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Gravitational Anomalies and the Family’s Index Theorem*

Orlando Alvarez! **, I. M. Singer?, and Bruno Zumino?

1 Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley,
CA 94720, USA

2 Department of Mathematics and Department of Physics, University of California, Berkeley,
CA 94720, USA

Abstract. We discuss the use of the family’s index theorem in the study of
gravitational anomalies. The geometrical framework required to apply the
family’s index theorem is presented and the relation to gravitational anomalies is
discussed. We show how physics necessitates the introduction of the notion of
local cohomology which is distinct from the ordinary topological cohomology.
The recent results of Alvarez-Gaumé and Witten are derived by using the
family’s index theorem.

1. Introduction

Alvarez-Gaumé and Witten [1] have calculated the gravitational anomalies of
certain parity violating theories in 4k — 2 dimensions. Their most striking result
is that there is a unique minimal ten dimension! theory where the gravitational
anomalies cancel. In this communication we reproduce their results in a different
way by using the family’s index theorem [2] instead of Feynman diagram methods.

The relation of the family’s index theorem to anomalies has been discussed by
Atiyah and one of the present authors in reference [3]. In that paper, the geometric
setting for the family’s index theorem was presented and the relation to anomalies
was discussed. The authors showed that the first characteristic class of the index
bundie for the Dirac operator was related to anomalies. A number of papers have
addressed the relationships among chiral anomalies, the geometry of the space of
vector potentials, and the families of Dirac operators. We recommend the papers of
Alvarez-Gaumé and Ginsparg [4], Lott [5], and Stora [6] to the reader. The first
investigation of the behavior of the Dirac operator as a function of the metric is due
to Hitchin [7].

*  This work was supported in part by the National Science Foundation under Contracts PHY81-

18547 and MCS80-23356; and by the Director, Office of High Energy and Nuclear Physics of the US
Department of Energy under Contracts DE-AC03-76SF00098 and AT0380-ER10617
**  Alfred P. Sloan Foundation Fellow
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112 New avenues in quantum theory and general relativity
Lo ¢ = e.epe.eqese €™ (3.7)
L= Rabecedefegfabmfg ) (3.8)
L, ,= R.R 4e5e,€ abeds (3.9)
and
Ly o= RuyR.aRyp€ ™ . (3.10)

Again, the first is a cosmological term, the second is proportional to the Einstein—Hilbert action and the
last to the Euler invariant. Now we have the new possibility (3.9). Similarly for higher dimensions. Odd
numbers of dimensions can be considered as well, but in this case the Euler invariant is absent, of
course.

To be concrete, let us stay with 6 dimensions. Can one really have a term like (3.9) in the
Lagrangian? At first sight one may think that such a term, which is quadratic in the Riemann tensor,
will contribute to the bilinear part of the Lagrangian for the field A which describes the deviation from
Minkowski space

e, = 8%, +h°, 3.11)

and thus spoil the particle interpretation by introducing ghosts [9]. However, one can see that this is not
the case.

Let us consider an infinitesimal variation of the connection and vielbein forms. The corresponding
variation of L, , is

8L, , =2 3R R 4e/6,€ Y + 2R, R 46 De €7 . (3.12)
Using (2.9), the first term on the right hand side is

2(D 3wy )R uese €Y% . (3.13)
On the other hand, using the Bianchi identity (2.7) and the definition (2.4) of the torsion we have

2d(BwasR.qer€,) € 2" = 2D 8w, ) R.atre € Y + 4 dwop R, s T €Y% . (3.14)
Therefore, if the torsion vanishes, (3.12) can be written

dL, > = 2d(Bw,p R sre,€ ) + 2R R 1€ De € >V (3.15)
This equation tells us that, if we consider a power series expansion in k starting from fiat space, the
terms in L, , which are quadratic in 4 appear under a derivative sign (first term on the right hand side in
(3.15)); for a compact manifold or with suitable conditions at infinity, they drop out after integration.

