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I I first met Bruno during the summer of 1977 at CERN. I had the privilege of
interacting with him scientifically during my year at CERN in 1981/82 and later
at Lawrence Berkeley Lab during the period 1984-86. I co-authored two papers
with Bruno.

I J. R. Ellis, M. K. Gaillard, M. Gunaydin and B. Zumino,
“Supersymmetry and Noncompact Groups in Supergravity,”
Nucl. Phys. B 224, 427 (1983).

I M. Gunaydin and B. Zumino,
“Magnetic Charge and Non-Associative Algebras,”
Proceedings of ”Old and New Problems in Fundamental Physics : Meeting in
Honour of G.C. Wick” , 43-53 and Lawrence Berkeley Lab. - LBL-19200
(85,MAR.) 17p, eds. R.L. Cool, M. Jacob , E. Picasso and L.A.Radicati

I During our first meeting in 1977 Bruno wanted to talk to me about octonions.
Later in LBL when we were working on non-associativity and magnetic charge
we discussed how non-associativity might be integrated into the framework of
quantum mechanics. Two years ago I wrote a paper with D. Minic, which we
dedicated to Bruno on the occasion of his 90th birthday, in which we pointed
out that a non-associative algebra that appeared recently in closed string theory
is isomorphic to the non-associative magnetic algebra we studied in our paper.
Bruno’s last two papers in the archives involve the most famous intrinsically
non-associative structure , namely the exceptional Jordan algebra and its
associated Freudenthal triple system. Those are the reasons I decided to talk
about ”Exceptionality, supersymmetry and non-associativity in Physics”.
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Broad outline of the topics I will try to cover in my talk:
I Jordan formulation of quantum mechanics.

I Octonionic quantum mechanics and the exceptional Jordan algebra.

I Connections between exceptional Lie algebras and the exceptional Jordan
algebra. Magic square of Freudenthal, Rozenfeld and Tits.

I Appearance of exceptional groups as global symmetry groups in supergravity.

I Orbits of extremal black hole solutions under the action of their U-duaality
groups and Jordan algebras and Freudenthal triple systems

I Non-associative ”magnetic algebra” studied by my paper with Bruno and its
appearance in closed string theory in recent years.

I Generalization of magnetic algebra and Stuckelberg’s generalization classical
Poisson brackets that do not satisfy the Jacobi identity.

I Superspaces defined by Jordan superalgebras and the exceptional superspace
that has no realization in terms of associative (super)matrices.

I superextensions of the magic square and existence of novel simple superalgebras
over finite fields that have no counterpart in characteristic zero. Fascinating
surprises!
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JORDAN FORMULATION OF QUANTUM MECHANICS
I In the years 1932-33 Pascual Jordan proposed a novel formulation of the

quantum mechanics that came to be called Jordan formulation. His main
motivation was to generalize the quantum mechanical formalism such that the
then observed beta decay phenomena can be explained within this generalized
framework!
He argued that the commutator of Hermitian operators corresponding to
observables that act on an Hilbert space does not preserve their hermiticity:

H†1 = H1 , H†2 = H2 −→ [H1,H2]† 6= [H1,H2]

Jordan proposed using the symmetric anti-commutator product among
Hermitian operators under which they remain Hermitian. Under the symmetric
product H1 ◦ H2 = 1/2(H1H2 + H2H1) Hermitian operators acting on the
physical Hilbert space satisfy the identities:

H1 ◦ H2 = H2 ◦ H1

H1 ◦ (H2 ◦ H2
1 ) = (H1 ◦ H2) ◦ H2

1

which are taken as defining identities of Jordan algebras. Jordan hoped that
there would be a rich family of algebras satisfying the above identities and
which can not be realized in terms of linear operators acting on a vector (
Hilbert) space with the product taken as 1/2 the anticommutator.

M. Günaydin, Bruno Zumino Memorial Meeting, CERN 2015 4



Dirac formulation of quantum mechanics over an Hilbert space
Pure states ⇐⇒ rays |ψ〉q with q̄q = 1

Jordan formulation
Pure states ⇐⇒ |ψ〉〈ψ| = Pψ = P2

ψ

Propositional calculus ⇐⇒ Projective geometry
Axioms of quantum mechanics ⇐⇒ Axioms of projective geometry

Pure states: Tr(Pψ) = 1 ⇐⇒ Points in projective geometry
Superpositions of |ψ〉 and |ξ〉 ⇐⇒ Line connecting the points Pψ and Pξ
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I Jordan , von Neumann and Wigner (JvNW) (1934) gave a complete
classification of all finite dimensional simple Jordan algebras and showed that
with one exception all finite dimensional simple Jordan algebras are special i.e.
they can be realized as linear operators acting on a vector space with the
product being 1/2 the anticommutator.

