Discussion points

- Theory/experiment
 - cone algorithms: midpoint or JetClu (which to use?)
 - concrete proposal for improved midpoint algorithm
 - ▲ should corrections for cone be done to the data or to the theory, or both (correct data for seeds, correct theory for dark towers)?; even if that means keeping R_{sep} or something similar
- Benchmark studies: use inclusive jets (including MC@NLO!) and W + jets (and/or t-tbar) as benchmark processes (common MC sample for ATLAS and CMS?)
 - experimental corrections and systematic uncertainties for jet algorithms (cone and k_{τ}) for low luminosity and high luminosity running
 - corrections to hadron level
 - ▲ corrections to parton level (NLO and LO)
 - tests of fastjet k_T algorithm, including multiple interaction corrections using ghost particles
 - can we benchmark sensitivities to UE, multiple interactions, IR effects, hadronization for the two different algorithms?
 - can we have contact people/working groups from the two experiments?

Solution(s)

Experimental level

- run standard (out-of-box) midpoint algorithm
- after first pass, remove towers clustered into jets
- run algorithm again on remaining towers
- merge jet pairs in Region II on left...or

Theoretical level

 use appropriate R_{sep} in theory calculation

Figure 15. The parameter space (d,Z) for which two partons will be merged into a single jet.

Seeds and sensibility

- To save on computer time, experiments require seeds for initiation of jet cone searches
 - impact on experimental cross section compared to seedless algorithm is small
- Seeds have also been used in the theoretical calculations, but here the number of potential seeds is small
 - the requirement for seeds introduces a dependence on soft gluon emission
 - the midpoint algorithm removes this (logarithmic) dependence to NNLO, but not for higher orders
- Steve's suggestion: if you must use seeds in your experimental algorithm, correct to seedless level before comparison to data

much larger corrections already performed by experiments

NLO pdf's in MC's

- For NLO calculations, use NLO pdf's (duh)
- What about for parton shower Monte Carlos?
 - somewhat arbitrary assumptions (for example fixing Drell-Yan normalization) have to be made in LO pdf fits
 - DIS data in global fits affect LO pdf's in ways that may not directly transfer to LO hadron collider predictions
 - LO pdf's for the most part are outside the NLO pdf error band
 - LO matrix elements for many of the processes that we want to calculate are not so different from NLO matrix elements
 - by adding parton showers, we are partway towards NLO anyway
 - any error is formally of NLO
- (my recommendation) <u>use NLO pdf's</u>
 - pdf's must be + definite in regions of application (CTEQ is so by def'n)
- Note that this has implications for MC tuning, i.e. Tune A uses CTEQ5L
 - need tunes for NLO pdf's

...but at the end of the day this is still LO physics; There's no substitute for honest-to-god NLO.

Can we generate samples using NLO pdf's for ATLAS/CMS?