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• New processess: Current status

• AcerMC goes (part) NLO : t-channel single top production, associated Z0 b production and

tWb production, done with Ian Hinchliffe
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Main Goal: Provide implementations of select physics processes for ATLAS/LHC environment.

Design Requirements:

• Compact (all-in-one) tool with reasonable user interface

• Extensibility ⇒ modular design

• Exact LO matrix elements ⇒ MADGRAPH/HELAS

• Full phase space coverage

• High generation efficiency ⇒ native phase space algorithm

• Use of standard libraries ⇒ CERNLIB,LHAPDF.

• Interface to
ր PYTHIA 6.3

ց HERWIG 6.5
for ISR/FSR/hadronisation

• Use current versions of PYTHIA and HERWIG

• Event record dump/read ⇒ LesHouches format
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Currently implemented processes:

Process Description

1 gg → tt̄bb̄
2 qq̄ → tt̄bb̄
3 qq̄ → W (→ ff̄ )bb̄
4 qq̄ → W (→ ff̄ )tt̄
5 gg → Z/γ∗(→ ff̄ )bb̄
6 qq̄ → Z/γ∗(→ ff̄ )bb̄
7 gg → Z/γ∗(→ ff̄ , νν)tt̄
8 qq̄ → Z/γ∗(→ ff̄ , νν)tt̄
9 gg → (Z/W/γ∗ →)tt̄bb̄
10 qq̄ → (Z/W/γ∗ →)tt̄bb̄
11 gg → (tt̄ →)ff̄ bf f̄b
12 qq̄ → (tt̄ →)ff̄ bf f̄b
13 gg → (WWbb̄ →)ff̄f f̄bb̄
14 qq̄ → (WWbb̄ →)ff̄ bf f̄bb̄
15 gg → tt̄tt̄
16 qq̄ → tt̄tt̄
17 qb ⊕ qg → qt ⊕ b → qbff̄ ⊕ b (100+101)
18 bb ⊕ bg → Z0 ⊕ b → ff̄ ⊕ b (96+97)
19 qq → tb → bff̄b
20 gb ⊕ gg → (WWb ⊕ b̄ →)ff̄f f̄b ⊕ b̄ (13+105)
21 gb → tW → bff̄f f̄
22 qq → Z0′ → tt̄ → bb̄f f̄f f̄

’Control’ processes:

Process Description

91 qq̄ → Z/γ∗ → ff̄
92 gg → tt̄
93 qq̄ → tt̄
94 qq̄ → W → ff̄
95 gg → (tt̄ →)WbWb̄
96 bb → Z0 → ff̄
97 bg → Z0b → ff̄b
98 qb → qt
99 qg → qtb
100 qb → qt → qbff̄
101 qg → qtb → qbff̄b
102 qb → qt → qbW
103 qb ⊕ qg → qt ⊕ b (98+99)
104 gb → tW → tf f̄
105 gb → tW → bff̄f f̄ (equal to 21)
106 gg → (tWb →)tf f̄b
107 gg → (tWb →)ff̄f f̄ b̄ ⊕ b

• The new single top processes

• The (A + B) denote PS+ME matched processes.
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Details on the AcerMC 3.x Monte-Carlo generator

• A Monte-Carlo generator of background processes for searches at ATLAS/LHC.

• Matrix elements coded by MADGRAPH/HELAS

• Phase space sampling done by native AcerMC routines:

⊕ Each channel topology constructed from the t-type and s-type modules and sampling functions described

in this talk. The event topologies derived from modified MADGRAPH/HELAS code.

• As it turns out a lot of it has already been done in the ’60 (!) by K. Kajantie and E. Byckling.

➔E. Byckling and K. Kajantie, Nucl. Phys. B9 (1969) 568.

⊕ multi-channel approach

➔J.Hilgart, R. Kleiss, F. Le Dibider, Comp. Phys. Comm. 75 (1993) 191.

➔F. A. Berends, C. G. Papadopoulos and R. Pittau, hep-ph/0011031.

⊕ additional ac-VEGAS smoothing

• ac-VEGAS Cell splitting in view of maximal weight reduction based on function:

< F >cell =
(

∆cell · wtmax
cell

)

·
{

1 − <wtcell>
wtmax

cell

}

• ac-VEGAS logic in this respect analogous to FOAM:

➔S. Jadach, Comput. Phys. Commun. 130 (2000) 244.
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Factorisation theorem: The factorisation theorem in hadron-hadron (proton-proton) collisions is usually formulated

within the following expression:

|MAB→X |2 =
∑

a,b

fa/A ⊗ Hab→X ⊗ fb/B =
∑

a,b

∫

dξa

ξa

∫

dξb

ξb
fa/A(ξa, µF ) fb/B(ξb, µF ) Hab→X(ξa, ξb, µF . . .),

where Hab→X is the the hard (’short time’) part of the squared amplitude and the soft contributions are absorbed

into the parton distribution functions fi/I(ξi, µF) with µF being the (factorization) scale at which the two parts were

separated.

