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Gravitational Anomalies and the Family's Index Theorem* 

Orlando Alvarez 1 * *, I. M. Singer a, and Bruno Zumino 1 
1 Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, 
CA 94720, USA 
2 Department of Mathematics and Department of Physics, University of California, Berkeley, 
CA 94720, USA 

Abstract. We discuss the use of the family's index theorem in the study of 
gravitational anomalies. The geometrical framework required to apply the 
family's index theorem is presented and the relation to gravitational anomalies is 
discussed. We show how physics necessitates the introduction of the notion of 
local cohomology which is distinct from the ordinary topological cohomology. 
The recent results of Alvarez-Gaum6 and Witten are derived by using the 
family's index theorem. 

L Introduction 

Alvarez-Gaum~ and Witten [1] have calculated the gravitational anomalies of 
certain parity violating theories in 4 k -  2 dimensions. Their most striking result 
is that there is a unique minimal ten dimensionl theory where the gravitational 
anomalies cancel. In this communication we reproduce their results in a different 
way by using the family's index theorem [2] instead of Feynman diagram methods. 

The relation of the family's index theorem to anomalies has been discussed by 
Atiyah and one of the present authors in reference [3]. In that paper, the geometric 
setting for the family's index theorem was presented and the relation to anomalies 
was discussed. The authors showed that the first characteristic class of the index 
bundle for the Dirac operator was related to anomalies. A number of papers have 
addressed the relationships among chiral anomalies, the geometry of the space of 
vector potentials, and the families of Dirac operators. We recommend the papers of 
Alvarez-Gaum6 and Ginsparg [4], Lott [5], and Stora [6] to the reader. The first 
investigation of the behavior of the Dirac operator as a function of the metric is due 
to Hitchin [7]. 

* This work was supported in part by the National Science Foundation under Contracts PHY81- 
18547 and MCS80-23356; and by the Director, Office of High Energy and Nuclear Physics of the US 
Department of Energy under Contracts DE-AC03-76SF00098 and AT0380-ER10617 
** Alfred P. Sloan Foundation Fellow 
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Is Singer’s Birthday is 3 May.
He will be 91.
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Effective Lagrangians and 
Lovelock Actions



Energy Tubes

An energy tube is a region of 
space where some mechanism 
changes the local energy 
relative to the vacuum. 
Typically you will need a field 
theory with a finite correlation 
length, and some type of 
boundary conditions. I do not 
include the traditional Casimir 
effect of here because you need 
a long range (massless) field.
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Original Motivation – Defects

Nuclear Physics B81 (1974) 84 92. North-ttolland Publishing Company 

DYNAMICS OF RELATIVISTIC VORTEX LINES AND 
THEIR RELATION TO DUAL THEORY 

D. FORSTER * 
The Niels Bohr Institute, University o f  Copenhagen, 

DK-2100 Copenhagen O, Denmark 

Received 24 April 1974 

Abstract: We analyse the dynamics of relativistic vortex lines that occur in some classical field 
theories. We prove that in the zero-width limit they move like Nambu strings. We also discuss 
the relevance of vortex lines to the corresponding quantum field theory. 

1. Introduction 

Recently, there have been new attempts to imbed dual strings into field theory. 
There are basically two lines of approach. The first is the conjecture [ 1 ] that dense 
planar Feynman graphs could actually simulate a two-dimensional structure in space 
time. An important contribution to this approach has recently been made by 
t 'Hooft [2], who has shown planar diagrams to dominate in U N colour gauge theo- 
ries for large N. On the other hand, there has been a rather unconventional proposal 
of Nielsen and Olesen [3] who noted that stringlike structures arise in certain 
classical field theories e.g. as flux lines in the Higgs model, the relativistic generalisa- 
tion of the Landau-Ginzburg equations for superconductivity. It is this second ap- 
proach that provides the motivation for our work. Our purpose here is to analyse 
the motion of vortex lines based on the dynamics of the underlying classical field 
theory in which they occur. In our models, we shall find that vortex lines do in- 
deed move like closed Nambu strings as their width tends to zero [4]. Also, we 
shall find that there are no new degrees of freedom in this limit. Torsion decouples, 
at least classically, and disturbances travelling along the string become infinitely 
massive. 

