

Effective Actions, Lovelock Lagrangians and Bruno Zumino

Effective Actions, Lovelock Lagrangians and Bruno Zumino

My connection to Bruno

My connection to Bruno

* Both of us officially started at Berkeley in the Fall of 1982
(Bruno actually arrived in 1981 as a visiting Miller Professor).
* Both of us officially started at Berkeley in the Fall of 1982
(Bruno actually arrived in 1981 as a visiting Miller Professor).
* Our offices on campus were next door for about five years. These were tiny offices $108 \mathrm{ft}^{2}$ or approximately $3 \mathrm{~m} \times 4 \mathrm{~m}$. Afterwards Bruno moved to an office about thrice the size around the corner.

My connection to Bruno

* Both of us officially started at Berkeley in the Fall of 1982 (Bruno actually arrived in 1981 as a visiting Miller Professor).
* Our offices on campus were next door for about five years. These were tiny offices $108 \mathrm{ft}^{2}$ or approximately $3 \mathrm{~m} \times 4 \mathrm{~m}$. Afterwards Bruno moved to an office about thrice the size around the corner.
* We wrote one paper together but discussed physics and mathematics countless times.

My connection to Bruno

* Both of us officially started at Berkeley in the Fall of 1982 (Bruno actually arrived in 1981 as a visiting Miller Professor).
* Our offices on campus were next door for about five years. These were tiny offices $108 \mathrm{ft}^{2}$ or approximately $3 \mathrm{~m} \times 4 \mathrm{~m}$. Afterwards Bruno moved to an office about thrice the size around the corner.
* We wrote one paper together but discussed physics and mathematics countless times.
* We were colleagues for 12 years until I moved to Miami.

My paper with Bruno

Gravitational Anomalies and the Family's Index Theorem*

Orlando Alvarez ${ }^{1}{ }^{*}$, I. M. Singer ${ }^{2}$, and Bruno Zumino ${ }^{1}$

1 Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA
2 Department of Mathematics and Department of Physics, University of California, Berkeley, CA 94720, USA

Abstract. We discuss the use of the family's index theorem in the study of gravitational anomalies. The geometrical framework required to apply the family's index theorem is presented and the relation to gravitational anomalies is discussed. We show how physics necessitates the introduction of the notion of local cohomology which is distinct from the ordinary topological cohomology. The recent results of Alvarez-Gaumé and Witten are derived by using the family's index theorem.

I. Introduction

Alvarez-Gaumé and Witten [1] have calculated the gravitational anomalies of certain parity violating theories in $4 k-2$ dimensions. Their most striking result is that there is a unique minimal ten dimensionl theory where the gravitational anomalies cancel. In this communication we reproduce their results in a different way by using the family's index theorem [2] instead of Feynman diagram methods.

The relation of the family's index theorem to anomalies has been discussed by Atiyah and one of the present authors in reference [3]. In that paper, the geometric setting for the family's index theorem was presented and the relation to anomalies was discussed. The authors showed that the first characteristic class of the index bundle for the Dirac operator was related to anomalies. A number of papers have addressed the relationships among chiral anomalies, the geometry of the space of vector potentials, and the families of Dirac operators. We recommend the papers of Alvarez-Gaumé and Ginsparg [4], Lott [5], and Stora [6] to the reader. The first investigation of the behavior of the Dirac operator as a function of the metric is due to Hitchin [7].

[^0]
Gravitational Anomalies and the Family's Index Theorem ${ }^{\star}$

Orlando Alvarez ${ }^{1}{ }^{*}$, I. M. Singer ${ }^{2}$, and Bruno Zumino ${ }^{1}$

1 Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA
2 Department of Mathematics and Department of Physics, University of California, Berkeley, CA 94720, USA

Abstract. We discuss the use of the family's index theorem in the study of gravitational anomalies. The geometrical framework required to apply the family's index theorem is presented and the relation to gravitational anomalies is discussed. We show how physics necessitates the introduction of the notion of local cohomology which is distinct from the ordinary topological cohomology. The recent results of Alvarez-Gaumé and Witten are derived by using the family's index theorem.

I. Introduction

Alvarez-Gaumé and Witten [1] have calculated the gravitational anomalies of certain parity violating theories in $4 k-2$ dimensions. Their most striking result is that there is a unique minimal ten dimensionl theory where the gravitational anomalies cancel. In this communication we reproduce their results in a different way by using the family's index theorem [2] instead of Feynman diagram methods.

The relation of the family's index theorem to anomalies has been discussed by Atiyah and one of the present authors in reference [3]. In that paper, the geometric setting for the family's index theorem was presented and the relation to anomalies was discussed. The authors showed that the first characteristic class of the index bundle for the Dirac operator was related to anomalies. A number of papers have addressed the relationships among chiral anomalies, the geometry of the space of vector potentials, and the families of Dirac operators. We recommend the papers of Alvarez-Gaumé and Ginsparg [4], Lott [5], and Stora [6] to the reader. The first investigation of the behavior of the Dirac operator as a function of the metric is due to Hitchin [7].

[^1]
\square - - - - U - U

Zumino \& Lovelock I .

$$
\begin{align*}
& L_{0,6}=e_{a} e_{b} e_{c} e_{d} e_{f} e_{g} \epsilon^{a b c d f g} \tag{3.7}\\
& L_{1,4}=R_{a b} e_{c} e_{d} e_{f} e_{g} \epsilon^{a b c d f g} \\
& L_{2,2}=R_{a b} R_{c d} e_{f} e_{g} \epsilon^{a b c d f g}
\end{align*}
$$

and

$$
\begin{equation*}
L_{3,0}=R_{a b} R_{c d} R_{f g} \epsilon^{a b c d f g} \tag{3.10}
\end{equation*}
$$

Again, the first is a cosmological term, the second is proportional to the Einstein-Hilbert action and the last to the Euler invariant. Now we have the new possibility (3.9). Similarly for higher dimensions. Odd numbers of dimensions can be considered as well, but in this case the Euler invariant is absent, of course.

To be concrete, let us stay with 6 dimensions. Can one really have a term like (3.9) in the Lagrangian? At first sight one may think that such a term, which is quadratic in the Riemann tensor, will contribute to the bilinear part of the Lagrangian for the field h which describes the deviation from Minkowski space

$$
\begin{equation*}
e_{m}^{a}=\delta_{m}^{a}+h_{m}^{a} \tag{3.11}
\end{equation*}
$$

and thus spoil the particle interpretation by introducing ghosts [9]. However, one can see that this is not the case.

Let us consider an infinitesimal variation of the connection and vielbein forms. The corresponding variation of $L_{2,2}$ is

$$
\begin{equation*}
\delta L_{2,2}=2 \delta R_{a b} R_{c d} e_{f} e_{g} \epsilon^{a b c d f g}+2 R_{a b} R_{c d} e_{f} \delta e_{g} \epsilon^{a b c d f g} \tag{3.12}
\end{equation*}
$$

Using (2.9), the first term on the right hand side is

$$
\begin{equation*}
2\left(\mathrm{D} \delta \omega_{a b}\right) R_{c d} e_{f} e_{g} \epsilon^{a b c a f f_{g}} . \tag{3.13}
\end{equation*}
$$

On the other hand, using the Bianchi identity (2.7) and the definition (2.4) of the torsion we have

$$
\begin{equation*}
2 \mathrm{~d}\left(\delta \omega_{a b} R_{c d} e_{f} e_{g}\right) \epsilon^{a b c d f g}=2\left(\mathrm{D} \delta \omega_{a b}\right) R_{c d} e_{f} e_{g} \epsilon^{a b c d f g}+4 \delta \omega_{a b} R_{c d} e_{f} T_{g} \epsilon^{a b c d f g} \tag{3.14}
\end{equation*}
$$

Therefore, if the torsion vanishes, (3.12) can be written

$$
\begin{equation*}
\delta L_{2,2}=2 \mathrm{~d}\left(\delta \omega_{a b} R_{c d} e_{f} e_{g} \epsilon^{a b c a f g}\right)+2 R_{a b} R_{c d} e_{f} \delta e_{g} \epsilon^{a b c d f g} . \tag{3.15}
\end{equation*}
$$

This equation tells us that, if we consider a power series expansion in h starting from flat space, the terms in $L_{2,2}$ which are quadratic in h appear under a derivative sign (first term on the right hand side in (3.15)); for a compact manifold or with suitable conditions at infinity, they drop out after integration. The first non-trivial term in the integrated action is cubic; it comes from the second term on the right hand side of (3.15) and can be immediately obtained from it. Clearly, the same result is true for $L_{2, r}$ in

$$
\begin{aligned}
& L_{0,6}=e_{a} e_{b} e_{c} e_{d} e_{f} e_{g} \epsilon^{a b c d f g} \\
& L_{1,4}=R_{a b} e_{c} e_{d} e_{f} e_{g} \epsilon^{a b c d f g} \\
& L_{2,2}=R_{a b} R_{c d} e_{f} e_{g} \epsilon^{a b c d f g}
\end{aligned}
$$

$$
\begin{equation*}
L_{3,0}=R_{a b} R_{c d} R_{f g} \epsilon^{a b c d f g} \tag{3.10}
\end{equation*}
$$

Again, the first is a cosmological term, the second is proportional to the Einstein-Hilbert action and the last to the Euler invariant. Now we have the new possibility (3.9). Similarly for higher dimensions. Odd numbers of dimensions can be considered as well, but in this case the Euler invariant is absent, of course.