The first non-trivial term in the integrated action is cubic; it comes from the second term on the right
hand side of (3.15) and can be immediately obtained from it. Clearly, the same result is true for L, , in
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An energy tube is a region of

space where some mechanism

changes the local energy

relative to the vacuum.
Typically you will need a field
theory with a finite correlation

length, and some type of
boundary conditions. I do not
include the traditional Casimir
effect of here because you need
a long range (massless) field.
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What governs the dynamics of the Nielsen-Olsen vortex?
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) Nambu-Goto String Action for the
f d-7/—g,
Tf'CL’

- 2md dynamics of the core
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PHYSICAL REVIEW D VOLUME 43, NUMBER 2 15 JANUARY 1991

Effective actions for bosonic topological defects

Ruth Gregory
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia Illinois 60510
(Received 2 August 1990)

We consider a gauge field theory which admits p-dimensional topological defects, expanding the
equations of motion in powers of the defect thickness. In this way we derive an effective action and
effective equation of motion for the defect in terms of the coordinates of the p-dimensional world
surface defined by the history of the core of the defect.
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Clearly, upon integration, linear terms will disappear,
leaving a contribution to the action of

S———,uof\/——y 1—Flawrng lgp+i, , (19)
Ho
where pu,= f L,d™E" is the energy per unit p area of the
defect, u;= [£°L,d™E' /2€* is a constant of order unity,
and we have used the Gauss-Codazzi relations

zKiz__KiW:__(pﬂ)ﬁ (20)
i

to write the action in terms of the Ricci curvature of the
world surface.
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* There is a universal expression that describes the “mean field
energy” (mean field action) of an energy tube.

* There are corrections that I can describe to you after the talk.
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Let X9 C E™ be an embedded submanifold without boundary, i.e.
a closed submanifold. The tube T (X, p) of radius p about X is a
subset of K" with the following characterization: @ is in the tube
if there exists a straight segment from x to X that intersects X
perpendicularly and the length of the segment is less than or equal
to p. The tube 7 (X, p) is a fiber bundle over ¥ with fiber B!, the
[-dimensional ball (the solid (I — 1)-sphere) where n = g + [.
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I l Pl+2
vol(T(E,p)) = i(B) ' vol(S) + Vi(B) g / R

[+4
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Pty
Vol(T(Z, p)) = Vi(BY) ¢! vol(Z) + Vi(B') p;) [ R

[+4

l P
VB S T 9

O

/ (R — 4Ry B + Ry B) 15
>

Exact formula with a finite number of terms
that only depend on the intrinsic geometry of the surface!
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Exact formula with a finite number of terms
that only depend on the intrinsic geometry of the surface!

The terms are precisely those that appear in
Lovelock Theories of Gravity!



UNIVERSITY
OF MIAMI

Thickened curve S




UNIVERSITY
OF MIAMI

Thickened curve S

vols (1 (2 p)) — mes wol ()



UNIVERSITY
OF MIAMI

Iwo dimensional surface ;5




UNIVERSITY
OF MIAMI

Iwo dimensional surface ;5




UNIVERSITY
OF MIAMI

Iwo dimensional surface ;5




UNIVERSITY
OF MIAMI

Iwo dimensional surface ;5
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47 47
vola (T18%0)) = 5 et o 7 o
4
— 20 dmr? + —37T ,03 2

Note that for a thickened torus the Euler characteristic term vanishes.
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47 3\

vols(T(X, p)) = 2p vola(2) + — p” Xx(2)

Note that for a thickened torus the Euler characteristic term vanishes.
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La/2] La/2]
= Z )\27“ 127“ " Z >\27° IC27“ ha,
el =10 -

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 3 MARCH 1971

The Einstein Tensor and Its Generalizations*

DAvID LoVELOCK
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

(Received 27 August 1970)