In sect. 2 we state the problem and develop certain geometric tools for dealing 
with vortices. In sect. 3 we introduce the strong coupling limit needed to achieve 
a mathematically tractable " thin" vortex. In sect. 4 we solve the equations of 
motion in the strong coupling limit. In sect. 5 we comment on the quantised theory. 
In sect. 6 we present our conclusions. 

* On leave of absence from Institut f. Theoretische Physik, Technische Universit/it Clausthal- 
Zellerfeld, West Germany. 
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90 D. Fo'rster, Relativistic vortex lines 

Finally, we give an alternative and more transparent argument why vortices move 
like Nambu strings. We compute the action for a vortex in its internal ground state: 

S = f d 2 r  d2p ~/S-G-~. (4.15) 

From eq. (2.10) we have 

VC---U = V'-L-g + O (e), g=-detgi/. (4.16) 

To lowest order in e, ~ and A t  are independent of  r i. Hence we obtain 

S =(fdZp ~) fd2r ~/-~g + O(e). (4.17) 

So the variational problem reduces to finding an extremal surface and therefore the 
action (4.17) determines the equations of  motion for the vortex in its internal ground 
state. 

The quantisation of the action (4.17) is well known to generate linear Regge tra- 
jectories *. Comparing with the dual action [8] 

_ 1 f d 2 ~  ~ (4.18) Sdual 27rc~' 

we find a relation between the energy per unit length of  the vortex and the Regge 
slope a '  

1 - f d 2 p ~ ? .  (4.19) 
2ha '  

5. Some remarks on quantised vortices 

In sect. 4, we showed that vortex motion is governed by the dual action of  (4.18). 
The authors of  ref. [9] have reproduced the spectrum of dual theory by quantising 
this action. What about the notorious tachyon ground-state? In fact, the inconsisten- 
cy occurs at a classical level already. The string shrinks to a point in its classical 
ground state and the dual action cannot be appropriate for a vortex almost shrunk 
to a point where finite width and high curvature effects become important.  So the 
action (4.18) is slightly oversimplified. 

Feynman tells us how to compute the amplitude for scattering of  vortices by 
summing over all histories connecting initial and final states. Symbolically, 

Sf i=<v°rt icesat t f lv°r t icesat t i )= all ~ exp{  - t~'27ra' f d 2 r  ~/-~g}" (5.1) 

histories 

t Here it is crucial that 12 vanishes faster than 1/r 2 outside of the vortex. Hence the argument 
does not work for the Goldstone model where a zero-mass particle is precent. 

* In the following, we often drop the distinction beiween open and closed strings. 

Nambu-Goto String Action for the
dynamics of the core

What governs the dynamics of the Nielsen-Olsen vortex?
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Volume 206, number 2 PHYSICS LETTERS B 19 May 1988 

E F F E C T I V E  A C T I O N  F O R  A C O S M I C  S T R I N G  

R. G R E G O R Y  
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, CB3 9E W, UK 

Received l0 February 1988 

By considering a cosmic string as a vortex solution to a field theory with spontaneous symmetry breaking, we derive the effective 
action for the string motion in terms of a two-dimensional integral over the world-sheet representing the history of the centre of 
the string. The action is found to be a Polyakov action with a rigidity term. The implications for cusp formation are discussed. 