To be concrete, let us stay with 6 dimensions. Can one really have a term like (3.9) in the Lagrangian? At first sight one may think that such a term, which is quadratic in the Riemann tensor, will contribute to the bilinear part of the Lagrangian for the field h which describes the deviation from Minkowski space

$$
\begin{equation*}
e_{m}^{a}=\delta_{m}^{a}+h_{m}^{a} \tag{3.11}
\end{equation*}
$$

and thus spoil the particle interpretation by introducing ghosts [9]. However, one can see that this is not the case.

Let us consider an infinitesimal variation of the connection and vielbein forms. The corresponding variation of $L_{2,2}$ is

$$
\begin{equation*}
\delta L_{2,2}=2 \delta R_{a b} R_{c d} e_{f} e_{g} \epsilon^{a b c d f g}+2 R_{a b} R_{c d} e_{f} \delta e_{g} \epsilon^{a b c d f g} \tag{3.12}
\end{equation*}
$$

Using (2.9), the first term on the right hand side is

$$
\begin{equation*}
2\left(\mathrm{D} \delta \omega_{a b}\right) R_{c d} e_{f} e_{g} \epsilon^{a b c a f f_{g}} . \tag{3.13}
\end{equation*}
$$

On the other hand, using the Bianchi identity (2.7) and the definition (2.4) of the torsion we have

$$
\begin{equation*}
2 \mathrm{~d}\left(\delta \omega_{a b} R_{c d} e_{f} e_{g}\right) \epsilon^{a b c d f g}=2\left(\mathrm{D} \delta \omega_{a b}\right) R_{c d} e_{f} e_{g} \epsilon^{a b c a f g}+4 \delta \omega_{a b} R_{c d} e_{f} T_{g} \epsilon^{a b c a f g} . \tag{3.14}
\end{equation*}
$$

Therefore, if the torsion vanishes, (3.12) can be written

$$
\begin{equation*}
\delta L_{2,2}=2 \mathrm{~d}\left(\delta \omega_{a b} R_{c d} e_{f} e_{g} \epsilon^{a b c a f g}\right)+2 R_{a b} R_{c d} e_{f} \delta e_{g} \epsilon^{a b c d f g} . \tag{3.15}
\end{equation*}
$$

This equation tells us that, if we consider a power series expansion in h starting from flat space, the terms in $L_{2,2}$ which are quadratic in h appear under a derivative sign (first term on the right hand side in (3.15)); for a compact manifold or with suitable conditions at infinity, they drop out after integration. The first non-trivial term in the integrated action is cubic; it comes from the second term on the right hand side of (3.15) and can be immediately obtained from it. Clearly, the same result is true for $L_{2, r}$ in

$$
\begin{align*}
& L_{0,6}=e_{a} e_{b} e_{c} e_{d} e_{f} e_{g} \epsilon^{a b c d f g} \tag{3.7}\\
& L_{1,4}=R_{a b} e_{c} e_{d} e_{f} e_{g} \epsilon^{a b c d f g} \\
& L_{2,2}=R_{a b} R_{c d} e_{f} e_{g} \epsilon^{a b c d f g}
\end{align*}
$$

Lovelock Lagrangians in 6D
and

$$
\begin{equation*}
L_{3,0}=R_{a b} R_{c d} R_{f g} \epsilon^{a b c d f g} \tag{3.10}
\end{equation*}
$$

Again, the first is a cosmological term, the second is proportional to the Einstein-Hilbert action and the last to the Euler invariant. Now we have the new possibility (3.9). Similarly for higher dimensions. Odd numbers of dimensions can be considered as well, but in this case the Euler invariant is absent, of course.

To be concrete, let us stay with 6 dimensions. Can one really have a term like (3.9) in the Lagrangian? At first sight one may think that such a term, which is quadratic in the Riemann tensor, will contribute to the bilinear part of the Lagrangian for the field h which describes the deviation from Minkowski space

$$
\begin{equation*}
e_{m}^{a}=\delta_{m}^{a}+h_{m}^{a} \tag{3.11}
\end{equation*}
$$

and thus spoil the particle interpretation by introducing ghosts [9]. However, one can see that this is not the case.

Let us consider an infinitesimal variation of the connection and vielbein forms. The corresponding variation of $L_{2,2}$ is

$$
\begin{equation*}
\delta L_{2,2}=2 \delta R_{a b} R_{c d} e_{f} e_{g} \epsilon^{a b c d f g}+2 R_{a b} R_{c d} e_{f} \delta e_{g} \epsilon^{a b c d f g} \tag{3.12}
\end{equation*}
$$

Using (2.9), the first term on the right hand side is

$$
\begin{equation*}
2\left(\mathrm{D} \delta \omega_{a b}\right) R_{c d} e_{f} e_{g} \epsilon^{a b c d f g} \tag{3.13}
\end{equation*}
$$

On the other hand, using the Bianchi identity (2.7) and the definition (2.4) of the torsion we have

$$
\begin{equation*}
2 \mathrm{~d}\left(\delta \omega_{a b} R_{c d} e_{f} e_{g}\right) \epsilon^{a b c d f g}=2\left(\mathrm{D} \delta \omega_{a b}\right) R_{c d} e_{f} e_{g} \epsilon^{a b c d f g}+4 \delta \omega_{a b} R_{c d} e_{f} T_{g} \epsilon^{a b c d f g} \tag{3.14}
\end{equation*}
$$

Therefore, if the torsion vanishes, (3.12) can be written

$$
\begin{equation*}
\delta L_{2,2}=2 \mathrm{~d}\left(\delta \omega_{a b} R_{c d} e_{f} e_{g} \epsilon^{a b c d f g}\right)+2 R_{a b} R_{c d} e_{f} \delta e_{g} \epsilon^{a b c d f g} \tag{3.15}
\end{equation*}
$$

This equation tells us that, if we consider a power series expansion in h starting from flat space, the terms in $L_{2,2}$ which are quadratic in h appear under a derivative sign (first term on the right hand side in (3.15)); for a compact manifold or with suitable conditions at infinity, they drop out after integration. The first non-trivial term in the integrated action is cubic; it comes from the second term on the right hand side of (3.15) and can be immediately obtained from it. Clearly, the same result is true for $L_{2, r}$ in

 Bruno's Favorite Technology

Bruno's Favorite Technology

u

Effective Lagrangians and Lovelock Actions

Energy Tubes

An energy tube is a region of space where some mechanism changes the local energy relative to the vacuum.
Typically you will need a field theory with a finite correlation length, and some type of boundary conditions. I do not include the traditional Casimir effect of here because you need
 a long range (massless) field.

Brane Neighborhood

Nuclear Physics B81 (1974) 84-92. North-Holland Publishing Company

DYNAMICS OF RELATIVISTIC VORTEX LINES AND THEIR RELATION TO DUAL THEORY
D. FÖRSTER *

The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen \emptyset, Denmark

Received 24 April 1974

One 1
 Original Motivation - Defects $\frac{\text { or дам }}{\boldsymbol{J}}$

Nuclear Physics B81 (1974) 84-92. North-Holland Publishing Company

DYNAMICS OF RELATIVISTIC VORTEX LINES AND
THEIR RELATION TO DUAL THEORY
D. FÖRSTER *

The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen \emptyset, Denmark

Received 24 April 1974

What governs the dynamics of the Nielsen-Olsen vortex?