I The complete list simple Euclidean Jordan algebras are as follows:
i) Dirac gamma matrices Γ(d) in d Euclidean dimensions.
ii) Jordan algebras JR

n JC
n JH

n generated by n × n ” Hermitian” matrices over
reals R, complex numbers C and quaternions H
iii) Exceptional Jordan algebra JO

3 of 3× 3 Hermitian matrices over the division
algebra of octonions O, which can not be realized in terms of linear operators
acting on some vector space.

I The proposal of Pascual Jordan to generalize the algebraic framework of
quantum mechanics led to a single novel algebraic structure, namely JO

3 in the
finite dimensional case. Let alone explaining the beta decay phenomena it was
not at all obvious at the time if all the axioms of quantum mechanics could be
satisfied in the exceptional case due to its intrinsic non-associativity.

I During the subsequent decades the exceptional Jordan algebra JO
3 had a

distinguished career in mathematics. After the work of JvNW mathematicians
established deep connections between the exceptional Jordan algebra and the
other exceptional groups F4,E6,E7,E8.
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Freudenthal-Rozenfeld-Tits Magic square:

JR3 JC3 JH3 JO3

R SO(3) SU(3) USp(6) F4

C SU(3) SU(3)× SU(3) SU(6) E6

H USp(6) SU(6) SO(12) E7

O F4 E6 E7 E8

MG and Gürsey (1971):
The compact magic square contains basically all the internal symmetry groups of
hadronic world that were uncovered by the physicists in the 1950s and 1960s. It
begged the question whether the exceptional groups could also be relevant for the
physics of elementary particles . In particular could one understand the observed
internal symmetries by extending the underlying field of quantum mechanics from
complex numbers to octonions!?
Our work led to the so-called algebraic confinement scheme in which quarks are
represented by transverse octonionic fields with SU(3) automorphisms identified as the
color SU(3)C . The states in color singlet sector are described by an ordinary complex
Hilbert space. This proposal gave a nice mathematical model of the original suggestion
of Gell-Mann that color quarks operate in a fictitious Hilbert space and only the color
singlet sector is observable ( Gell-Mann 1972). However this scheme did not
incorporate dynamics. Shortly afterwards quantum chromodynamics was established
as the correct theory of strong interactions in which the quarks are confined.
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I In the 1970s grand unified theories (GUT) based on exceptional groups were
formulated.
E6 GUT ( Gürsey, Ramond & Sikivie (1975) ;....) for a single family of quarks
and leptons
E8 GUT ( Bars & MG (1980) ; ....) with family unification....

I E8 × E8 appeared as gauge symmetry of the heterotic string (Gross, Harvey,
Martinec and Rohm 1984 )

I Formulation of Octonionic Quantum Mechanics over the exceptional Jordan
algebra

MG, Piron , Ruegg (1978)
Quantum Mechanics with projection operators belonging to the exceptional
Jordan algebra JO

3 . Corresponding projective geometry is the octonionic
Moufang plane. The result of successive, compatible experiments do not depend
on the order in which they are performed, in spite of the non-associativity of
underlying octonions. The corresponding QM is referred to as the octonionic
QM and has no known Hilbert Space formulation.
The quantum mechanics described by the exceptional Jordan algebra JO

3
describes two octonionic degrees of freedom and its projective geometry is
non-Desarguian. It was hoped that there might exist infinite dimensional
exceptional Jordan algebras that describe an extension of the octonionic
quantum mechanics. However these hopes were dashed by the remarkable
results of Zelmanov who showed that there are no infinite dimensional
exceptional Jordan algebras (Zelmanov 1979-1983). ( These results were
referred to as ”Russian revolution in Jordan algebras” by McCrimmon.) This
means that in the infinite dimensional case Jordan algebraic formulation of
quantum mechanics is equivalent to the Hilbert space formulation.
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Space-time Supersymmetry

Early days of spacetime supersymmetry following the seminal work of Wess and
Zumino ( 1974) two of the most important problems were:
1. How to formulate a local gauge theory of spacetime supersymmetry that necessarily
requires gravity ?
2. Is there an exceptional superalgebra whose local gauge theory would lead to a
unified theory of all interactions including gravity ?
My first paper on supersymmetry was an attempt to answer the second question in
which the concept of generalized spacetimes coordinatized by Jordan algebras was
introduced. MG (1975)
Minkowski spacetime can be coordinatized by Hermitian 2× 2 matrices:
x = σµxµ where σν = (12, ~σ) can be considered as elements of the Jordan algebra JC

2
with the Jordan product taken as 1/2 the anticommutator.
Automorphism group of JC

2 = SU(2)→ rotation group

Invariance group of the norm form of JC
2 :

N(x) = Det(x) = ηµνxµxν = SL(2,C)→ Lorentz group =reduced structure group
Linear fractional group of JC