Cosmic strings have a t t racted a lot of  a t tent ion as 
an imaginat ive  appl ica t ion  of  part icle  physics to the 
early universe (for a review see e.g. Kibble [ 1 ] ). They 
can arise when the universe undergoes a suitable 
phase t ransi t ion from a symmetr ic  state to one in 
which the symmetry  is spontaneously  broken,  the 
condi t ion  for string format ion  being that  the vacuum 
manifo ld  is non-s imply  connected.  In viewing a 
cosmic string as a macroscopic  object,  one approxi-  
mates the thin string core by a line, and hence a world- 
sheet in spacetime.  The N a m b u - G o t o  act ion [ 2 ] has 
been used to describe the evolut ion proper t ies  of  this 
world-sheet  [ 3 ], however  this has certain d isadvan-  
tages. The string is not  an infini tely thin line source, 
but  has a microscopic  structure owing to the fact that  
it is, in reality, a vortex-l ike solut ion to a set of  field 
equat ions [4] .  Not  surprisingly, the N a m b u  act ion 
predicts structures, such as cusps, which we might not 
expect a field configurat ion to exhibit .  As these cusps 
are impor tan t  in calculating gravi ta t ional  rad ia t ion  
from strings [5 ], it  is crucial to de te rmine  whether  
they are real, or jus t  a facet of  an approx imat ion .  It is 
therefore impor tan t  to examine the effective act ion 
of  the string in more  detail ,  to ascertain whether  cusp 
(or  k ink)  format ion  is favoured or  suppressed. 

There are several problems with bui lding such an 
action, not least that  the total  class o f  field configu- 
rat ions is much larger than the total  class of  world- 
sheet configurations.  Even restr ict ing ourselves to 
those configurat ions which are solut ions to the equa- 
t ions of  mot ion  will not  suffice, as there are many  so- 
lutions corresponding to the same world-sheet  which 
differ only in the number  of  massive exci tat ions pres- 

0370-2693 /88 /$  03.50 © Elsevier Science Publishers  B.V. 
( Nor th -Hol land  Physics Publishing Divis ion ) 

ent in the fields. These however are microscopic  
propert ies,  and provided  we restrict  ourselves to the 
lowest energy solution, we should expect to be able to 
der ive an act ion corresponding to a cosmic string 
viewed as a macroscopic  object  from the microscopic  
field structure. 

We will consider  the par t icular  case o f a  U ( 1 ) local 
string in fiat spacetime. Considerat ion of  a local string 
is necessary, as a global string has undesirable  fall-off 
propert ies  in the energies o f  the fields. Such a local 
string can be formed in the breaking of  the U ( 1 ) 
gauge symmetry  o f  the following lagrangian: 

L#[0, A~] 

=DJJ*D"o- ¼ P/,.F"- 1 ~ 0 ( 0 t 0 - - ~ 2 ) 2 ,  (1)  

where D u = V u + ieA,, is the usual gauge covar iant  de- 
r ivative,  and  Fu. the field strength associated with A.. 
We rewrite the field content  of  this model  in terms o f  
the real variables X, Z in the following way: 

O(x ~') =r loX(x  '~ ) exp [ ix (x  ~) ] , (2a )  

Au(x '~ )= ( l / e )  [Pu(x '~ ) -V , , z (x '~ ) ]  , (2b)  

so that  a vacuum state is character ised by X =  1. In 
terms of  these new variables,  the lagrangian becomes 

LP= q2VuXVuX+ P~P/'X2tl2 - ( 1 /4e  2) Fu~F*" 

-- 1 ~0~4 ( X  2 _  1 )2 

2 4 =~o~o [(1/,~o~o ~) v~xv,,x 
+ ( 1/,~o~) P~P~X2ng 
- ( 1 / 2 g r / ~ )  (20/4e2)  F/,.F " -  ~ ( X 2 - 1 ) 2 ] ,  

(3 )  
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F I N I T E - W I D T H  CORRECTIONS 
TO THE NAMBU ACTION FOR THE NIELSEN-OLESEN STRING 

K6i-ichi MAEDA 
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA 
and Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan 

and 

Nell T U R O K  
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA 

Received 18 November 1987 

The finite-width correction terms to the Nambu action for Nielsen-Olesen strings are calculated. They consist of an extrinsic 
curvature squared or rigidity term and a new "twist" term. The extrinsic curvature term prevents cusps forming, rounding them 
off with a curvature radius of the order of the string width. 