OR
 Original Motivation - Defects $\stackrel{\text { or мам }}{\mathbf{J}}$

Nuclear Physics B81 (1974) 84-92. North-Holland Publishing Company

DYNAMICS OF RELATIVISTIC VORTEX LINES AND
THEIR RELATION TO DUAL THEORY
D. FÖRSTER *

The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen \emptyset, Denmark

Received 24 April 1974

What governs the dynamics of the Nielsen-Olsen vortex?

$$
S_{\text {dual }}=-\frac{1}{2 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \tau \sqrt{-\mathrm{g}},
$$

Nambu-Goto String Action for the dynamics of the core

14 Years Later

FINITE-WIDTH CORRECTIONS
TO THE NAMBU ACTION FOR THE NIELSEN-OLESEN STRING
Kéi-ichi MAEDA
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA and Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan ${ }^{1}$
and
Neil TUROK
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
Received 18 November 1987

EFFECTIVE ACTION FOR A COSMIC STRING

R. GREGORY

Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, CB3 9EW, UK
Received 10 February 1988
10 March 1988

14 Years Later

FINITE-WIDTH CORRECTIONS

TO THE NAMBU ACTION FOR THE NIELSEN-OLESEN STRING
Kéi-ichi MAEDA
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA and Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan ${ }^{1}$
and
Neil TUROK
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
Received 18 November 1987

Conclusions not totally correct

EFEECTIVE ACTION FOR A COSMIC STRING

R. GREGORY

Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, CB3 9EW, UK
Received 10 February 1988

10 March 1988

Better understood

Effective actions for bosonic topological defects

Ruth Gregory

NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia Illinois 60510 (Received 2 August 1990)
We consider a gauge field theory which admits p-dimensional topological defects, expanding the equations of motion in powers of the defect thickness. In this way we derive an effective action and effective equation of motion for the defect in terms of the coordinates of the p-dimensional world surface defined by the history of the core of the defect.

Better understood

Effective actions for bosonic topological defects

Ruth Gregory

NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia Illinois 60510 (Received 2 August 1990)
We consider a gauge field theory which admits p-dimensional topological defects, expanding the equations of motion in powers of the defect thickness. In this way we derive an effective action and effective equation of motion for the defect in terms of the coordinates of the p-dimensional world surface defined by the history of the core of the defect.

Clearly, upon integration, linear terms will disappear, leaving a contribution to the action of

$$
\begin{equation*}
S=\mu_{0} \int \sqrt{-\gamma}\left[1-\frac{\mu_{1}}{\mu_{0}} \epsilon^{2(p+1)} \mathcal{R}\right) d^{p+1} \sigma \tag{19}
\end{equation*}
$$

where $\mu_{0}=\int \mathcal{L}_{0} d^{m} \xi^{i}$ is the energy per unit p area of the defect, $\mu_{1}=\int \xi^{i 2} \mathcal{L}_{0} d^{m} \xi^{i} / 2 \epsilon^{2}$ is a constant of order unity, and we have used the Gauss-Codazzi relations

$$
\begin{equation*}
\sum_{i} K_{i}^{2}-K_{i \mu \nu}^{2}=-{ }^{(p+1)} \mathcal{R} \tag{20}
\end{equation*}
$$

to write the action in terms of the Ricci curvature of the world surface.

Better understood

Effective actions for bosonic topological defects

Ruth Gregory

NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia Illinois 60510 (Received 2 August 1990)
We consider a gauge field theory which admits p-dimensional topological defects, expanding the equations of motion in powers of the defect thickness. In this way we derive an effective action and effective equation of motion for the defect in terms of the coordinates of the p-dimensional world surface defined by the history of the core of the defect.

Clearly, upon integration, linear terms will disappear, leaving a contribution to the action of

$$
\begin{equation*}
S=\mu_{0} \int \sqrt{-\gamma}\left[1-\frac{\mu_{1}}{\mu_{0}} \epsilon^{2(p+1)} \mathcal{R}\right] d^{p+1} \sigma \tag{19}
\end{equation*}
$$

where $\mu_{0}=\int \mathcal{L}_{0} d^{m} \xi^{i}$ is the energy per unit p area of the defect, $\mu_{1}=\int \xi^{i 2} \mathcal{L}_{0} d^{m} \xi^{i} / 2 \epsilon^{2}$ is a constant of order unity, and we have used the Gauss-Codazzi relations

$$
\begin{equation*}
\sum_{i} K_{i}^{2}-K_{i \mu \nu}^{2}=-{ }^{(p+1)} \mathcal{R} \tag{20}
\end{equation*}
$$

to write the action in terms of the Ricci curvature of the world surface.

Universal Expression

* There is a universal expression that describes the "mean field energy" (mean field action) of an energy tube.
* There are corrections that I can describe to you after the talk.

What is a mathematical tube?

What is a tube?

Let $\Sigma^{q} \subset \mathbb{E}^{n}$ be an embedded submanifold without boundary, i.e. a closed submanifold. The tube $\mathcal{T}(\Sigma, \rho)$ of radius ρ about Σ is a subset of \mathbb{E}^{n} with the following characterization: \boldsymbol{x} is in the tube if there exists a straight segment from \boldsymbol{x} to Σ that intersects Σ perpendicularly and the length of the segment is less than or equal to ρ. The tube $\mathcal{T}(\Sigma, \rho)$ is a fiber bundle over Σ with fiber B^{l}, the l-dimensional ball (the solid ($l-1$)-sphere) where $n=q+l$.

What is a tube?

Let $\Sigma^{q} \subset \mathbb{E}^{n}$ be an embedded submanifold without boundary, i.e. a closed submanifold. The tube $\mathcal{T}(\Sigma, \rho)$ of radius ρ about Σ is a subset of \mathbb{E}^{n} with the following characterization: \boldsymbol{x} is in the tube if there exists a straight segment from \boldsymbol{x} to Σ that intersects Σ perpendicularly and the length of the segment is less than or equal to ρ. The tube $\mathcal{T}(\Sigma, \rho)$ is a fiber bundle over Σ with fiber B^{l}, the l-dimensional ball (the solid ($l-1$)-sphere) where $n=q+l$.

What is a tube?

Let $\Sigma^{q} \subset \mathbb{E}^{n}$ be an embedded submanifold without boundary, i.e. a closed submanifold. The tube $\mathcal{T}(\Sigma, \rho)$ of radius ρ about Σ is a subset of \mathbb{E}^{n} with the following characterization: \boldsymbol{x} is in the tube if there exists a straight segment from \boldsymbol{x} to Σ that intersects Σ perpendicularly and the length of the segment is less than or equal to ρ. The tube $\mathcal{T}(\Sigma, \rho)$ is a fiber bundle over Σ with fiber B^{l}, the l-dimensional ball (the solid ($l-1$)-sphere) where $n=q+l$.

What is a tube?

Let $\Sigma^{q} \subset \mathbb{E}^{n}$ be an embedded submanifold without boundary, i.e. a closed submanifold. The tube $\mathcal{T}(\Sigma, \rho)$ of radius ρ about Σ is a subset of \mathbb{E}^{n} with the following characterization: \boldsymbol{x} is in the tube if there exists a straight segment from \boldsymbol{x} to Σ that intersects Σ perpendicularly and the length of the segment is less than or equal to ρ. The tube $\mathcal{T}(\Sigma, \rho)$ is a fiber bundle over Σ with fiber B^{l}, the l-dimensional ball (the solid ($l-1$)-sphere) where $n=q+l$.

Why a short correlation length?