The Einstein tensor G¥ is symmetric, divergence free, and a concomitant of the metric tensor gg
together with its first two derivatives. In this paper all tensors of valency two with these properties are
displayed explicitly. The number of independent tensors of this type depends crucially on the dimension of
the space, and, in the four dimensional case, the only tensors with these properties are the metric
and the Einstein tensors.
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The terms that appear to all orders in the radius in Weyl's tube volume formula are the
“dimensional continuations" of the Euler densities. From the physics viewpoint this
is astonishing. Gravitational theories defined by lagrangians containing those terms
were discussed by Lovelock in the early 1970s who was interested constructing
generalizations of the Einstein tensor. He required his tensors to be symmetric, rank
two, divergence free and that they contained at most the first two derivatives of the
metric (canonical formulation for gravity). The appearance of Lovelock lagrangians in
string theory was first observed by Zwiebach (1985) who noted that compatibility of a
ghost free theory with the presence of curvature squared terms in the gravitational
lagrangian required a special combination that reduced to the Euler density in four
dimensions. By studying the 3-graviton on shell vertex in string theory he verified
that this curvature squared combination appears. Zumino (1986) generalized Zwiebach's
results and showed that gravitational theories containing higher powers of the curvature were
ghost free if the additional terms in the lagrangian were "~ dimensional continuations’’ of Euler
densities in the appropriate dimensionality, i1.e., Lovelock type lagrangians.
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* I do not believe that any of us at Berkeley at the time were aware of
Lovelock’s results. They are not mentioned in any of the papers nor
do I recollect any allusion to them at that time.
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z=X(©0)+v v TE =T,56 (5"

e Locally choose an orthonormal frame (é4,...,é,)
for 'Y and an orthonormal frame (7441,...,7y,)
for (10)-

Let (@, ... 0% be local coondinase:
on Y. thenle'. ol pi i
are local coordinates for the tubular
neighborhood.

dX —e.0: <

A A A b

A A A b
dn,,; — N Wjj e Kabi v :
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for 'Y and an orthonormal frame (7441,...,7y,)
for (10)-

Let (@, ... 0% be local coondinase:
on Y. thenle'. ol pi i
are local coordinates for the tubular

neighborhood.
dX et = tangential to surface
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A A A b
dn,,; — N Wjj e Kabi v :



UNIVERSITY

Weyl’s Volume Element Formula T

z=X(©0)+v v TE =T,56 (5"

e Locally choose an orthonormal frame (é4,...,é,)
for 'Y and an orthonormal frame (7441,...,7y,)
for (10)-

Let (@, ... 0% be local coondinase:
on Y. thenle'. ol pi i
are local coordinates for the tubular

neighborhood.
dX et = tangential to surface

o (é,n) are defined on Y and thus their dif-
e e 0, - B 6° ferentials are only defined on . This
means. that the objects 08w pw il oy

i, =1 W, +té K 0
: . ey only depend on o and do.
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de = E, dz* = é, (0F R g+ 7o, G,

Dy —dv t (0,1
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Volume Element Formula (continued) L3

Dy = o wijuj

An orthonormal coframe at x is given by ((5ab T abi)@”, Dui).

ds’ = dx - dx
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U dtl v K0 A6 e P
—det(f L -K)O G A A0 AU Adrde
—detll v Kl hdvl Advi b diE

By linearizing the determinant: ddet(/ +v - K) ‘1/:() =dv - Tr(K)
you see that an extremal surface has vanishing mean curvature vec-

tor 6%°K*,, n;. The mean curvature vector points in the direction
of fastest increase in local volume of the surface.
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Weyl’s volume element Y

U dtl v K0 A6 e P
—det(f L -K)O G A A0 AU Adrde
—detll v - Kl hdvin (dvi b L diE

By linearizing the determinant: ddet(/ +v - K) ‘1/:() =dv - Tr(K)
you see that an extremal surface has vanishing mean curvature vec-

tor 6%°K*,, n;. The mean curvature vector points in the direction
of fastest increase in local volume of the surface.
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Explain what is an energy tube and energy formula

(AE) gl X) :/ e X d oo

"

E:/an(a) (/@aw w(o,v) det(I + v - K) dly).