The Nambu  action [1] is today ubiquitous in 
physics. Originally invoked in the context o f  the dual 
string model in hadron physics, it is now used as the 
starting point for theories of  fundamental  strings [ 2 ] 
and as an approximate description of  the motion of  
Nielsen-Olesen vortex lines [3] in the theory o f  
cosmic strings [4] ~ 

What are the corrections to the Nambu  action for 
finite-width strings? In the cosmic string theory, the 
correction terms are almost always tiny, being of  or- 
der of  the string width divided by the radius o f  cur- 
vature squared. However,  generally the motion of  a 
string loop produces "cusps" [ 6 ], and "kinks" are also 
frequently generated naturally by string reconnec- 
tions [7].  Both cusps and kinks propagate with the 
velocity of  light, producing several interesting astro- 
physical phenomena [ 8 ]. However, both are singular 
points where the curvature radius goes to zero and 
the Nambu action breaks down. The finite-width 
corrections to the Nambu  action become significant 
at these points. 

Recently Polyakov suggested the possibility of  

Permanent address. 
~J See ref. [ 5 ] for a recent review. 

376 

adding an extra "rigidity" term to the Nambu action 
in a phenomenological description of  Q CD [ 9 ]. The 
effects of  this term have been extensively analysed 
both classically [ 10] and quantum mechanically [ 11 ]. 
In particular the "leading Regge trajectory" Nambu 
string solutions, doubled lines whose ends rotate at 
the speed of  light, become modified so that the ends 
are rounded off  to a finite curvature radius [ 10 ] and 
move at a slower speed. 

In this letter we return to the classical Nielsen 
-Olesen vortex line and calculate the leading-order 
corrections to the Nambu action. We obtain not only 
Polyakov's  rigidity term with a calculable coefficient 
but also a new "twist" term of  the same order which 
has previously been ignored in the literature. 

Our calculation is based on an expansion in the 
"width"  o f  the Nielsen-Olesen string w divided by 
the radius of  curvature R of  the string trajectory. The 
basic method we use first appeared in the work of 
Forster [ 12] but that work is unfortunately incom- 
plete invoking the strong coupling limit in particular 
and not proceeding beyond the Nambu action. 

Let us consider the two-dimensional world sheet 
which is the trajectory of  the center of  the string (the 
manifold of  zeros of  the Hi ggs field). The world sheet 

0370-2693/88/$ 03.50 © Elsevier Science Publishers B.V. 
(Nor th-Hol land  Physics Publishing Division)  
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The finite-width correction terms to the Nambu action for Nielsen-Olesen strings are calculated. They consist of an extrinsic 
curvature squared or rigidity term and a new "twist" term. The extrinsic curvature term prevents cusps forming, rounding them 
off with a curvature radius of the order of the string width. 

The Nambu  action [1] is today ubiquitous in 
physics. Originally invoked in the context o f  the dual 
string model in hadron physics, it is now used as the 
starting point for theories of  fundamental  strings [ 2 ] 
and as an approximate description of  the motion of  
Nielsen-Olesen vortex lines [3] in the theory o f  
cosmic strings [4] ~ 

What are the corrections to the Nambu  action for 
finite-width strings? In the cosmic string theory, the 
correction terms are almost always tiny, being of  or- 
der of  the string width divided by the radius o f  cur- 
vature squared. However,  generally the motion of  a 
string loop produces "cusps" [ 6 ], and "kinks" are also 
frequently generated naturally by string reconnec- 
tions [7].  Both cusps and kinks propagate with the 
velocity of  light, producing several interesting astro- 
physical phenomena [ 8 ]. However, both are singular 
points where the curvature radius goes to zero and 
the Nambu action breaks down. The finite-width 
corrections to the Nambu  action become significant 
at these points. 

