, 1)+1 +(1, 1)−2 +(1, 1)+2

ϕ1 

tR ,bR

tL

bL

ϕ11 

 U(1)⇒ Type I⇒ no FCNC bL ∈ (2,2) ⇒ Zbbtree = ZbbSM&



O(9) / O(8)
EMBEDDING O(4)SM  ⊂ O(8)

O(9)/O(8) = 8s of O(8) ⊃ O(4) [xU(1)]

= (2,2)+1 + (2,2)−1
𝜙1I𝜙1

O(8)

O(7) O(4)xO(4)

O(4)SM

O(6) O(4)SM x U(1)

O(6)xO(2) O(5)xO(3)

O(4)xO(3)



YANG-MILLS QUANTUM
O(5) / O(4)

COUPLINGS TO SM FERMIONS

Zbbtree   =  ZbbSM

tR ,bRtL

bL

(vector)  5  =   (2,2)  +  (1,1)
(symm.) 10 =   (2,2)  +  (1,3)  +  (3,1)

O(4)O(5)



YANG-MILLS QUANTUM FIED TH
SPONTANEOUS BREAKING OF THE SYMMETRY

GLASHOW-WEINBERG PRESCRIPTION

F C N C
COUPLINGS OF HIGGS(ES) TO SM FERMIONS

Q=-1/3 Q=2/3

Type 11

Type 1 b,s,d 	 	 	 	 	 𝜙1          u,d,t          𝜙1I 	 	 	 

b,s,d 	 	 	 	 	 𝜙1          u,d,t          𝜙1I 	 	 	 

⇒ symmetry to discriminate between  

     𝜙1 and 𝜙11, extended to fermions

⇒ symmetry might also impose   

    <𝜙11 > = 0  and  save T , ρ = 1&



 OF THE SYMMETRY
Zbb

COUPLING OF Z TO bL

custodial symmetry for bL :

IC = IL + IR conserved  

&  IL3 (bL) = IR3 (bL) = -½

mt and radiative EWSB 

in (CW)  V(𝜙) suggest 

more composite  qL=(tL , bL)	 

measured bL coupling to Z,
  close to SM value, suggests 

more elementary, SM, bL

⇒ bL ∈ (2,2)
++ +−
−+ −−

tL
bL}



YANG-MILLS QUANTUM FIED THEORY:

GAUGE PRINCIPLE: LOCAL SYMMETRIES

SPONTANEOUS BREAKING OF THE SYMMETRY

(“ELUSIVE”) SUSY

W H Y  2 H D M  ?

EW-BARYOGENESIS

FLAVOUR MODELS

more phases, more scalars, but 
w/ 125GeV Higgs looks marginal

2 HD’s but MUCH MORE!!
Here: only non-susy models

 2 vev’s: tanβ=vI /vII can help in 
accounting for mt /mb ratio...

IMO: no really sound reason!

RARE DECAYS strongly constrain 2HDM, not 
quite the reverse (by now) 
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