The ’double counting’ problem
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• There is of course some ambiguity in the choice of the ’hard’ matrix element: At which order in αs should it be?

• There is in principle some phase space overlap of the two approaches, which results in double-counting.

• The problem becomes obvious when using full NLO calculations. . .

In order to solve this one has to go back to basics. . .
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The solution to the double counting problem is simple in principle. . .

• What is often forgotten is that the hard amplitude squared Hab→X (or hence derived ’hard’ cross-section σhard
ab→X(ŝ, µF ))

are not just the direct results of perturbative calculations (using e.g. Feynman diagrams), one still has to isolate

and remove the soft contributions!

• In case of ISR the ’soft’ contributions are the collinear/mass singularities.

• The rest of the singular behaviour (UV and IR) is removed by the renormalisation procedures.

• In practice one thus has to take the collinear limit of a certain process/event using suitable kinematic transforms

and construct the appropriate subtraction term corresponding to the equivalent ISR event.

• Hard to do in practice!

• In our method we use the approach developed by Collins et. al. in a series of papers.

• The approach has been shown to reproduce the MS Compton part of the NLO Drell-Yan.
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Another issue are the particle/parton masses:

• Another problem is the treatment of masses in the factorisation theorem:

– The partons are generally treated as massless.

– This becomes a problem in case of gluon splitting to heavy partons like b or c quarks.

– The partons in the final state need to have masses to accurately describe the observable jet kinematics.

– If the incoming partons are massless the matrix element is not strictly conforming to the Standard model

and/or gauge invariance.

• Back to basics again. . . to see that the factorisation theorem is actually derived using the light-cone coordinates

pµ = (p+, ~pT , p−) where p± = 1√
2
(p0 ± p3), which can incorporate particle massess.

• A series of ACOT papers (M. A. G. Aivazis, J. C. Collins, F. I. Olness and W. K. Tung) solved this issue for DIS,

we adapted it to the proton-proton collisions.

The final result is thus a prescription for the combination of ISR and pQCD calculations in case of massive colliding

partons. For experimental needs this has been incorporated into a full Monte-Carlo generation procedure.
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AcerMC goes (part) NLO:

• AcerMC now incorporates ISR and ME matching for g → bb̄ splitting, using the (modified) procedure

developed by Collins et. al. (several papers).

• the procedure has been shown to reproduce the ’collinear’ part of the NLO results in MS calculations

for Drell-Yan production in the massless limit.

• A paper on the implemented procedure is submitted to JHEP ( hep-ph/0603068).

Implementation:

• The ISR ’showering’ involving g → bb̄ has been implemented inside AcerMC.

• This algorithm is used to evolve a process from bX → Y to gX → Y ⊕ b.

• This process is combined with the corresponding ’NLO’ process gX → Y + b and the double counting terms are

calculated and removed = subtracted.

• As the result a fraction of events has negative (=-1) weights!

• This procedure has been implemented for the:

– t-channel single top production.

– Associated Z0 b production.

– bb̄WW production which involves the (’evolved’) tWb single top production.
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t-channel single top production:

• The t-channel process is the combined production of the qb → qt and qg → qtb W-exchange processes.

• One needs to remove the double counting between the ISR g → bb̄ splitting and the next-order αS process

qg → qtb.

• In fact the t-channel single top production involves the full matrix element including top decays.

• The procedure similar to what is done in MC@NLO but we use different prescription (Collins et. al. and massive

b-quarks.
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tW-channel single top production: Similar case, it double counts the tWb diagrams.

b

g

W

t

⊕

g

g

b̄

W

t

⊖

g

g

b̄

W

t

b
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Kinematic distributions for t-channel single top :

• Note that a smooth continuation in the b-quark virtuality is achieved.

• The pT distribution a result of non-trivial contributions - matching on pT alone (often used in approximations)

seems not to be the right way to do it.
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Kinematic distributions for tW-channel single top:

• Note that a smooth continuation in the b-quark virtuality is again achieved.

• The pT distribution again a result of non-trivial contributions.

• The plots serve as a cross-check; in AcerMC process 20 the procedure is applied to the WWbb̄ (2 → 6) process

13 which includes the tWb intermediate states among its 31 diagrams.
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Associated Z0 b production:

• The associated Z0 b production is a combination of the processes bb̄ → Z and gb → Zb.