Recently Polyakov suggested the possibility of  

Permanent address. 
~J See ref. [ 5 ] for a recent review. 
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adding an extra "rigidity" term to the Nambu action 
in a phenomenological description of  Q CD [ 9 ]. The 
effects of  this term have been extensively analysed 
both classically [ 10] and quantum mechanically [ 11 ]. 
In particular the "leading Regge trajectory" Nambu 
string solutions, doubled lines whose ends rotate at 
the speed of  light, become modified so that the ends 
are rounded off  to a finite curvature radius [ 10 ] and 
move at a slower speed. 

In this letter we return to the classical Nielsen 
-Olesen vortex line and calculate the leading-order 
corrections to the Nambu action. We obtain not only 
Polyakov's  rigidity term with a calculable coefficient 
but also a new "twist" term of  the same order which 
has previously been ignored in the literature. 

Our calculation is based on an expansion in the 
"width"  o f  the Nielsen-Olesen string w divided by 
the radius of  curvature R of  the string trajectory. The 
basic method we use first appeared in the work of 
Forster [ 12] but that work is unfortunately incom- 
plete invoking the strong coupling limit in particular 
and not proceeding beyond the Nambu action. 

Let us consider the two-dimensional world sheet 
which is the trajectory of  the center of  the string (the 
manifold of  zeros of  the Hi ggs field). The world sheet 
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We consider a gauge field theory which admits p-dimensional topological defects, expanding the
equations of motion in powers of the defect thickness. In this way we derive an effective action and
effective equation of motion for the defect in terms of the coordinates of the p-dimensional world
surface defined by the history of the core of the defect.

INTRODUCTION

There has been some interest recently in deriving
higher-order terms in the action of extended objects. For
instance, in string theory, Polyakov' suggested adding an
extrinsic curvature term to the string action; other au-
thors have investigated particles with extrinsic curva-
ture; however, in neither case were physical manifesta-
tions presented, as in the work of Nielsen and Olesen
(later proved by Forster ), who argued that the behavior
of a vortex solution they had found was that of a Nambu
string. Other authors have since argued that general to-
pological defects have "generalized Nambu actions":
S~=f &—y d&+'o', (1)

~p( A)

where X"(o.") are the spacetime coordinates of the world
surface, (a "J the intrinsic coordinates of the world sur-
face, and y„~ the intrinsic metric. It was hoped that a
more detailed examination of the equations of motion for
the defect would yield the higher-order terms. To our
knowledge, the first step in this direction was the exam-
ination of the effective action for the Nielsen-Olesen vor-
tex to second order in the ratio of the string width to
string curvature. A later study of the problem showed
that the original reasoning had been Aawed, and that in
fact there were no such correction terms. The purpose of
this paper is to present a general argument for obtaining
an expansion for the effective action of bosonic topologi-
cal defects, and in particular to demonstrate that for
strings and particles no such terms exist.
First of all, we should examine what is meant by an

"effective action. " Generally, topological defects can
arise in field theories when the vacuum manifold of the
theory is nontrivial. Specifically, a p-dimensional (where
p refers to the number of spatial dimensions of the defect)
topological defect can form if the homotopy groupII„z(M)%1 (where n is the dimension of spacetime).
Such a defect is characterized by a winding number,
which is the winding number of the map from a
(n —p —2)-sphere surrounding the defect into the vacu-
um manifold. The static defect is a topologically stable
solution to the equations of motion of the theory, and is
characterized by having translational symmetry in a
(p + 1)-hyperplane, the fields depending only on the
m =(n —p —1) orthogonal directions. Unless the sym-