UNIVERSITY
OF MIAMI

Spherically Symmetric Energy Density

L)
lq/2] o0
E(O) = W—l(sl_l) Z 027“/ ,CQT(Z) 772/ dv VZT_H_l U(O)(Ov V)
P * 0
r—1 |
Co=1, G5, =
: : ngk
Kol = 1
1
kil = 5 R,
1
Ka(Z) = o (B2~ 4R R L By B
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Spherically Symmetric Energy Density L}

radial moments
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L)

Convert extrinsic geometry to intrinsic geometry by
using the Gauss equation:

Rabcd — Kac Kbd e Kad Kbc

condition for an isometric embedding
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Lg/2]
EY = Z Cor /Mg{) ) Kor (%) 715,

U / w12 4@ (o, [w]]) d'v = Viy(S1) / Gt 0
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Induced Scalar Fields His

Lq/2]
B0 =3 Cu [ #82(0) Kar (D) .

Effective Lovelock Action

) () = / )" w© (o, lv]]) dv = Vi1 (S / du i O
GIRIE 0
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Weyl’s Volume of a Tube 5

L]
1 itlle w0
For the volume of a tube you have: u(o,v) =< _
\O it izt = g
La/2] :
q pl+2

Vol (T(Z, p)) = Vi(B')p' voly(2)+Vi(B)

2 0+ J, Kar ) s

This formula is exact!
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Multhnear Algebra o

/5].17;1 5]122 5317jm \
TRl e
\53%1 §im 5szm/
i @ Jilo gk e o ik
o (TL . m)' Cinto=i ko 1k ok, C = .
Logm, | . .
det(I +t5) = E = 5511,;72 O b s 5 LS s svmetile
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Multhnear Algebra o

: . QI oA
(n —m)!

E’ilig-”’imjm_'_l...Jn

A = (6’7;1 N gim) -

1
Hab = 2 Robead 0
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L)

1
b1---bo,
]CQT(Z) i — AT | 5 1 CLQQT- Ra1a25152 e Ra2r—1a27~52r—152r 1>

a1a2:-A2,—10a2¢ SaSr
77 /\ QCL1CL2 /\ /\ Qa2r—1a27“ :

7 ¢ o |

If dim > = q = 2r is even then the differential form above
of maximal degree is

1
Kq(X) ns = or e @ o D L A

aA2-—1a2¢y

where IC,(3) = pf(€2) is the pfaffian of the “antisymmetric
matris valued 2. term: () .. 0

I'he Euler characteristic is
X(Z) = (1/27)¥2 [ pf(2) ns by the generalized Gauss-
Bonnet Theorem.
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/ 772/ u(o,v) det(I + v - K) d'v
T, %)L
VT a Qa a
/”ZZ/ O/Sl ; (O) J V | 52112; K 151731[( 252i2°”K b
B0ty didols
Lq/2] 00
2 e
X W—l(sl 1) (QT T 1)” Cor 52112221 KalblilKa2b2i1 i Kazr_lbw—l’irKa%bw’ir '

Rabcd S Kac Kbd o Ka,d Kbc

Lq/2] 2.9
E(O) = ‘/l—l(Sl_l) Z 027"/ ]CQ’I“(Z) 772/ dv VQT—H_l U(O) (07 V)
=, - 0
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General Formula i

b /2772(0) (/(TJZ)J— u(o,v) det(I +v - K) dly) .

Spherical multipole expansion for SO({)

oo dim W/

=3 g lG el

=0 A1
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The faux cartesian spherical harmonics are not a basis but an
over complete set for the irreducible representation.

V(o) =1,
Vi(0) =17,
. 1
-5 0 - g
Vi P = 0020 : [dhzp gttt gl

L 2
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Faux Cartesian Spherical Harmonices ygm,,,ij (D) (iiIAMI

The faux cartesian spherical harmonics are not a basis but an
over complete set for the irreducible representation.