2 = SU(2, 2)→ Conformal group
Twistor theory is based on such a coordinatization of Minkowski space-time in d = 4.
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Symmetry groups of generalized space-times coordinatized
by the simple Jordan algebras of degree three

J JR
3 JC

3 JH
3 JO

3

Rot(J) SO(3) SU(3) USp(6) F4

Lor(J) SL(3,R) SL(3,C) SU∗(6) E6(−26)

Conf (J) Sp(6,R) SU(3, 3) SO∗(12) E7(−25)

Table: Simple Euclidean Jordan algebras of degree 3 and their rotation ( automorphism), ”Lorentz” ( reduced
structure) and ”Conformal” ( linear fractional) groups. The symbols R, C, H, O represent the four division

algebras. JA3 denotes a Jordan algebra of 3× 3 hermitian matrices over A.

J JR
3 JCs

3 JHs
3 JOs

3

Rot(J) SO(3) SL(3,R) Sp(6,R) F4(4)

Lor(J) SL(3,R) SL(3,R)× SL(3,R) SL(6,R) E6(6)

Conf (J) Sp(6,R) SL(6,R) SO(6, 6) E7(7)

Table: Simple split Jordan algebras of degree 3 and their rotation ( automorphism), ”Lorentz” ( reduced
structure) and ”Conformal” ( linear fractional) groups. The symbols R, Cs , Hs , Os represent the split forms of
composition algebras.M. Günaydin, Bruno Zumino Memorial Meeting, CERN 2015 10



Tits Construction of the Magic Square

JR
3 JC

3 JH
3 JO

3

R SO(3) SU(3) USp(6) F (4)

C SU(3) SU(3)× SU(3) SU(6) E6

H USp(6) SU(6) SO(12) E7

O F (4) E6 E7 E8

Magic Square

L = Aut(A)⊕ A0 ⊗ JA′
30
⊕ Aut(JA′

3 )

E8 = G2 ⊕ (7⊗ 26)⊕ F4

Goal was to construct Lie superalgebras by replacing the real parameters multiplying
the spinorial components of the Jordan algebra by Grassmann parameters in the Tits
construction. MG 1975
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UNIFIED CONSTRUCTION OF LIE AND LIE-SUPER ALGEBRAS OVER TRIPLE
SYSTEMS

Bars , MG ( 1978)

R C H O

R OSp(1/2) SU(2/1) OSp(4/2) F (4)

C SU(1/2) SU(1/2)× SU(2/1) SU(4/2) ?

H OSp(4/2) SU(4/2) OSp(4/8) ?

O F (4) ? ? ?

Super Magic Square

Extension of the Kantor’s construction of Lie algebras over triple systems to unified
construction of Lie and Lie superalgebras. Taking the triple system over Grassmann
variables leads to Lie superalgebras. ( triple systems ↔ three algebras )
G(3) ⊃ G2 × SU(2)
F (4) ⊃ SO(7)× SU(2)
Construction of G(3) and F (4) using octonions Sudbery (1983)
NO SUPERALGEBRAS CORRESPONDING TO THE EXCEPTIONAL LIE
ALGEBRAS OF THE E-SERIES!!
Classification of simple Lie superalgebras Kac (1977)
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Appearance of exceptional groups in maximal supergravity:
Cremmer and Julia (1978)

d #vector fields U duality group scalar manifold

d = 5 27 E6(6)
E6(6)

USp(8)

d = 4 28 E7(7)
E7(7)

SU(8)

d = 3 − E8(8)
E8(8)

SO(16)

Table: Global symmetries of maximal supergravity in 5, 4 and 3 dimensions. Note
that E6(6) and E7(7) are the Lorentz and conformal groups of the split exceptional

Jordan algebra JOs
3 .

Zumino’s paper titled ” Supersymmetry and Kähler Manifolds” (1979) established a
connection between N = 1 supersymmetric non-linear sigma models in d = 4 and
Kähler manifolds. In this paper Bruno remarks :” ..... supersymmetry implies a metric
of the Kähler type, a fact that we find most remarkable.”
This result turned out to be the tip of an iceberg of deep connections between
geometry and supersymmetry that were uncovered later.
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N = 2 MAXWELL-EINSTEIN SUPERGRAVITY THEORIES (MESGT)
IN FIVE DIMENSIONS MG, Sierra and Townsend (1983)

I Bosonic part of the 5D N = 2 MESGT Lagrangian

e−1L = −
1

2
R −

1

4

◦
aIJ F I

µνF Jµν −
1

2
gxy (∂µϕ

x )(∂µϕy ) +

+
e−1

6
√

6
CIJK ε

µνρσλF I
µνF J

ρσAK
λ

coupling of (nV − 1) vector multiplets (Aa
µ, λ

ai , ϕa) to N = 2 supergravity

(gµν , ψi
µ,Aµ) (I , J,K = 1, . . . , nV , i=1,2 , x, a = 1, . . . , (nV − 1) )

I 5D, N = 2 MESGT is uniquely determined by the constant symmetric tensor
CIJK .