UNIVERSITY
OF MIAMI
【」

H. Weyl's Formula (1939)

\qquad

H. Weyl's Formula (1939)

(1885-1955)

H. Weyl's Formula (1939)

\qquad

H. Weyl's Formula (1939)

H. Weyl's Formula (1939)

\qquad

H. Weyl's Formula (1939)

$$
\begin{aligned}
\operatorname{vol}(\mathcal{T}(\Sigma, \rho)) & =V_{l}\left(B^{l}\right) \rho^{l} \operatorname{vol}(\Sigma)+V_{l}\left(B^{l}\right) \frac{\rho^{l+2}}{2(l+2)} \int_{\Sigma} R \eta_{\Sigma} \\
& +V_{l}\left(B^{l}\right) \frac{\rho^{l+4}}{8(l+2)(l+4)} \int_{\Sigma}\left(R^{2}-4 R_{a b} R^{a b}+R_{a b c d} R^{a b c d}\right) \eta_{\Sigma} \\
& +O\left(\rho^{l+6}\right)
\end{aligned}
$$

H. Weyl's Formula (1939)

$$
\begin{aligned}
\operatorname{vol}(\mathcal{T}(\Sigma, \rho)) & =V_{l}\left(B^{l}\right) \rho^{l} \operatorname{vol}(\Sigma)+V_{l}\left(B^{l}\right) \frac{\rho^{l+2}}{2(l+2)} \int_{\Sigma} R \eta_{\Sigma} \\
& +V_{l}\left(B^{l}\right) \frac{\rho^{l+4}}{8(l+2)(l+4)} \int_{\Sigma}\left(R^{2}-4 R_{a b} R^{a b}+R_{a b c d} R^{a b c d}\right) \eta_{\Sigma} \\
& +O\left(\rho^{l+6}\right)
\end{aligned}
$$

Exact formula with a finite number of terms that only depend on the intrinsic geometry of the surface!

H. Weyl's Formula (1939)

$$
\begin{aligned}
\operatorname{vol}(\mathcal{T}(\Sigma, \rho)) & =V_{l}\left(B^{l}\right) \rho^{l} \operatorname{vol}(\Sigma)+V_{l}\left(B^{l}\right) \frac{\rho^{l+2}}{2(l+2)} \int_{\Sigma} R \eta_{\Sigma} \\
& +V_{l}\left(B^{l}\right) \frac{\rho^{l+4}}{8(l+2)(l+4)} \int_{\Sigma}\left(R^{2}-4 R_{a b} R^{a b}+R_{a b c d} R^{a b c d}\right) \eta_{\Sigma} \\
& +O\left(\rho^{l+6}\right)
\end{aligned}
$$

Exact formula with a finite number of terms that only depend on the intrinsic geometry of the surface!

The terms are precisely those that appear in Lovelock Theories of Gravity!

Thickened curve

Thickened curve

$$
\operatorname{vol}_{3}(\mathcal{T}(\Sigma, \rho))=\pi r^{2} \cdot \operatorname{vol}_{1}(\Sigma)
$$

Two dimensional surface

Two dimensional surface

$$
\operatorname{vol}_{3}(\mathcal{T}(\Sigma, \rho))=2 \rho \operatorname{vol}_{2}(\Sigma)+\frac{4 \pi}{3} \rho^{3} \chi(\Sigma)
$$

Two dimensional surface

Thickened S^{2}

$$
\begin{aligned}
\operatorname{vol}_{3}\left(\mathcal{T}\left(S^{2}, \rho\right)\right) & =\frac{4 \pi}{3}(r+\rho)^{3}-\frac{4 \pi}{3}(r-\rho)^{3} \\
& =2 \rho \cdot 4 \pi r^{2}+\frac{4 \pi}{3} \rho^{3} \cdot 2
\end{aligned}
$$

Note that for a thickened torus the Euler characteristic term vanishes.

Thickened S^{2}

$$
\begin{aligned}
\operatorname{vol}_{3}\left(\mathcal{T}\left(S^{2}, \rho\right)\right) & =\frac{4 \pi}{3}(r+\rho)^{3}-\frac{4 \pi}{3}(r-\rho)^{3} \\
& =2 \rho \cdot 4 \pi r^{2}+\frac{4 \pi}{3} \rho^{3} \cdot 2 \\
\operatorname{vol}_{3}(\mathcal{T}(\Sigma, \rho)) & =2 \rho \operatorname{vol}_{2}(\Sigma)+\frac{4 \pi}{3} \rho^{3} \chi(\Sigma)
\end{aligned}
$$

Note that for a thickened torus the Euler characteristic term vanishes.

Lovelock Lagrangians

$$
I=\sum_{r=0}^{\lfloor q / 2\rfloor} \lambda_{2 r} I_{2 r}=\sum_{r=0}^{\lfloor q / 2\rfloor} \lambda_{2 r} \int_{\Sigma} \mathcal{K}_{2 r} \eta_{\Sigma}
$$

The Einstein Tensor and Its Generalizations*

David Lovelock
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
(Received 27 August 1970)
The Einstein tensor $G^{i j}$ is symmetric, divergence free, and a concomitant of the metric tensor $g_{a b}$ together with its first two derivatives. In this paper all tensors of valency two with these properties are displayed explicitly. The number of independent tensors of this type depends crucially on the dimension of the space, and, in the four dimensional case, the only tensors with these properties are the metric and the Einstein tensors.

Lovelock Lagrangians

The terms that appear to all orders in the radius in Weyl's tube volume formula are the "dimensional continuations" of the Euler densities. From the physics viewpoint this is astonishing. Gravitational theories defined by lagrangians containing those terms were discussed by Lovelock in the early 1970s who was interested constructing generalizations of the Einstein tensor. He required his tensors to be symmetric, rank two, divergence free and that they contained at most the first two derivatives of the metric (canonical formulation for gravity). The appearance of Lovelock lagrangians in string theory was first observed by Zwiebach (1985) who noted that compatibility of a ghost free theory with the presence of curvature squared terms in the gravitational lagrangian required a special combination that reduced to the Euler density in four dimensions. By studying the 3-graviton on shell vertex in string theory he verified that this curvature squared combination appears. Zumino (1986) generalized Zwiebach's results and showed that gravitational theories containing higher powers of the curvature were ghost free if the additional terms in the lagrangian were "dimensional continuations" of Euler densities in the appropriate dimensionality, i.e., Lovelock type lagrangians.

Lovelock Lagrangians

* I do not believe that any of us at Berkeley at the time were aware of Lovelock's results. They are not mentioned in any of the papers nor do I recollect any allusion to them at that time.

Weyl's Volume Element Formula

$$
\begin{aligned}
d \hat{\boldsymbol{e}}_{a} & =\hat{\boldsymbol{e}}_{b} \omega_{b a}-\hat{\boldsymbol{n}}_{j} K_{a b j} \theta^{b} \\
d \hat{\boldsymbol{n}}_{i} & =\hat{\boldsymbol{n}}_{j} \omega_{j i}+\hat{\boldsymbol{e}}_{a} K_{a b i} \theta^{b},
\end{aligned}
$$

Weyl's Volume Element Formula

$$
\begin{aligned}
d \hat{\boldsymbol{e}}_{a} & =\hat{\boldsymbol{e}}_{b} \omega_{b a}-\hat{\boldsymbol{n}}_{j} K_{a b j} \theta^{b} \\
d \hat{\boldsymbol{n}}_{i} & =\hat{\boldsymbol{n}}_{j} \omega_{j i}+\hat{\boldsymbol{e}}_{a} K_{a b i} \theta^{b},
\end{aligned}
$$

Weyl's Volume Element Formula

$$
\begin{aligned}
d \hat{\boldsymbol{e}}_{a} & =\hat{\boldsymbol{e}}_{b} \omega_{b a}-\hat{\boldsymbol{n}}_{j} K_{a b j} \theta^{b} \\
d \hat{\boldsymbol{n}}_{i} & =\hat{\boldsymbol{n}}_{j} \omega_{j i}+\hat{\boldsymbol{e}}_{a} K_{a b i} \theta^{b},
\end{aligned}
$$

Weyl's Volume Element Formula

$$
\begin{aligned}
d \hat{\boldsymbol{e}}_{a} & =\hat{\boldsymbol{e}}_{b} \omega_{b a}-\hat{\boldsymbol{n}}_{j} K_{a b j} \theta^{b} \\
d \hat{\boldsymbol{n}}_{i} & =\hat{\boldsymbol{n}}_{j} \omega_{j i}+\hat{\boldsymbol{e}}_{a} K_{a b i} \theta^{b},
\end{aligned}
$$