D 2 2
yll __y22_y33

V(o) =1,
Vi(0) =17,
. 1
-5 0 - g
Vi P = 0020 : [dhzp gttt gl

L 2
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For [ > 1 are uniquely specified by
1)

2122
21722, ceey g

(A) is totally symmetric under any permutation of

2. ygm,_,ij(ﬁ) is traceless with respect to contraction on any
pair of indices. Because the harmonic is totally symmetric

this reduces to Y7, . +,(0)=0.
3. The parity of )7 is (—1)’.
4. ygm (A) is an inhomogeneous polynomial of degree j in

the v Wlth normalization determined by

Vo (19) g2 ... 0% I (polymomial of degree § = 9

1122
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L)

For [ > 1 are uniquely specified by
1)

21@2
21722, ceey g

(A) is totally symmetric under any permutation of

2. ygm,_,ij(ﬁ) is traceless with respect to contraction on any
pair of indices. Because the harmonic is totally symmetric

this reduces to ygm 4, () =0. (symmetric traceless)

3. The parity of )7 is (—1)’.

1y

1122
the v Wlth normalization determined by

(A) is an inhomogeneous polynomial of degree j in

Vo (19) g2 ... 0% I (polymomial of degree § = 9

1122""



UNIVERSITY
OF MIAMI

Our Multipole Expansion

Z Z W o vy

] 07'17 -yl

I

Lty
imdices 71 -1 andis the 2/ pele

is totally symmetric and traceless in the

1D pyaers(@) = [ P W o Il
(12

A

2 w_l(sl—l)/ dv V28—|—j—|—l—1 u](gjl)k((L V) ;
0 2

radial moments
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General Formula i

q I_(q_.])/QJ CZ +2
E= s
S: &) 28 S'

=0 s—()

X /'Ll(fjl)...kj72s—|-j (U) R, o A o X Ry, & A Qa1a2 A A\ nblmbjalmaQS A

a2s—102s

Note that the Gauss equation may be written as Q4 = ko A k" and the
SOl -curyature 2-form of the normal bundle is B¥ — g ¢ A g 7 Since

the cartesian multipole moments u (‘7 ) . ode traceless in the k£ indices we
see that the k terms above cannot be transformed into terms involving the
intrinsic curvature R,,.q of the surtace.
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L]

g g /2]

C2 +2s
E = J
S: ~ Js ol
1= —()
. / (7) ,(U)
- /’Lkl...kj,ZS—I—j

k

/{bl 1/\

KRq

N A9

k

K0

. Qa2s_1a2s A nb1“'bja1°"af23 .
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General Formula i

o q l(¢g—35)/2] CZj—|—23
L — 2s gl

X / /'L](gjl)...kj,28—|—j(0') /iblkl AL A fobj . A Qa1a2 ly e N Qa23—1a23 /\ nbl.ubjal.”aas ;
5D

There are only finite number of terms in the expansion. There are roughly ¢*/4.
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Generalizes to Constant Curvature Spaces

O — L. A0 R,uvpa =k (g,upgua o g,uagup)
g g =1)/2

Co
5
iU D '

X /Zﬂgl)...kj,zsﬂ(g) N e e O N e
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Generalizes to Constant Curvature Spaces

O — L. A0 R,uupa =k (g,upgua o g,uagup)
SRy
L q L(a—5)/2] @
et — 2 5
=0 =

X /Eﬂgl)...kj,zsﬂ(g) N e e O N e

Case k£ < (

- . a=j=2s (sinh|k|1/2p\ T
”’ijl)---kﬂsﬂ(")zvl—l(sl 1)/0 4y (COSh|k|1/2V) ( |k||1|/2 ) “/gl)---kj(aw)'
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Generahizes to Constant Curvature Spaces

O — L. A0 R,uupa =k (g,upgua o g,uagup)
SRy
L q L(a—5)/2] @
et — 2 5
=0 =

X /Zﬂz(fl)...kj,zsﬂ(g) N e e O N e

Case k£ < (

- . a=j=2s (sinh|k|1/2p\ T
)y arss@) = Va8 [T (cotiii2) 7 () .

For k& > 0 replace the hyperbolic functions by the corresponding trigonometric
functions.
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For another talk...
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THE END