I 5D MESGTs with symmetric scalar manifolds G/H such that G is a symmetry
of the Lagrangian ⇐⇒ CIJK is given by the norm (determinant) N3 of a
Euclidean Jordan algebra J of degree 3.

N3(J) = CIJK hI hJ hK

Euclidean J :⇐⇒ X 2 + Y 2 = 0 =⇒ X = Y = 0 ∀X , Y ∈ J

I Scalar manifold in d = 5 is M5 = Lorentz(J)
Rotation(J)
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I Unified N = 2 Maxwell-Einstein Supergravity theories in 5d ⇔ all the vectors
fields including the graviphoton transform in an irreducible representation of a
simple U-duality group of the action.

I There exist only four unified MESGTs in d = 5 with symmetric target spaces .
They are defined by the four simple Euclidean Jordan algebras JA

3 of 3× 3
Hermitian matrices over R,C,H and O and describe the coupling of 5, 8, 14 and
26 vector multiplets to supergravity. Their symmetries in 5,4 and 3 dimensions
give the groups of the Magic Square of Freudenthal, Rozenfeld and Tits
=⇒ MAGICAL SUPERGRAVITY THEORIES ( GST 1983)

I Scalar manifolds of 5d magical sugras are the symmetric spaces M5 =
Lor(JA3 )

Rot(JA3 )
:

J = JR
3 JC

3 JH
3 JO

3

M5 = SL(3,R)/SO(3) SL(3,C)/SU(3) SU∗(6)/USp(6) E6(−26)/F4
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I Under dimensional reduction of 5d magical MESGTs to four dimensions :

M5 = Lor(J)
Rot(J)

⇒ M4 = Conf (J)

L̃or(J)×U(1)

where L̃or(J) is the compact real form of the Lorentz group of J.

I In 5D: Vector fields AµI ⇔ Elements of Jordan algebra J

I In 4D: F A
µν ⊕ F̃ A

µν ⇔ Freudenthal triple system (FTS) F(J) :

F(J) 3 X =

R J F 0
µν F I

µν

⇔
J̃ R F̃ I

µν F̃ 0
µν

I Scalar manifolds of 4d magical sugras are the symmetric spaces :

J = JR
3 JC

3 JH
3 JO

3

M4 =
Sp(6,R)

U(3)

SU(3, 3)

S(U(3)× U(3))

SO∗(12)

U(6)

E7(−25)

E6 × U(1)

I N = 2 MESGTs reduce to N = 4 supersymmetric sigma models coupled to
gravity in d = 3. The target manifolds of magical supergravity theories in d = 3
are the exceptional quaternionic symmetric spaces:

F4(4)

Usp(6)× USp(2)
,

E6(2)

SU(6)× SU(2)
,

E7(5)

SO(12)× SU(2)
,

E8(−24)

E7 × SU(2)
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U-duality Orbits and Jordan Algebras:
I Study of U-duality Orbits of Extremal , Spherically Symmetric Stationary Black

Hole Solutions of Supergravity Theories with Symmetric Target Spaces in d = 5
and d = 4 using the underlying Jordan algebras and Freudenthal triple systems

MG and Ferrara, 1997
I This work led to the proposal that 4d U-duality groups act as spectrum

generating conformal groups of the underlying Jordan algebras that define the
corresponding 5d supergravity theories. Conf [J] leaves invariant light-like
separations with respect to a cubic distance function N3(J1 − J2) and admits a
3-grading with respect to their Lorentz subgroups

Conf [J] = KJ ⊕ Lor(J)×D ⊕ TJ

Lor(J) is the 5D U-duality group that leaves the cubic norm invariant.
I Question: Can the 3D U-duality groups act as spectrum generating conformal

symmetries of corresponding 4D supergravity theories ? ( MG, Koepsell, Nicolai
1997 )
Problem: E8(8) and E8(−24) appear as 3d U-duality groups. No conformal
realization for any real forms of E8,G2 and F4 ⇔ No 3-grading with respect to a
subgroup of maximal rank.