Weyl's Volume Element Formula

UNIVERSITY
 Volume Element Formula (continued) $\stackrel{\text { ormile }}{\boldsymbol{J}}$

$$
\boldsymbol{x}=\boldsymbol{X}(\sigma)+\boldsymbol{\nu}
$$

UNIVERSITY
 Volume Element Formula (continued) ill

$$
\boldsymbol{x}=\boldsymbol{X}(\sigma)+\boldsymbol{\nu}
$$

$$
d \boldsymbol{x}=\hat{\boldsymbol{E}}_{\mu} d x^{\mu}=\hat{\boldsymbol{e}}_{a}\left(\delta_{a b}+\nu^{i} K_{a b i}\right) \theta^{b}+\hat{\boldsymbol{n}}_{i} D \nu^{i}, \quad D \nu^{i}=d \nu^{i}+\omega_{i j} \nu^{j}
$$

UNIVERSITY
 Volume Element Formula (continued) ill

$$
\boldsymbol{x}=\boldsymbol{X}(\sigma)+\boldsymbol{\nu}
$$

$$
d \boldsymbol{x}=\hat{\boldsymbol{E}}_{\mu} d x^{\mu}=\hat{\boldsymbol{e}}_{a}\left(\delta_{a b}+\nu^{i} K_{a b i}\right) \theta^{b}+\hat{\boldsymbol{n}}_{i} D \nu^{i}, \quad D \nu^{i}=d \nu^{i}+\omega_{i j} \nu^{j}
$$

UNIVERSITY
 Volume Element Formula (continued) ill

$$
\boldsymbol{x}=\boldsymbol{X}(\sigma)+\boldsymbol{\nu}
$$

$$
d \boldsymbol{x}=\hat{\boldsymbol{E}}_{\mu} d x^{\mu}=\hat{\boldsymbol{e}}_{a}\left(\delta_{a b}+\nu^{i} K_{a b i}\right) \theta^{b}+\hat{\boldsymbol{n}}_{i} D \nu^{i}, \quad D \nu^{i}=d \nu^{i}+\omega_{i j} \nu^{j}
$$

Volume Element Formula (continued) is

An orthonormal coframe at \boldsymbol{x} is given by $\left(\left(\delta_{a b}+\nu^{i} K_{a b i}\right) \theta^{b}, D \nu^{i}\right)$.

$$
d s^{2}=d \boldsymbol{x} \cdot d \boldsymbol{x}
$$

Weyl's volume element

$$
\begin{aligned}
d^{n} x & =\operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) \theta^{1} \wedge \theta^{2} \wedge \cdots \wedge \theta^{q} \wedge D \nu^{q+1} \wedge \cdots \wedge D \nu^{n} \\
& =\operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) \theta^{1} \wedge \theta^{2} \wedge \cdots \wedge \theta^{q} \wedge d \nu^{q+1} \wedge d \nu^{q+2} \wedge \cdots \wedge d \nu^{n} \\
& =\operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) \eta_{\Sigma} \wedge d \nu^{q+1} \wedge d \nu^{q+2} \wedge \cdots \wedge d \nu^{n}
\end{aligned}
$$

By linearizing the determinant: $\left.d \operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K})\right|_{\boldsymbol{\nu}=0}=d \boldsymbol{\nu} \cdot \operatorname{Tr}(\boldsymbol{K})$ you see that an extremal surface has vanishing mean curvature vector $\delta^{a b} K^{i}{ }_{a b} \hat{\boldsymbol{n}}_{i}$. The mean curvature vector points in the direction of fastest increase in local volume of the surface.

Weyl's volume element

$$
\begin{aligned}
d^{n} x & =\operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) \theta^{1} \wedge \theta^{2} \wedge \cdots \wedge \theta^{q} \wedge D \nu^{q+1} \wedge \cdots \wedge D \nu^{n} \\
& =\operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) \theta^{1} \wedge \theta^{2} \wedge \cdots \wedge \theta^{q} \wedge d \nu^{q+1} \wedge d \nu^{q+2} \wedge \cdots \wedge d \nu^{n} \\
& =\operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) \eta_{\Sigma} \wedge d \nu^{q+1} \wedge d \nu^{q+2} \wedge \cdots \wedge d \nu^{n}
\end{aligned}
$$

By linearizing the determinant: $\left.d \operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K})\right|_{\boldsymbol{\nu}=0}=d \boldsymbol{\nu} \cdot \operatorname{Tr}(\boldsymbol{K})$ you see that an extremal surface has vanishing mean curvature vector $\delta^{a b} K^{i}{ }_{a b} \hat{\boldsymbol{n}}_{i}$. The mean curvature vector points in the direction of fastest increase in local volume of the surface.

Weyl's volume element

$$
\begin{aligned}
d^{n} x & =\operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) \theta^{1} \wedge \theta^{2} \wedge \cdots \wedge \theta^{q} \wedge D \nu^{q+1} \wedge \cdots \wedge D \nu^{n} \\
& =\operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) \theta^{1} \wedge \theta^{2} \wedge \cdots \wedge \theta^{q} \wedge d \nu^{q+1} \wedge d \nu^{q+2} \wedge \cdots \wedge d \nu^{n} \\
& =\operatorname{det}(I+\nu \cdot \boldsymbol{K}) \eta_{\Sigma} \wedge d \nu^{q+1} \wedge d \nu^{q+2} \wedge \cdots \wedge d \nu^{n}
\end{aligned}
$$

By linearizing the determinant: $\left.d \operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K})\right|_{\boldsymbol{\nu}=0}=d \boldsymbol{\nu} \cdot \operatorname{Tr}(\boldsymbol{K})$ you see that an extremal surface has vanishing mean curvature vector $\delta^{a b} K^{i}{ }_{a b} \hat{\boldsymbol{n}}_{i}$. The mean curvature vector points in the direction of fastest increase in local volume of the surface.

Energy Tubes

Explain what is an energy tube and energy formula

$$
\begin{gathered}
(\Delta E)_{\mathrm{eff}}(X)=\int_{\mathbb{E}^{n}} u(\boldsymbol{x}, X) d^{n} x \\
E=\int_{\Sigma} \eta_{\Sigma}(\sigma)\left(\int_{\left(T_{\sigma} \Sigma\right)^{\perp}} u(\sigma, \boldsymbol{\nu}) \operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) d^{l} \nu\right) .
\end{gathered}
$$

Spherically Symmetric Energy Density

$$
\begin{aligned}
& E^{(0)}=V_{l-1}\left(S^{l-1}\right) \sum_{r=0}^{\lfloor q / 2\rfloor} C_{2 r} \int_{\Sigma} \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma} \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu) \\
& C_{0}=1, \quad C_{2 r}=\prod_{k=0}^{r-1} \frac{1}{l+2 k} \\
& \mathcal{K}_{0}(\Sigma)=1 \\
& \mathcal{K}_{1}(\Sigma)=\frac{1}{2} R \\
& \mathcal{K}_{2}(\Sigma)=\frac{1}{8}\left(R^{2}-4 R_{a b} R^{a b}+R_{a b c d} R^{a b c d}\right)
\end{aligned}
$$

Spherically Symmetric Energy Density

$$
E^{(0)}=V_{l-1}\left(S^{l-1}\right) \sum_{r=0}^{\lfloor q / 2\rfloor} C_{2 r} \int_{\Sigma} \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma} \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu)
$$

Where did the $K_{a b}{ }^{i}$ go?

$$
C_{0}=1, \quad C_{2 r}=\prod_{k=0}^{r-1} \frac{1}{l+2 k}
$$

$$
\begin{aligned}
& \mathcal{K}_{0}(\Sigma)=1 \\
& \mathcal{K}_{1}(\Sigma)=\frac{1}{2} R \\
& \mathcal{K}_{2}(\Sigma)=\frac{1}{8}\left(R^{2}-4 R_{a b} R^{a b}+R_{a b c d} R^{a b c d}\right)
\end{aligned}
$$

Spherically Symmetric Energy Density

$$
E^{(0)}=V_{l-1}\left(S^{l-1}\right) \sum_{r=0}^{\lfloor q / 2\rfloor} C_{2 r} \int_{\Sigma} \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma} \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu)
$$

Where did the $K_{a b}{ }^{i}$ go?

$$
C_{0}=1, \quad C_{2 r}=\prod_{k=0}^{r-1} \frac{1}{l+2 k}
$$

$$
\begin{aligned}
& \mathcal{K}_{0}(\Sigma)=1 \\
& \mathcal{K}_{1}(\Sigma)=\frac{1}{2} R \\
& \mathcal{K}_{2}(\Sigma)=\frac{1}{8}\left(R^{2}-4 R_{a b} R^{a b}+R_{a b c d} R^{a b c d}\right)
\end{aligned}
$$