metry is a global one, the energy density of the defect will
be highly localized around a particle hyperplane with
characteristic thickness e, where e ' is typically of the
order of the symmetry-breaking scale (multiplied by the
root of the self-coupling constant). Clearly, e is extreme-
ly small, so the question naturally arises as to whether we
can approximate the motion of a general topological de-
fect by some simple set of equations for a (p + 1)-
dimensional hypersurface. Therefore, we somehow want
to find a way of integrating out the rapid variation of the
fields perpendicular to the world surface, thus reducing
the n-dimensional field-theoretic action to a (p + 1 )-
dimensional world-surface action. This is the problem of
finding an effective action.
There are essentially two approaches one could take to

calculate the action. Either one expands the n-
dimensional action around a known field configuration,
integrating out over orthogonal directions, or, one can
expand the fields and field equations in powers of thick-
ness of the defect, using integrability conditions for the
nth-order terms to give the effective equations of motion
to order n —1. Clearly the latter method is more depend-
able, although more involved. The former method re-
quires greater care for consistency. We will use both
methods, mainly the former to obtain the shape of the ac-
tion, and the latter to confirm the equations of motion.
We start by setting up our notation and conventions be-
fore systematically expanding the action around a
"known" static solution. Finally, we derive the effective
action and equations of motion for the defect up to
second order in the ratio of the defect size to the extrinsic
curvature of its world history.

THE EFFECTIVE ACTION
Let us suppose that a p-dimensional topological defect

is formed during the spontaneous symmetry breakdown
of a local field theory with initial symmetry group Q. We
will consider only a local theory (in the absence of gravi-
ty), since only a local theory has the sharp fall otf in the
fields that is required by our methods. Global theories
have long-range Goldstone-boson fields which complicate
the integration oA' the world surface. (For simplicity, we
will take 9 to be a simple Lie group, although the more
general case should be transparent. ) We write P (=P )

to represent the multiplet of fields transforming under 0,
and 2„=A,„(x)T'&as the gauge field; thus
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8 K, =n". V„V n, =n"V V„n, =—K" K,.„
implies

&—g =& y[1+g—'Z, + ,'PP(rC, r-C, rC,„~,~—)]. (18)

Clearly, upon integration, linear terms will disappear,
leaving a contribution to the action of

solution in order to reinforce confidence in this con-
clusion.
We are now left with expanding

S[go, Ao„,g]= I&—g Kg[$0, A()„d~+'cr d
around the world surface. By construction, in the new
coordinates g,~ =5;~, which is independent of the g', hence
=X 0 and we need only expand the volume element

&—g about the world surface.
Therefore we have

&—g =g—g, +ja,g—g, +-,'pj's, a, g—g, +
(17)

but

8, v' —g =&,.V—g =v' —g It,.
and

S= &— 1— e '~+"A d~+'cr"Po
Po

which yields the second-order equation of motion

2~2 ~A~B ~CPi
i iB jC jAPo

Therefore for p =0, 1 we see that there are no second-
order correction terms to the action. The action for a
particle is the proper length of the path, and, for a string,
the proper area. This might indicate a necessity for a
higher-order expansion; however, for such higher-order
terms to be important, the extrinsic curvature must be of
the order of the defect size, in which case all correction
terms would be important, and we might as well analyze
the full field equations. Such a situation would arise, for
instance, at a cusp in a string trajectory.
For membranes and higher-dimensional defects, the

eFect of (19) can be estimated by considering the subse-
quent motion of a p-sphere of defect released from the
rest. In terms of the radius R (r) of the sphere, r the
proper time of an observer moving with the defect,

~ ~

K„= +—+1+R&I+R '
'3

S =p,I& y 1—— e'"+"% d&+'~,Pi
Po

(19)
R

&I+R ' + P (I+R')'".
R

~ rc'
1 lPv (20)

where pa= fRod g' is the energy per unit p area of the
defect, p, , = fg' Rod g'/2e is a constant of order unity,
and we have used the Gauss-Codazzi relations

Therefore, if Ro(~) is the "Nambu" trajectory, satisfying
K„=O, the second-order trajectory R (r) is given by

2 3/2+~V'I+R '=2""'(p' —)
"+R '