I However, all simple Lie algebras admit a 5-grading with respect to a subalgebra
of maximal rank

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2

such that the grade ±2 subspaces are one-dimensional.

g = K̃ ⊕ ŨA ⊕ [S(AB) + ∆]⊕ UA ⊕ K

A,B,C ... = 1, ...2N and (K ,∆, K̃) form an sl(2) subalgebra.
UA ∈ g+1 and A ∈ F where F is a Freudenthal triple system.
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I QUASICONFORMAL REALIZATION OF E8(8) MG, Koepsell, Nicolai, 2000

E8(8) = 1−2 ⊕ 56−1 ⊕ E7(7) + SO(1, 1)⊕ 56+1 ⊕ 1+2

g = K̃ ⊕ ŨA ⊕ [S(AB) + ∆]⊕ UA ⊕ K

over a space T coordinatized by the elements X of the exceptional FTS F(J
OS
3 )

plus an extra singlet variable x : 56+1 ⊕ 1+2 ⇔ (X , x) ∈ T :

K (X ) = 0,

K (x) = 2,

UA (X ) = A,

UA (x) = 〈A,X 〉 ,
SAB (X ) = (A,B,X ) ,

SAB (x) = 2 〈A,B〉 x ,

ŨA (X ) =
1

2
(X ,A,X )− Ax

ŨA (x) = −
1

6
〈(X ,X ,X ) ,A〉+ 〈X ,A〉 x

K̃ (X ) = −
1

6
(X ,X ,X ) + Xx

K̃ (x) =
1

6
〈(X ,X ,X ) ,X 〉+ 2 x2

Freudenthal triple product ⇔ (X ,Y ,Z)
Skew-symmetric invariant form ⇔ 〈X ,Y 〉 = −〈Y ,X 〉
Quartic invariant of E7(7) ⇔ 〈(X ,X ,X ),X 〉
A,B, .. ∈ F(J

OS
3 )
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I Geometric meaning of the quasiconformal action of the Lie algebra g on the
space T ?

I Define a quartic norm of X = (X , x) ∈ T as N4(X ) := Q4(X )− x2

Q4(X ) is the quartic norm of the underlying Freudenthal system and X ∈ F .

I Define a quartic “distance” function between any two points X = (X , x) and
Y = (Y , y) in T as

d(X ,Y) := N4(δ(X ,Y)

δ(X ,Y) is the “symplectic” difference of X and Y :

δ(X ,Y) := (X − Y , x − y + 〈X ,Y 〉) = −δ(Y,X )

I Light-like separations d(X ,Y) = 0 are left invariant under quasiconformal group
action.
−→ Quasiconformal groups are the invariance groups of ”light-cones” defined
by a quartic distance function.

I E8(8) is the invariance group of a quartic light-cone in 57 dimensions!

I Quasiconformal realizations extend to all Lie algebras ad Lie superalgebras.
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I The space-times defined by simple Jordan algebras of degree 3 JA
3 correspond to

extensions of Minkowski space-times in the critical dimensions d = 3, 4, 6, 10 by
a dilatonic (ρ) and commuting spinorial coordinates (ξa).

JR
3 ⇐⇒ (ρ, xm, ξ

α) m = 0, 1, 2 α = 1, 2

JC
3 ⇐⇒ (ρ, xm, ξ

α) m = 0, 1, 2, 3 α = 1, 2, 3, 4

JH
3 ⇐⇒ (ρ, xm, ξ

α) m = 0, . . . , 5 α = 1, . . . , 8

JC
3 ⇐⇒ (ρ, xm, ξ

α) m = 0, . . . , 9 α = 1, . . . , 16

I The commuting spinors ξ are represented by a 2× 1 matrix over A = R,C,H,O.
The cubic norm of a “vector” with coordinates X I = (ρ, xm, ξα) is given by

V (ρ, xm, ξ
α) = CIJK X I X J X K =

√
2ρxmxnη

mn + xm ξ̄γmξ

Their Lorentz groups have the Lorentz groups Minkowskian spacetimes in
d = 3, 4, 6, 10 as subgroups:

J = R⊕ JR
2 : SO(1, 1)× SO (2, 1) ⊂ SL (3,R)

J = R⊕ JC
2 : SO(1, 1)× SO (3, 1) ⊂ SL (3,C)

J = R⊕ JH
2 : SO(1, 1)× SO (5, 1) ⊂ SU∗ (6)

J = R⊕ JO
2 : SO(1, 1)× SO (9, 1) ⊂ E6(−26)

I Remarkable fact: the adjoint identity satisfied by CIJK tensor ⇐⇒ Fierz
identities required for the existence of supersymmetric Yang-Mills theory in the
critical dimensions d = 3, 4, 6, 10 Sierra ( 1987).
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EXCEPTIONAL N = 2 versus MAXIMAL N = 8 SUPERGRAVITY:

I The exceptional N = 2 supergravity is defined by the exceptional Jordan algebra
JO

3 of 3× 3 Hermitian matrices over real octonions O. Its global invariance
group in 5D is E6(−26) with maximal compact subgroup F4.

I The C-tensor CIJK of N = 8 supergravity in five dimensions can be identified
with the symmetric tensor given by the cubic norm of the split exceptional
Jordan algebra JOs

3 defined over split octonions Os . Its global invariance group
in 5D is E6(6) with maximal compact subgroup USp(8).