Spherically Symmetric Energy Density

radial moments

$$
\begin{aligned}
E^{(0)}= & V_{l-1}\left(S^{l-1}\right) \sum_{r=0}^{\lfloor q / 2\rfloor} C_{2 r} \int_{\Sigma} \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma} \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu) \\
& \text { Where did the } K_{a b}{ }^{i} \text { go? }
\end{aligned} \quad C_{0}=1, \quad C_{2 r}=\prod_{k=0}^{r-1} \frac{1}{l+2 k} .
$$

$$
\begin{aligned}
& \mathcal{K}_{0}(\Sigma)=1 \\
& \mathcal{K}_{1}(\Sigma)=\frac{1}{2} R \\
& \mathcal{K}_{2}(\Sigma)=\frac{1}{8}\left(R^{2}-4 R_{a b} R^{a b}+R_{a b c d} R^{a b c d}\right) .
\end{aligned}
$$

Convert extrinsic geometry to intrinsic geometry by using the Gauss equation:

$$
R_{a b c d}=K_{a c}{ }^{i} K_{b d}{ }^{i}-K_{a d}{ }^{i} K_{b c}{ }^{i}
$$

condition for an isometric embedding

Induced Scalar Fields

$$
E^{(0)}=\sum_{r=0}^{\lfloor q / 2\rfloor} C_{2 r} \int_{\Sigma} \mu_{2 r}^{(0)}(\sigma) \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma}
$$

$$
\mu_{2 r}^{(0)}(\sigma)=\int_{\left(T_{\sigma} \Sigma\right)^{\perp}}\|\boldsymbol{\nu}\|^{2 r} u^{(0)}(\sigma,\|\boldsymbol{\nu}\|) d^{l} \nu=V_{l-1}\left(S^{l-1}\right) \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu)
$$

Induced Scalar Fields

$$
E^{(0)}=\sum_{r=0}^{\lfloor q / 2\rfloor} C_{2 r} \int_{\Sigma} \mu_{2 r}^{(0)}(\sigma) \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma}
$$

Induced Scalar Fields
(live on Σ)

$$
\mu_{2 r}^{(0)}(\sigma)=\int_{\left(T_{\sigma} \Sigma\right)^{\perp}}\|\boldsymbol{\nu}\|^{2 r} u^{(0)}(\sigma,\|\boldsymbol{\nu}\|) d^{l} \nu=V_{l-1}\left(S^{l-1}\right) \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu)
$$

Induced Scalar Fields

$$
E^{(0)}=\sum_{r=0}^{\lfloor q / 2\rfloor} C_{2 r} \int_{\Sigma} \mu_{2 r}^{(0)}(\sigma) \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma}
$$

$$
\mu_{2 r}^{(0)}(\sigma)=\int_{\left(T_{\sigma} \Sigma\right)^{\perp}}\|\boldsymbol{\nu}\|^{2 r} u^{(0)}(\sigma,\|\boldsymbol{\nu}\|) d^{l} \nu=V_{l-1}\left(S^{l-1}\right) \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu)
$$

Induced Scalar Fields

$$
E^{(0)}=\sum_{r=0}^{\lfloor q / 2\rfloor} C_{2 r} \int_{\Sigma} \mu_{2 r}^{(0)}(\sigma) \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma}
$$

Effective Lovelock Action

$$
\mu_{2 r}^{(0)}(\sigma)=\int_{\left(T_{\sigma} \Sigma\right)^{\perp}}\|\boldsymbol{\nu}\|^{2 r} u^{(0)}(\sigma,\|\boldsymbol{\nu}\|) d^{l} \nu=V_{l-1}\left(S^{l-1}\right) \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu)
$$

Weyl's Volume of a Tube

For the volume of a tube you have: $\quad u(\sigma, \boldsymbol{\nu})= \begin{cases}1 & \text { if }\|\boldsymbol{\nu}\|<\rho, \\ 0 & \text { if }\|\boldsymbol{\nu}\|>\rho,\end{cases}$
$\operatorname{vol}_{n}(\mathcal{T}(\Sigma, \rho))=V_{l}\left(B^{l}\right) \rho^{l} \operatorname{vol}_{q}(\Sigma)+V_{l}\left(B^{l}\right) \sum_{r=1}^{\lfloor q / 2\rfloor} \frac{\rho^{l+2 r}}{\prod_{k=1}^{r}(l+2 k)} \int_{\Sigma} \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma}$.

This formula is exact!

Multilinear Algebra

$$
\begin{aligned}
\delta_{i_{1} i_{2} \cdots i_{m}}^{j_{1} j_{2} \cdots j_{m}} & =\operatorname{det}\left(\begin{array}{llll}
\delta^{j_{1}} i_{1} & \delta^{j_{1}} i_{2} & \cdots & \delta^{j_{1}} i_{m} \\
\delta^{j_{2}} i_{1} & \delta^{j_{2}} i_{2} & \cdots & \delta^{j_{2}} i_{m} \\
\cdots \cdots \cdots \cdots \cdots & \cdots \cdots & \cdots \cdots \\
\delta^{j_{m}} i_{1} & \delta^{j_{m}} i_{2} & \cdots & \delta^{j_{m}} i_{m}
\end{array}\right) \\
& =\frac{1}{(n-m)!} \epsilon_{i_{1} i_{2} \cdots i_{m} k_{m+1} k_{m+2} \cdots k_{n} \epsilon^{j_{1} j_{2} \cdots j_{m} k_{m+1} k_{m+2} \cdots k_{n}}} .
\end{aligned}
$$

$\operatorname{det}(I+t S)=\sum_{m=0}^{n} \frac{t^{m}}{m!} \delta_{i_{1} \cdots i_{m}}^{j_{1} \cdots j_{m}} S^{i_{1}}{ }_{j_{1}} S^{i_{2}}{ }_{j_{2}} \cdots S^{i_{m}}{ }_{j_{m}}$ if S is symmetric

Multilinear Algebra

$\eta_{i_{1} i_{2} \cdots i_{m}}=\star\left(\theta^{i_{1}} \wedge \cdots \wedge \theta^{i_{m}}\right)=\frac{1}{(n-m)!} \epsilon_{i_{1} i_{2} \cdots i_{m} j_{m+1} \cdots j_{n}} \theta^{j_{m+1}} \wedge \cdots \wedge \theta^{j_{n}}$

$$
\Omega_{a b}=\frac{1}{2} R_{a b c d} \theta^{c} \wedge \theta^{d}
$$

$$
\begin{aligned}
\mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma} & =\frac{1}{4^{r} r!} \delta_{a_{1} \cdots a_{2 r}}^{b_{1} \cdots b_{2 r}} R_{a_{1} a_{2} b_{1} b_{2}} \cdots R_{a_{2 r-1} a_{2 r} b_{2 r-1} b_{2 r}} \eta_{\Sigma} \\
& =\frac{1}{2^{r} r!} \eta^{a_{1} a_{2} \cdots a_{2 r-1} a_{2 r}} \wedge \Omega_{a_{1} a_{2}} \wedge \cdots \wedge \Omega_{a_{2 r-1} a_{2 r}}
\end{aligned}
$$

If $\operatorname{dim} \Sigma=q=2 r$ is even then the differential form above of maximal degree is

$$
\mathcal{K}_{q}(\Sigma) \eta_{\Sigma}=\frac{1}{2^{r} r!} \epsilon^{a_{1} a_{2} \cdots a_{2 r-1} a_{2 r}} \Omega_{a_{1} a_{2}} \wedge \cdots \wedge \Omega_{a_{2 r-1} a_{2 r}}
$$

where $\mathcal{K}_{q}(\Sigma)=\operatorname{pf}(\Omega)$ is the pfaffian of the "antisymmetric matrix valued 2 -form" $\Omega_{a b}$. The Euler characteristic is $\chi(\Sigma)=(1 / 2 \pi)^{q / 2} \int_{\Sigma} \operatorname{pf}(\Omega) \eta_{\Sigma}$ by the generalized GaussBonnet Theorem.