&I+R ' Po R

DA DBX"=n~K; AB (21)

in (19) to find the equations of motion for the world s zr-
face by varying X" (remembering that the metric y „~
and the connection depend on X"). From the Appendix,
we see

A B C
2i OiB+ojc+oj A

Po
(22)

as the second-order equations of motion for the world
surface. (In fact, the right-hand side of these equations
vanishes identically for p =0 and 1, so we could say these
were the equations for all p. )

CONCLUSIONS

Therefore, we have shown that the second-order action
for a topological defect is (19)

to write the action in terms of the Ricci curvature of the
world surface.
Clearly then, for p =0 this "geometric" correction

term vanishes; for p =1, it is a topological constant, the
Euler characteristic of the surface. Only for p ~2 does
this term contribute. In this case, one can use the substi-
tution

Therefore 0)R(r))RO(r); thus the correction has the
effect of slightly resisting the collapse of the defect when
it starts to become significant; this indicates that the
correction is a rigidity term. Here the approximation
breaks down when R -e ~ (i.e., before the spatial radius
of curvature reaches e). After this point, a full field-
theoretic treatment would be required to investigate the
behavior of the defect (if indeed it persists as such).
It would be interesting to include the effects of super-

symmetry in this calculation, but this may require finding
appropriate superfield theories with static defect solu-
tions that spontaneously break the required spacetime
(super)symmetries —a somewhat more involved task. 9
One can take the approach of requiring an effective ac-
tion to have the relevant world-surface symmetries (for
example, see Refs. 9 and 10); however, even this, which
gives the "shape" of the action is extremely involved.
This work shows that only by analyzing the actual field
theory do we get information on whether any of the
terms in such an expansion are nonzero.
Another useful extension of the work would be to in-

vestigate whether one can include gravity; however, the
work of Geroch and Traschen" in four dimensions indi-
cates that a consistent zero-thickness limit in the general
case may be problematic —and indeed we have found this
to be the case.
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✤ There is a universal expression that describes the “mean field 
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✤ There are corrections that I can describe to you after the talk.
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Exact formula with a finite number of terms 
that only depend on the intrinsic geometry of the surface!
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Exact formula with a finite number of terms 
that only depend on the intrinsic geometry of the surface!

The terms are precisely those that appear in 
Lovelock Theories of Gravity!
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Note that for a thickened torus the Euler characteristic term vanishes.
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Note that for a thickened torus the Euler characteristic term vanishes.
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where 
2ml = m + m', 
2fll = fl + fl', 

Imfll = Im'fl'l = Ijofll, 
and the first summation is over all four possible 
combinations of signs of m, m', fl, fl' when those of 
the products (mfl), (m'l) are held fixed. 

Now let us consider D-+ (0 < 0' < TT/2). We find 

= h( -IX - TT)t p, 
A,2 = cos (0 - cP - TT)/COS cP, 

where 
tan H' = cot (cP - 0)/2, (B6) 

with the notation used previously. The equation for 
cP' has the solution 

cP' = 0 - cP - TT, 
and we find 
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where both basis functions have their arguments in 
the meaningful interval (-TTj2, TT/2). By using (A5) 
we find that formally this becomes 

Dx-+ (0') 27rH0'DX++ (0' 0') (8) Illt,illt' = e IIl-t,illt' TT - , B 
where the right-hand side is to be interpreted as the 
analytic continuation to the region iTT < 0 < TT of the 
functional form of the matrix element D(O) appro-
priate for 0 < 0 < iTT. By using this, together with the 
identities (25) (which are derived by similar manipula-
tions), we can obtain explicit expressions for all the 
matrix elements of this coset class. 
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The Einstein tensor Gii is symmetric, divergence free, and a concomitant of the metric tensor 
together with its first two derivatives. In this paper all tensors of valency two with these properties are 
displayed explicitly. The number of independent tensors of this type depends crucially on the dimension of 
the space, and, in the four dimensional case, the only tensors with these properties are the metric 
and the Einstein tensors. 