I In D = 4 and D = 3 the exceptional supergravity has E7(−25) and E8(−24) as its
U-duality group while the maximal N = 8 supergravity has E7(7) and E8(8),
respectively.

I One can couple 28 hypermultiplets to exceptional N = 2 supergravity in d = 4

parametrizing the coset space
E8(−24)

E7×SU(2)
which has the moduli space of FHSV

model as a subspace SO(10, 2)× SU(1, 1)× SO(12, 4) ⊂ E7(−25) × E8(−24) In three
dimensions this exceptional theory with exceptional matter has the moduli space

E8(−24)
E7×SU(2)

×
E8(−24)

E7×SU(2)
and descends from an anomaly free theory in d = 6.

MG ( Paris , 2006)
I How to obtain this theory from M/Supertstring theory ?

Bianchi and Ferrara argued that octonionic magic supergravity theory admits a
string interpretation closely related to the Enriques model derivation of FHSV
model. ( 2007).

I The magical supergravity theories including the exceptional one coupled to
hypermultiplets in d = 6 was constructed by MG, Samtleben and Sezgin (2010).
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Magnetic charge and non-associative algebras

The commutators of the velocities of a non-relativistic electron in the field of a
magnetic monopole violate the Jacobi identity at the position where the monopole is
located Lipkin, Weisberger and Peskin (1969).
Appearance of 3-cocycles in the magnetic monopole problem. Translations become
non-associative ⇒ Dirac quantization condition. Grossmann; Jackiw ; Wu & Zee
(1985)
Boulware, Deser and Zumino (1985): in any formulation of the quantum mechanical
problem in which the coordinates and velocities of the electron are described by
operators in a Hilbert space the Jacobi identity can not be violated since all operators
acting on a Hilbert space are associative. If the Jacobi identity is violated then the
operators must belong to a non-associative algebra.
MG, Zumino ( October 1985):
The basic commutation relations for a non-relativistic electron moving in a magnetic
field B(x) :

[xa, xb] = 0 [xa, vb] = iδab

[va, vb] = iεabc Bc (x)

Consider the algebra of all functions of xa and vb. Consistency of this algebra imply
certain restrictions.

[[v1, v2], v3] + [[v3, v1], v2] + [[v2, v3], v1] = −~∇ · ~B(x)
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Malcev algebras correspond to generalizations of Lie algebras with an anti-symmetric
product

a ? b = −b ? a

that satisfy the Malcev identity

(a ? b) ? (a ? c) = ((a ? b) ? c) ? a + ((b ? c) ? a) ? a + ((c ? a) ? a) ? b

which can be written as
J(a, b, a ? c) = J(a, b, c) ? a

where J(a, b, c) is the Jacobian ( Jacobiator) :

J(a, b, c) ≡ ((a ? b) ? c) + ((c ? a) ? b) + ((b ? c) ? a)

For the problem of the electron moving in the field of some magnetic charge
distribution the Malcev condition requires

~∇(~∇ · ~B(x)) = 0

The case (~∇ · ~B(x)) = 0 corresponds to a Lie algebra and the operators can be
represented in terms of Hilbert space operators by taking

va = pa − Aa Bab = ∂aAb − ∂bAa
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I The case Ba ∝ xa lead to a bona fide Malcev algebra. By redefining the
coordinates and the velocities one can choose Ba(x) = xa resulting in the
”magnetic algebra”:

[xa, xb] = 0 , [xa, vb] = iδab

[va, vb] = iεabc xc

which corresponds to constant magnetic charge distribution. The corresponding
quantum mechanical operators can not be represented by operators acting on an
Hilbert space

I Non-associativity also arises in closed string theory in the presence of
non-vanishing three-form H-flux. Lüst (2010); Blumenhagen (2011) ,
Plauschinn (2011) ,....
Earlier related work on non-associativity in string theory

Cornalba and Schiappa (2001); Ho (2001)....
I MG, Minic (2013):

The non-associative algebra of coordinates and momenta that arises in closed
string theory in the presence of constant H-flux is isomorphic to the magnetic
algebra of GZ above ( with roles of coordinates and momenta interchanged).

I One can generalize the magnetic algebra of GZ in a way that puts the
coordinates and momenta on an equal footing:

[xa, xb] = −iεabc Ec , [xa, vb] = iδab , [va, vb] = iεabc Bc (x)

[[v1, v2], v3] + [[v3, v1], v2] + [[v2, v3], v1] = −~∇ · ~B(x)

[[x1, x2], x3] + [[x3, x1], x2] + [[x2, x3], x1] = ~∇ · ~E(x)
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I Stückelberg’s generalization of Poisson brackets (PB) in classical statistical
mechanics while preserving Liouville’s theorem such that the PB’s no longer
satisfy the Jacobi identity (1960). Stückelberg thought that in the
corresponding quantum theory the operators must be nonlinear and there must
be a fundamental length.