$$
\begin{aligned}
& \int_{\Sigma} \eta_{\Sigma} \int_{\left(T_{\sigma} \Sigma\right)^{\perp}} u(\sigma, \boldsymbol{\nu}) \operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) d^{l} \nu \\
& =\int_{\Sigma} \eta_{\Sigma} \sum_{r=0}^{q} \int_{\nu=0}^{\infty} \int_{S^{l-1}} u^{(0)}(\sigma, \nu) \frac{\nu^{r}}{r!} \delta_{a_{1} \cdots a_{r}}^{b_{1} \cdots b_{r}} K_{b_{1} i_{1}}^{a_{1}} K_{b_{2} i_{2}}^{a_{2}} \cdots K^{a_{r}}{b_{r} i_{r}}^{a_{r}} \\
& \quad \times \hat{\nu}^{i_{1}} \hat{\nu}^{i_{2}} \cdots \hat{\nu}^{i_{r}} \cdot \nu^{l-1} d \nu d \operatorname{vol}_{S^{l-1}} \\
& =\int_{\Sigma} \eta_{\Sigma} \sum_{r=0}^{\lfloor q / 2\rfloor} \frac{1}{(2 r)!} \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu) \\
& \quad \times V_{l-1}\left(S^{l-1}\right)(2 r-1)!!C_{2 r} \delta_{a_{1} \cdots a_{2 r}}^{b_{1} \cdots b_{2 r}} K^{a_{1}}{ }_{b_{1} i_{1}} K_{b_{2} i_{1}}^{a_{2}} \cdots K^{a_{2 r-1}}{ }_{b_{2 r-1} i_{r}} K^{a_{2 r}{ }_{b_{2 r} i_{r}}}
\end{aligned}
$$

$$
R_{a b c d}=K_{a c}{ }^{i} K_{b d}{ }^{i}-K_{a d}{ }^{i} K_{b c}{ }^{i}
$$

$$
E^{(0)}=V_{l-1}\left(S^{l-1}\right) \sum_{r=0}^{\lfloor q / 2\rfloor} C_{2 r} \int_{\Sigma} \mathcal{K}_{2 r}(\Sigma) \eta_{\Sigma} \int_{0}^{\infty} d \nu \nu^{2 r+l-1} u^{(0)}(\sigma, \nu)
$$

General Formula

$$
E=\int_{\Sigma} \eta_{\Sigma}(\sigma)\left(\int_{\left(T_{\sigma} \Sigma\right)^{\perp}} u(\sigma, \boldsymbol{\nu}) \operatorname{det}(I+\boldsymbol{\nu} \cdot \boldsymbol{K}) d^{l} \nu\right)
$$

Spherical multipole expansion for $\mathrm{SO}(l)$

$$
u(\sigma, \boldsymbol{\nu})=\sum_{j=0}^{\infty} \sum_{M=1}^{\operatorname{dim} W^{j}} u_{M}^{(j)}(\sigma,\|\boldsymbol{\nu}\|) Y^{j}{ }_{M}(\hat{\boldsymbol{\nu}}),
$$

Faux Cartesian Spherical Harmonics $\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}}) \stackrel{\substack{\text { UNVI } \\ \text { OFM } \\ \boldsymbol{J}}}{\substack{ \\\hline}}$

The faux cartesian spherical harmonics are not a basis but an over complete set for the irreducible representation.

$$
\begin{aligned}
\mathcal{Y}^{0}(\hat{\boldsymbol{\nu}}) & =1 \\
\mathcal{Y}_{i}^{1}(\hat{\boldsymbol{\nu}}) & =\hat{\nu}^{i} \\
\mathcal{Y}_{i i^{\prime}}^{2}(\hat{\boldsymbol{\nu}}) & =\hat{\nu}^{i} \hat{\nu}^{i^{\prime}}-\frac{1}{l} \delta^{i i^{\prime}}, \\
\mathcal{Y}_{i_{1} i_{2} i_{3}}^{3}(\hat{\boldsymbol{\nu}}) & =\hat{\nu}^{i_{1}} \hat{\nu}^{i_{2}} \hat{\nu}^{i_{3}}-\frac{1}{l+2}\left[\delta^{i_{1} i_{2}} \hat{\nu}^{i_{3}}+\delta^{i_{2} i_{3}} \hat{\nu}^{i_{1}}+\delta^{i_{3} i_{1}} \hat{\nu}^{i_{2}}\right] .
\end{aligned}
$$

Faux Cartesian Spherical Harmonics $\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}}) \stackrel{\substack{\text { UNVN } \\ \text { OFM }}}{\boldsymbol{J}}$

The faux cartesian spherical harmonics are not a basis but an over complete set for the irreducible representation.

$$
\begin{aligned}
\mathcal{Y}^{0}(\hat{\boldsymbol{\nu}}) & =1, \\
\mathcal{Y}_{i}^{1}(\hat{\boldsymbol{\nu}}) & =\hat{\nu}^{i}, \\
\mathcal{Y}_{i i^{\prime}}^{2}(\hat{\boldsymbol{\nu}}) & =\hat{\nu}^{i} \hat{\nu}^{i^{\prime}}-\frac{1}{l} \delta^{i i^{\prime}}, \\
\mathcal{Y}_{i_{1} i_{2} i_{3}}^{3}(\hat{\boldsymbol{\nu}}) & =\hat{\nu}^{i_{1}} \hat{\nu}^{i_{2}} \hat{\nu}^{i_{3}}-\frac{1}{l+2}\left[\delta^{i_{1} i_{2}} \hat{\nu}^{i_{3}}+\delta^{i_{2} i_{3}} \hat{\nu}^{i_{1}}+\delta^{i_{3} i_{1}} \hat{\nu}^{i_{2}}\right] .
\end{aligned}
$$

For $l>1$ are uniquely specified by

1. $\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})$ is totally symmetric under any permutation of $i_{1}, i_{2}, \ldots, i_{j}$.
2. $\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})$ is traceless with respect to contraction on any pair of indices. Because the harmonic is totally symmetric this reduces to $\mathcal{Y}_{i i i_{3} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})=0$.
3. The parity of \mathcal{Y}^{j} is $(-1)^{j}$.
4. $\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})$ is an inhomogeneous polynomial of degree j in the $\hat{\nu}^{i}$ with normalization determined by

$$
\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})=\hat{\nu}^{i_{1}} \hat{\nu}^{i_{2}} \cdots \hat{\nu}^{i_{j}}+(\text { polynomial of degree } j-2) .
$$

For $l>1$ are uniquely specified by

1. $\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})$ is totally symmetric under any permutation of $i_{1}, i_{2}, \ldots, i_{j}$.
2. $\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})$ is traceless with respect to contraction on any pair of indices. Because the harmonic is totally symmetric this reduces to $\mathcal{Y}_{i i i_{3} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})=0 . \quad$ (symmetric traceless)
3. The parity of \mathcal{Y}^{j} is $(-1)^{j}$.
4. $\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})$ is an inhomogeneous polynomial of degree j in the $\hat{\nu}^{i}$ with normalization determined by

$$
\left.\mathcal{Y}_{i_{1} i_{2} \cdots i_{j}}^{j}(\hat{\boldsymbol{\nu}})=\hat{\nu}^{i_{1}} \hat{\nu}^{i_{2}} \cdots \hat{\nu}^{i_{j}}+\text { (polynomial of degree } j-2\right) .
$$

Our Multipole Expansion

$$
u(\sigma, \boldsymbol{\nu})=\sum_{j=0}^{\infty} \sum_{i_{1}, \ldots, i_{j}} u_{i_{1} \cdots i_{j}}^{(j)}(\sigma,\|\boldsymbol{\nu}\|) \mathcal{Y}_{i_{1} \cdots u_{j}}^{j}(\hat{\boldsymbol{\nu}})
$$

