Simulation of forward protons using Pythia and Phojet

Monika Grothe
U. Turin / U. Wisconsin

on behalf of

Marta Ruspa U. Eastern Piedmont, Novara

MC4LHC Workshop, 21 July 2006

Pile-up

- Diffractive and elastic processes in the PU critical for forwardphysics studies:
 - → they produce forward protons in the same kinematic region as the signal
 - → at luminosities with significant PU, fake diffractive events from overlap of diffractive PU events with nondiffractive process observed in the central CMS detector are the most pertinent background source
- Including elastic and diffractive events, there are on average 7 PU events @ 2x10³³ cm⁻²s⁻¹ 35 PU events @ 1x10³⁴ cm⁻²s⁻¹
- Compared Pythia (MSEL=2) and Phojet with HERA leading proton spectra

What do we expect?

What do we expect?

What do we expect?

- Approximately exponential p_T^2 distributions
- Slope approx 5-7 GeV⁻²

What we find

What we find

What we find

•b_{elastic} approx 21 GeV⁻² (as expected)

Phojet a little worse than Pythia...

Summary

- A first look at pile-up files with diffraction and elastic scattering concentrate on momentum spectra of scattered leading proton
- Pythia underestimates (factor 2-3) the rate of leading protons outside the diffractive/elastic peak.
 Rescaling needed.
- p_T² slopes also factor 2 too low outside diffractive/elastic
- Approx OK in diffractive-peak region
- Similar situation for Phojet

CMS diffractive group is using correction function provided by Marta Was already used for diffractive trigger rates included in CMS/PTDR2

→ Correction function should be made available in official CMS MC software so that everybody can use it Where ?

ZEUS

x_L distribution: DATA vs. MC My own fits below the diffractive peak:

A vs. MC

Fit $d\sigma/dp_T^2$ to $e^{-bp_T^2}$ in the range $p_T^2 < 0.5 \text{ GeV}^2$

HERWIG

LEPTO