

ARIADNE and CKKW

CERN 2006.07.18 Leif Lönnblad

- Differences between standard CKKW and ARIADNE implementation
- Small-*x* issues
- Upcoming THEPEG-version of ARIADNE

ARIADNE and CKKW-L

CERN 2006.07.18 Leif Lönnblad

- Differences between standard CKKW and ARIADNE implementation
- Small-*x* issues
- Upcoming THEPEG-version of ARIADNE

Standard CKKW	Ariadne
ktclus to get scales	

Standard CKKW	ARIADNE
ktclus to get scales	ARIADNE "backwards" to get scales <i>and</i> intermediate states

Standard CKKW	ARIADNE
ktclus to get scales	ARIADNE "backwards" to get scales <i>and</i> intermediate states
Analytic (NLL) Sudakovs	

Standard CKKW	ARIADNE
ktclus to get scales	ARIADNE "backwards" to get scales <i>and</i> intermediate states
Analytic (NLL) Sudakovs	Same Sudakovs as in cascade – truly no-emission probabilities

Standard CKKW	Ariadne
ktclus to get scales	ARIADNE "backwards" to get scales <i>and</i> intermediate states
Analytic (NLL) Sudakovs	Same Sudakovs as in cascade — truly no-emission probabilities
	Special treatment of highest multiplicity ME

Standard CKKW	Ariadne
ktclus to get scales	ARIADNE "backwards" to get scales <i>and</i> intermediate states
Analytic (NLL) Sudakovs	Same Sudakovs as in cascade — truly no-emission probabilities
Also here now	Special treatment of highest mul- tiplicity ME

Standard CKKW	Ariadne
ktclus to get scales	ARIADNE "backwards" to get scales <i>and</i> intermediate states
Analytic (NLL) Sudakovs	Same Sudakovs as in cascade – truly no-emission probabilities
Also here now	Special treatment of highest multiplicity ME

Implemented for $e^+e^- \rightarrow jets$ and pp $\rightarrow W+jets$ Not very user-friendly implementation

We do not want analytic (DGLAP) Sudakovs, because real ARIADNE Sudakovs resum also some logs of 1/x. Important for reproducing small-x HERA data.

Ordered (DGLAP) vs. unordered (BFKL-like) evolution.

At the LHC, everything is small x

We're looking for new things at $m \gtrsim 100$ GeV.

Backgrounds are typically W/Z+X with $M_W\approx 80$ GeV

$$\implies x \sim m/\sqrt{s} \sim 10^{-4} - 10^{-2}$$

The scales are higher than in HERA/DIS ($\lesssim 10$ GeV) but still. . .

At the LHC, everything is small x

We're looking for new things at $m \gtrsim 100$ GeV.

Backgrounds are typically W/Z+X with $M_W \approx 80$ GeV

$$\implies x \sim m/\sqrt{s} \sim 10^{-4} - 10^{-2}$$

The scales are higher than in HERA/DIS ($\lesssim 10$ GeV) but still...

W/Z-production at the Tevatron is not small-x, but there are still indications that something is going on.

Neither PYTHIA or HERWIG can describe the W k_{\perp} -spectrum at small $k_{\perp}.$

Adding a non-perturbative intrinsic transverse momentum $\langle k_{\perp i} \rangle \lesssim 1$ GeV due to Fermi motion does not help much.

Neither PYTHIA or HERWIG can describe the W k_{\perp} -spectrum at small k_{\perp} .

Adding a non-perturbative intrinsic transverse momentum $\langle k_{\perp i} \rangle \lesssim 1$ GeV due to Fermi motion does not help much.

What is the typical evolution path?

Neither PYTHIA or HERWIG can describe the W k_{\perp} -spectrum at small k_{\perp} .

Adding a non-perturbative intrinsic transverse momentum $\langle k_{\perp i} \rangle \lesssim 1$ GeV due to Fermi motion does not help much.

What is the typical evolution path?

The dipole model in ARIADNE basically only describes emission of gluons. $g \to q\bar{q}$ put in by hand. Initial-state $q \to g$ has not been put in yet. Important for eg. Higgs production at the LHC.

A first THEPEG version of ARIADNE with easy-to-use CKKW, suitable for LHC physics expected this year (L.L. and Nils Lavesson).