1. INTRODUCTION 
In most introductions to the general theory of 

relativity, the motivation which gives rise to the Ein-
stein field equations in vacuo usually involves solving 
the following problem: to seek all tensors Aii with the 
properties: 

(a) Aii is symmetric, i.e.,l 
Aii = Aii; 

(b) Aii is a concomitant of the metric tensor gab and 

its first two derivatives, Le., 2 

A ii = A ii (gab; gab,c; gab,Cd); 

(C) Aii is divergence free, i.e.,3 

Aiili = 0; 

(d)-Aij is linear in the second derivatives of gab' 
The field equations in vacuo are then assumed to take 
the form 

Aii = O. 
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The terms that appear to all orders in the radius in Weyl's tube volume formula are the 
``dimensional continuations'' of the Euler densities.  From the physics viewpoint this 
is astonishing.  Gravitational theories defined by lagrangians containing those terms 
were discussed by Lovelock in the early 1970s who was interested constructing 
generalizations of the Einstein tensor.  He required his tensors to be symmetric, rank 
two, divergence free and that they contained at most the first two derivatives of the 
metric (canonical formulation for gravity).  The appearance of Lovelock lagrangians in 
string theory was first observed by Zwiebach (1985) who noted that compatibility of a 
ghost free theory with the presence of curvature squared terms in the gravitational 
lagrangian required a special combination that reduced to the Euler density in four 
dimensions.  By studying the 3-graviton on shell vertex in string theory he verified 
that this curvature squared combination appears.  Zumino (1986) generalized Zwiebach's 
results and showed that gravitational theories containing higher powers of the curvature were 
ghost free if the additional terms in the lagrangian were ``dimensional continuations'' of Euler 
densities in the appropriate dimensionality, i.e., Lovelock type lagrangians.

Lovelock Lagrangians



Lovelock Lagrangians

✤ I do not believe that any of us at Berkeley at the time were aware of 
Lovelock’s results. They are not mentioned in any of the papers nor 
do I recollect any allusion to them at that time.
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Ê1

Ê2
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Ê1

Ê2
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Weyl’s Volume Element Formula

⌃
X(�)

⌫

ê
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Volume Element Formula (continued)
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Ê1

Ê2

Ên



Volume Element Formula (continued)
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Volume Element Formula (continued)
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Volume Element Formula (continued)
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ê

n̂

x

Ê1

Ê2
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Volume Element Formula (continued)
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Weyl’s volume element



Weyl’s volume element



Weyl’s volume element



Energy Tubes

Explain what is an energy tube and energy formula



Spherically Symmetric Energy Density



Spherically Symmetric Energy Density



Spherically Symmetric Energy Density



Spherically Symmetric Energy Density

radial moments



Convert extrinsic geometry to intrinsic geometry by 
using the Gauss equation:

condition for an isometric embedding



Induced Scalar Fields



Induced Scalar Fields

Induced Scalar Fields
(live on Σ)



Induced Scalar Fields



Induced Scalar Fields

Effective Lovelock Action



Weyl’s Volume of a Tube

For the volume of a tube you have:

This formula is exact!



Multilinear Algebra



Multilinear Algebra







General Formula



Faux Cartesian Spherical Harmonics

The faux cartesian spherical harmonics are not a basis but an
over complete set for the irreducible representation.



Faux Cartesian Spherical Harmonics

The faux cartesian spherical harmonics are not a basis but an
over complete set for the irreducible representation.





(symmetric traceless)



Our Multipole Expansion

radial moments



General Formula



General Formula



General Formula



Generalizes to Constant Curvature Spaces



Generalizes to Constant Curvature Spaces



Generalizes to Constant Curvature Spaces



Emergent Gravity?



Emergent Gravity?

For another talk…



Emergent Gravity?



Emergent Gravity?

THE END