$u_{i_{1} \cdots i_{j}}^{(j)}$ is totally symmetric and traceless in the indices $i_{1} \cdots i_{j}$ and is the 2^{j}-pole

$$
\begin{aligned}
\mu_{k_{1} \cdots k_{j}, 2 s+j}^{(j)}(\sigma) & =\int_{\left(T_{\sigma} \Sigma\right)^{\perp}}\|\boldsymbol{\nu}\|^{2 s+j} u_{k_{1} \cdots k_{j}}^{(j)}(\sigma,\|\boldsymbol{\nu}\|) d^{l} \nu \\
& =V_{l-1}\left(S^{l-1}\right) \int_{0}^{\infty} d \nu \nu^{2 s+j+l-1} u_{k_{1} \cdots k_{j}}^{(j)}(\sigma, \nu)
\end{aligned}
$$

radial moments

General Formula

$$
\begin{aligned}
E= & \sum_{j=0}^{q} \sum_{s=0}^{\lfloor(q-j) / 2\rfloor} \frac{C_{2 j+2 s}}{2^{s} s!} \\
& \times \int_{\Sigma} \mu_{k_{1} \cdots k_{j}, 2 s+j}^{(j)}(\sigma) \kappa_{b_{1}}^{k_{1}} \wedge \cdots \wedge \kappa_{b_{j}}^{k_{j}} \wedge \Omega_{a_{1} a_{2}} \wedge \cdots \wedge \Omega_{a_{2 s-1} a_{2 s}} \wedge \eta^{b_{1} \cdots b_{j} a_{1} \cdots a_{2 s}} \\
& \kappa_{a}{ }^{k}=K_{a b}{ }^{k} \theta^{b}
\end{aligned}
$$

Note that the Gauss equation may be written as $\Omega_{a b}=\kappa_{a}{ }^{k} \wedge \kappa_{b}{ }^{k}$ and the $\mathrm{SO}(l)$-curvature 2-form of the normal bundle is $F^{i j}=\kappa_{a}{ }^{i} \wedge \kappa_{a}{ }^{j}$. Since the cartesian multipole moments $\mu_{k_{1} \cdots k_{j}}^{(j)}$ are traceless in the k indices we see that the κ terms above cannot be transformed into terms involving the intrinsic curvature $R_{a b c d}$ of the surface.

General Formula

$$
\begin{aligned}
E= & \sum_{j=0}^{q} \sum_{s=0}^{\lfloor(q-j) / 2\rfloor} \frac{C_{2 j+2 s}}{2^{s} s!} \\
& \times \int_{\Sigma} \mu_{k_{1} \cdots k_{j}, 2 s+j}^{(j)}(\sigma) \kappa_{b_{1}}^{k_{1}} \wedge \cdots \wedge \kappa_{b_{j}}^{k_{j}} \wedge \Omega_{a_{1} a_{2}} \wedge \cdots \wedge \Omega_{a_{2 s-1} a_{2 s}} \wedge \eta^{b_{1} \cdots b_{j} a_{1} \cdots a_{2 s}}
\end{aligned}
$$

$$
\kappa_{a}^{k}=K_{a b}^{k} \theta^{b}
$$

General Formula

$$
\begin{aligned}
E= & \sum_{j=0}^{q} \sum_{s=0}^{\lfloor(q-j) / 2\rfloor} \frac{C_{2 j+2 s}}{2^{s} s!} \\
& \times \int_{\Sigma} \mu_{k_{1} \cdots k_{j}, 2 s+j}^{(j)}(\sigma) \kappa_{b_{1}}^{k_{1}} \wedge \cdots \wedge \kappa_{b_{j}}^{k_{j}} \wedge \Omega_{a_{1} a_{2}} \wedge \cdots \wedge \Omega_{a_{2 s-1} a_{2 s}} \wedge \eta^{b_{1} \cdots b_{j} a_{1} \cdots a_{2 s}} \\
& \kappa_{a}^{k}=K_{a b}^{k} \theta^{b}
\end{aligned}
$$

There are only finite number of terms in the expansion. There are roughly $q^{4} / 4$.

UNIVERSITY
 Generalizes to Constant Curvature Spaces orm

$$
\begin{aligned}
& \Omega^{\mu \nu}=k \theta^{\mu} \wedge \theta^{\nu} \quad R_{\mu \nu \rho \sigma}=k\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) \\
E= & \sum_{j=0}^{q} \sum_{s=0}^{\lfloor(q-j) / 2\rfloor} \frac{C_{2 j+2 s}}{2^{s} s!} \\
& \times \int_{\Sigma} \mu_{k_{1} \cdots k_{j}, 2 s+j}^{(j)}(\sigma) \kappa_{b_{1}}^{k_{1}} \wedge \cdots \wedge \kappa_{b_{j}}{ }^{k_{j}} \wedge \Omega_{a_{1} a_{2}} \wedge \cdots \wedge \Omega_{a_{2 s-1} a_{2 s}} \wedge \eta^{b_{1} \cdots b_{j} a_{1} \cdots a_{2 s}} .
\end{aligned}
$$

Generalizes to Constant Curvature Spaces orm

$$
\begin{aligned}
& \Omega^{\mu \nu}=k \theta^{\mu} \wedge \theta^{\nu} \quad R_{\mu \nu \rho \sigma}=k\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) \\
E= & \sum_{j=0}^{q} \sum_{s=0}^{\lfloor(q-j) / 2\rfloor} \frac{C_{2 j+2 s}}{2^{s} s!} \\
& \times \int_{\Sigma} \mu_{k_{1} \cdots k_{j}, 2 s+j}^{(j)}(\sigma) \kappa_{b_{1}}^{k_{1}} \wedge \cdots \wedge \kappa_{b_{j}}{ }^{k_{j}} \wedge \Omega_{a_{1} a_{2}} \wedge \cdots \wedge \Omega_{a_{2 s-1} a_{2 s}} \wedge \eta^{b_{1} \cdots b_{j} a_{1} \cdots a_{2 s}} .
\end{aligned}
$$

Case $k<0$

$$
\mu_{k_{1} \ldots k_{j}, 2 s+j}^{(j)}(\sigma)=V_{l-1}\left(S^{l-1}\right) \int_{0}^{\infty} d \nu\left(\cosh |k|^{1 / 2} \nu\right)^{q-j-2 s}\left(\frac{\sinh |k|^{1 / 2} \nu}{|k|^{1 / 2}}\right)^{2 s+j+l-1} u_{k_{1} \ldots k_{j}}^{(j)}(\sigma, \nu)
$$

Generalizes to Constant Curvature Spaces

$$
\begin{aligned}
& \Omega^{\mu \nu}=k \theta^{\mu} \wedge \theta^{\nu} \quad R_{\mu \nu \rho \sigma}=k\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) \\
E= & \sum_{j=0}^{q} \sum_{s=0}^{\lfloor(q-j) / 2\rfloor} \frac{C_{2 j+2 s}}{2^{s} s!} \\
& \times \int_{\Sigma} \mu_{k_{1} \cdots k_{j}, 2 s+j}^{(j)}(\sigma) \kappa_{b_{1}}{ }^{k_{1}} \wedge \cdots \wedge \kappa_{b_{j}}{ }^{k_{j}} \wedge \Omega_{a_{1} a_{2}} \wedge \cdots \wedge \Omega_{a_{2 s-1} a_{2 s}} \wedge \eta^{b_{1} \cdots b_{j} a_{1} \cdots a_{2 s}} .
\end{aligned}
$$

$$
\text { Case } k<0
$$

$$
\mu_{k_{1} \ldots k_{j}, 2 s+j}^{(j)}(\sigma)=V_{l-1}\left(S^{l-1}\right) \int_{0}^{\infty} d \nu\left(\cosh |k|^{1 / 2} \nu\right)^{q-j-2 s}\left(\frac{\sinh |k|^{1 / 2} \nu}{|k|^{1 / 2}}\right)^{2 s+j+l-1} u_{k_{1} \cdots k_{j}}^{(j)}(\sigma, \nu) .
$$

For $k>0$ replace the hyperbolic functions by the corresponding trigonometric functions.

Emergent Gravity?

Emergent Gravity?

For another talk...

Emergent Gravity?

Emergent Gravity?

THE END

[^0]: * This work was supported in part by the National Science Foundation under Contracts PHY8118547 and MCS80-23356; and by the Director, Office of High Energy and Nuclear Physics of the US Department of Energy under Contracts DE-AC03-76SF00098 and AT0380-ER10617
 $\star \star$ Alfred P. Sloan Foundation Fellow

[^1]: * This work was supported in part by the National Science Foundation under Contracts PHY8118547 and MCS80-23356; and by the Director, Office of High Energy and Nuclear Physics of the US Department of Energy under Contracts DE-AC03-76SF00098 and AT0380-ER10617
 $\star \star$ Alfred P. Sloan Foundation Fellow