I Non-associativity is a particular form of nonlinearity. Therefore if one replaces
non-linearity with non-associativity then string theory with a fundamental length
corresponds to the kind of quantum theory Stückelberg was envisioning.

I Stueckelberg considered quantum theories with a ”critical length” λ0 such that
uncertainties in the measurements of coordinates satisfy

(∆X )2 1 (λ0)2

and proposed modifying the minimum uncertainty relation in d = 1:

(∆X )2(∆P)2 =
~2

4

(
1−

(λ0)2

(∆X )2

)−1

which requires the modification of canonical commutation relations as

i [P,X ] = ~
(

1−
(λ0)2

(∆X )2

)−1/2

.

If we formally expand the inverse
(

1− (λ0)2

(∆X )2

)−1
and use to first order

∆X ∼ ~∆P−1 we get the stringy uncertainty relation which usually reads as

∆X ∆P ∼ (1 + α′∆P2)~.

(This formal procedure relates λ0 with the string scale ls , or equivalently with
α′ ∼ l2

s .)
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Superspaces coordinatized by Jordan superalgebras
Jordan superalgebras are Z2 graded algebras with a supersymmetric product ( Kac ,
1977). Their even subspaces are ordinary Jordan algebras. One can define generalized
superspaces coordinatized by Jordan superalgebras such that their rotation, Lorentz
and conformal supergroups are identified with their automorphism, reduced structure
and Möbius ( linear fractional) supergroups. MG ( 1978)

JX SRG SLG SCG

JA(m2 + n2/2mn) SU(m/n) SU(m/n)× SU(m/n) SU(2m/2n)

JBC(r/s) OSp(m/2n) SU(m/2n) OSp(4n/2m)

JD(m/2n) OSp(m − 1/2n) OSp(m/2n) OSp(m + 2/2n)

JP(n2/n2) P(n − 1) SU(n/n) P(2n − 1)

JQ(n2/n2) Q(n − 1)× U(1)F Q(n − 1)× Q(n − 1)× U(1)F Q(2n − 1)

JD(2/2)α OSp(1/2) SU(1/2) D(2, 1;α)

JF (6/4) OSp(1/2)× OSp(1/2) OSp(2/4) F (4)

JK(1/2) OSp(1/2) SU(1/2) SU(2/2)

where r = 1
2

m(m + 1) + n(2n − 1) and s = 2mn.

In the list of simple Jordan superalgebras one is truly unique, namely the exceptional
Jordan superalgebra JF (6/4). It is the only simple Jordan superalgebra which has no
realization in terms of Z2 graded associative supermatrices. Zelmanov and Racine
gave an octonionic realization of the unique exceptional Jordan superalgebra recently.
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The even elements of JF (6/4) belonging to grade zero subspace are denoted as S ,B0

and Bµ, (µ = 1, 2, 3, 4). The odd elements belonging to the grade one subspace are
denoted as Qα, (α = 1, 2, 3, 4). Their super-commutative Jordan products are:

Bµ · Bν = −δµνB0 B0 · Bµ = Bµ

B0 · B0 = B0 B0 · S = 0 = Bµ · S S · S = S

Qα · Qβ = (iγ5γµC)αβBµ + (γ5C)αβ(B0 − 3S)

Bµ · Qα =
i

2
(γµ)αβQβ B0 · Qα =

1

2
Qα

S · Qα =
1

2
Qα

µ, ν, . . . = 1, 2, 3, 4 ; α, β, . . . = 1, 2, 3, 4

The B0 and S are the two idempotents and I = B0 + S is the identity element of
JF (6/4). The matrices γµ are the four-dimensional (Euclidean) Dirac gamma
matrices and C is the charge conjugation matrix:

{γµ, γν} = 2δµν , γµC = − CγT
µ
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Hilbert Space Jordan Quadratic Jordan
Formulation Formulation Formulation

| α > | α >< α | = Pα Pα

H | α > H ◦ Pα ΠH Pα = {HPαH}

< α | H | β > ? ?

< α | H | α > Tr H ◦ Pα Tr ΠPαH = Tr {PαHPα}

|< α | H | β >|2 Tr Pα ◦ {HPβH} Tr ΠPαΠH Pβ

= Tr {HPαH} ◦ Pβ = Tr ΠPβΠH Pα

[H1,H2] ? 4(ΠH1
◦ ΠH2

− ΠH1◦H2
)

Quadratic Jordan formulation of quantum mechanics involves only the Jordan triple
product: =⇒ {ABC} ≡ (A ◦ B) ◦ C + A ◦ (B ◦ C)− (A ◦ C) ◦ B
Jordan product: A ◦ B = 1

2
(AB + BA)

Quadratic Jordan formulation extends to the octonionic quantum mechanics as well as
to formulation of quantum mechanics over finite fields and to Jordan superalgebras,
including the exceptional one.