• Again, double counting due to ISR has to be removed.

• In this case both incoming b-quarks are subject to ISR. The one with the highest induced virtuality is subtracted.
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Kinematic distributions for Associated Z0 b production:

• Note that a smooth continuation in the b-quark virtuality is again achieved.

• The pT distribution again a result of non-trivial contributions.
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Conclusions:

• The described procedure has been shown to work. . .

• For details please consult hep-ph/0603068.

• In case one wants to check this in practice: The complete AcerMC manual available from:

http://cern.ch/Borut.Kersevan/AcerMC.Welcome.html

• AcerMC code is available from the same URL.



Borut Paul Keřsevan AcerMC Event Generator 15

BACKUP
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Unresolving the partons: DGLAP evolution:
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• By virtue of the DGLAP evolution equations one can ’unresolve’ the incoming partons by decreasing the ’resolution’

scale µF :

d

d ln µ2
F

fi/I(z, µF ) =
αs(µF )

2π

∑

j

1
∫

z

dξ

ξ
Pj→i(

z

ξ
, αs(µF )) fj/I(ξ, µF ).

• In order to obtain the probability for sequential branchings the Sudakov exponent is derived from the DGLAP

evolution equations:

Sa = exp











−
µ2

0
∫

µ2

dµ′2

µ′2
αs(µ

′2)

2π
×

∑

c

1
∫

ξc

dz

z
Pa→c(z)

fa/I(
ξc

z , µ′2)

fc/I(ξc, µ′2)











.
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How does Sudakov showering work in practice?

• The Sudakov exponent gives the branching probabilities for sequential evolution of the incoming partons.

• At each step the evolving parton is pushed off-shell m2 = −µ2 = t̂.

• The new ’incoming parton’ is assumed to be on-shell again, carrying the new momentum fraction of the parent

hadron and the spectator is added.

• There is some freedom of choosing the quantities that are preserved in this kinematic transform:

– One can preserve the invariant mass ŝ of the subsytem or its rapidity y etc. . .

• The branching stops when a lower limit is reached - usually some kinematic limit and/or limit of the perturbative

method.

• Effects like e.g. colour coherence have to be imposed ’by hand’, e.g. by requiring additional ordering in the

branchings.

• The result of this procedure is commonly known as the initial state radiation (ISR).

There are very advanced tools on the market that implement this, most notably PYTHIA 6.3 or HERWIG 6.5 .

In principle these methods should come close to the NLL precision. . .
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Short derivation of the subtraction terms:

The appropriate subtraction terms can actually be derived from the factorisation theorem itself by using DGLAP at the

parton level and doing power counting of αs:

• The pQCD squared amplitude |Mab→X|2 involving initial state partons a, b is subject to the same factorization

theorem:

|Mab→X |2 =
∑

c,d

fc/a ⊗ Hcd→X ⊗ fd/b,

• At zero-th order in αs:

f
(0)
i/j (ξ) = δi

jδ(ξ − 1)

• and hence:

|M(0)
ab→X |2 = H

(0)
ab→X .

Subsequently, at first order in αs:

fi/j(ξ) = f
(0)
i/j (ξ) + f

(1)
i/j (ξ) = f

(0)
i/j (ξ) +

αs(µF )

2π
P

(0)
j→i(ξ) ln

(

µ2
F

m2

)

,

• and thus at this order:

|M(1)
ab→X |2 = H

(1)
ab→X +

∑

c

f
(1)
c/a ⊗ H

(0)
cb→X +

∑

d

H
(0)
ad→X ⊗ f

(1)
d/b,
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• The last equation can thus be inverted to give:

H
(1)
ab→X = |M(1)

ab→X |2 −
∑

c

f
(1)
c/a ⊗ |M(0)

cb→X |2 −
∑

d

|M(0)
ad→X |2 ⊗ f

(1)
d/b

• Putting it back into the factorisation theorem expression:

|MAB→X |2 = |M(0)
AB→X |2 + |M(1)

AB→X |2 − |MAB→X |2s ,

• with the subtraction terms given by:

|MAB→X |2s =
∑

a,b

fa/A ⊗
∑

c

f
(1)
c/a ⊗ H

(0)
cb→X ⊗ fb/B +

∑

a,b

fa/A ⊗
∑

d

H
(0)
ad→X ⊗ f

(1)
d/b ⊗ fb/B.
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pa pb

X
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+

PA PB
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pb
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X - c̄

fa/A
fb/B
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Hcb

+

PA PB

pa pb

pd

pd̄

X - d̄

fa/A fb/B

Had

fd/b

The kinematic transforms are however far from simple. . .