( MG 1978,1991 )
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THE EXCEPTIONAL SUPERSPACE:

I Rotation Lie superalgebra the exceptional superspace coordinatized by JF (6/4)
is
OSp(1/2)× OSp(1/2) ⊃ SO(4) = SU(2)× SU(2).

I Lorentz Lie superalgebra of JF (6/4) is
OSp(2/4) ⊃ SO(2)× Sp(4)

I Superconformal Lie algebra of JF (6/4) is
F (4) ⊃ SO(5, 2)× SU(2)
Non-linear action of F (4) on the exceptional superspace can be obtained using
the quadratic Jordan formulation.

I The exceptional N = 2 superconformal algebra F (4) in five dimensions can not
be embedded in any six dimensional super conformal algebra
OSp(8∗|2N) ⊃ SO(6, 2)× USp(2N) as expected from the exceptionality of the
superspace defined by JF (6/4).

I Minimal unitary realization of F (4) was obtained via quasiconformal techniques
recently. The enveloping algebra of the minimal unitary representation of F (4)
is the unique higher spin superconformal algebra in five dimensions.

( Fernando and MG , 2014).

I According to Nahm’s classification d = 6 is the maximal dimensions for the
existence of superconformal field theories! However,
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Super Magic Rectangle that extends Tits Construction

JF
3 JF×F

3 J
M(F)2
3 J

O(F)
3 J0|2 Dt JF (6|4)

F SO(3) SU(3) USp(6) F (4) Sp(2) OSp(1|2) OSp(1|2)2

F× F SU(3) SU(3)× SU(3) SU(6) E6 OSp(1|2) SU(2|1) OSp(2|4)

M(F)2 USp(6) SU(6) SO(12) E7 SU(2|2) D(2, 1;α) F (4)

O(F) F (4) E6 E7 E8 G(3) F (4)t=2 T (55|32)5

T (55|32)5 stands for a simple Lie superalgebra whose even subalgebra is SO(11) and
whose odd elements are in the spinor 32 representation of SO(11) in characteristic
five. Elduque 2007
Remarkable fact: Simple AdS/Conformal superalgebra in d = 10/9 dimensions whose
even subalgebra is SO(9, 2) and odd odd generators are in the spinor representation 32
in characteristic five.
It corresponds to the quasiconformal algebra associated with the exceptional Jordan
superalgebra JF (6|4) just as E8 is the quasiconformal algebra associated with the

exceptional Jordan algebra JO
3 .

Benkart, Cunha, Elduque, Shestakov, Zelmanov,....on super-extensions of Tits’
construction.
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Super Magic Square that extends Kantor Construction in characteristic 3

F F× F M(F)2 O(F) B(1, 2) B(4, 2)

F SO(3) SU(3) USp(6) F (4) psl2,2 sp6 ⊕ (14)

F× F SU(3) SU(3)⊗ SU(3) SU(6) E6 (pgl3 ⊕ sl2)⊕ (psl3 ⊗ (2)) pgl6 ⊕ (20)

M(F)2 USp(6) SU(6) SO(12) E7 (sp6 ⊕ sl2)⊕ ((13)⊗ (2)) so(12)⊕ (spin12)

O(F) F (4) E6 E7 E8 (f4 ⊕ sl2)⊕ ((25)⊗ (2)) e7 ⊕ (56)

B(1, 2) so(7)⊕ 2(spin7) sp8 ⊕ (40)

B(4, 2) so(13)⊕ spin13

I B(1, 2) and B(4, 2) are composition superalgebras in characteristic three.

I Simple AdS/Conformal superalgebras 11/10 dimensions : SO(10, 2)⊕ (32) and
12/11 dimensions SO(11, 2)⊕ (64) and an exceptional simple conformal
superalgebra : E7 ⊕ (56)

I SO(10, 2)⊕ (32) ⊂ E7(−25) ⊕ 56
SO(6, 6)⊕ (32) ⊂ E7(7) ⊕ 56

Elduque, Okubo, Shestakov,Cunha, Leites, ....
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I How to generalize quantum mechanics so that the octonionic
quantum mechanics can be embedded in a higher quantum
theory?

I The deep mathematical connections between supersymmetry,
exceptional groups and non-associative algebras might be a
hint that the relevance of exceptional groups and related
algebraic structures in describing Nature at a fundamental
level is intimately tied to the relevance of supersymmetry in
describing Nature.

I We may not know the answer to these questions for a long
time to come. However, intellectually it has been most
rewarding to work on supersymmetric theories and contribute
to the remarkable connections that were established between
geometry, exceptional groups, representation theory and
supersymmetry.
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GRAZIE MILLE BRUNO !
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