| Overview of Jet measurement at ATLAS

« Calorimeters of ATLAS Jet reconstruction
 Jet energy measurement
* In situ energy calibration

* Conclusions
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| The ATLAS calorimeter

Electromagnetic
Liquid Argon
Calorimeters 3 long. sections

EM accordion 3 long. sections

Tile Calorimeters

End Cap Hadronic 4 long. sections
Forward calorimeter 3 long. sections

Fine
longitudinal
and lateral

segmentation.
Fundamental
for recovering
compensation.

Hadronic Liquid Argon Argon Calorimeters

EndCap Calorimeters
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Detector effects: e/h and cracks
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| Jet reconstruction phase 1: the calorimeter jet

The cell energy deposits are
T> clusterized to obtain the base

objects for jet reconstruction.

“calprimeter jxt”

Noise (electronic noise and pile-
up) suppression algorithms are
applied at this stage

. “particle jet”

Reconstruction

Jet reconstruction algorithms are
applied and recombination
scheme is used to obtain jet

q Kinematics

= “parton jet”
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Ekctronics Moisa (MeV)

I Cell energy clusterization

Two objects may be used as input for the jet reconstruction algorithms:
Calorimeter Towers of dimension AnxA¢ = 0.1 x 0.1

3D Energy blobs — Topological Clusters: 3 levels of E/c thresholds are
used for seed cells — neighbour cells - final expansion (4-2-0)

TopoClusters give a better noise suppression
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I Jet reconstruction algorithms

Iterative cone Cone algorithm is the most
AR=+/(A¢)’ + (A7) widely used for physics
. \e analysis in ATLAS up to
E;seed recently: cone 0.4 for top
ATLAS | 0.7/04 | 2GeV | 50% physics and cone 0.7 for all
CMS 05 |2GeV | - other analysis.

Split and merge procedure (AS) Calibrations are tuned on
for ATLAS cone 0.7 jets.

CMS exclude jet algorithm input In last year a lot of activity
objects as soon as they belong to

a built jet has started also on other jet
algorithms.

E Recombination scheme: 4 vector
sum of object components to obtain

jet kinematics
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I Jet reconstruction algorithms

Midpoint Algorithm
Implementation based on CDF
approach.

0 Seed Et > 2 GeV

1 Cone precluster with radius 0.5xAR

2 Add midpoints if preclusters i,j are
separated < 2 xAR

3 Cone jets of radius AR are
searched

4 Merge if >50% of p; of lowest jet is
shared, else split

K; algorithm
Preclusters objects with AR<0.2

For each object i of transverse impulse

k; calculate:
d;i = k%,i
x dIJ =mln(k-|-’i,k-|-’j
Ifd_ =d. = jet

else if d;, = d; = ij (4-vector sum)
In a new d,

D =1 is default — more later

E Recombination scheme: 4 vector sum of

object components to obtain jet kinematics
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| Fast K-

» KT algorithms are

[ Time vs Input size | f=]

typically slow since speed o
scales with O(N?3) -

* It has been shown that i
they can be made faster by | Standard\:(t+preo|§ufrir
using nearest neighbour sz T L N Kraprecuster

ol F-New Kt

information (Cacciari, P
Salam hep-ph/051 221 O) KUETS.M'g;:tD%{?w:r[NoiseTool,fDuN{Jise', -+ ~ 40 %

"JetSignalSelectorTool/InitialEtCut”, ~ 95 o
“JetKtFinderTool/KtFinder”, +—— 2

P F tKT h b "JetCellCalibratorTool/CellCalibratore———~ 30 %
aS aS ee n "JetSignalSelectorTool/FinalEtCut” ]

_: Standard Kt

Implemented in ATLAS
and it also allows to skip
the preclustering phase.
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| Choice of jet algorithm and parameters

What is the best way to choose a jet algorithm for my analysis
and the value of jet algorithm parameters ?

Some examples from what has been done in ATLAS.

| E Ratios vs Energy |

Look at MC particles jets

p Kt 0.7

reconstructed with Cone and K05/ Cone 07
Kt and compare the
reconstructed energy EXT JESO® Pt s b
. truth truth 1!__'.1_'__t_'Tff-ff‘fffff:f'!*."-f.!Ti’g'f‘_'!'!__!ﬁEfin"éi'E#-!iT.!-tE'r.“-“!'!r.-.E_:.?i;:.:.\w:—.-.-_.__f_|,+__.... _
1 = 1] 1] . |
With this “recepy” we obtain:
D = 06 for Cone 07 O 1000 1500 200025003000 3500 4000~ 'C

Jet Energy in MeV

D = 0.3 for Cone 0.4 |

In Ellis-Soper article (PRD 48, 3160-3166 (1993)) in order to have the
same inclusive one-jet cross section dependance on renormalization and
factorization scale for cone KT indicates D=1.35xAR

Are these two results inconsistent ?



Cone vs K+

Looking at the 2 highest pt jet
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Tuning cone algorithm on top events

Studied for top mass measurement in Inb jjb channel
Looked at efficiency, S/B, W and top « purity » (correct jets taken)

- Cone 0.4 (much) better than cone 0.7

S/B

| Efficiency (%)_|

Efficiency (%)

full top mass window, cone size 04

top mass window +- 3 sigmas, cone size 04
full top mass window , cone size 07
top mass window +- 3 sigmas, cone size 07

B
o
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Tuning KT algorithm on top data

Introduction
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Tunining the KT algorithm
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| Which recombination scheme...
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W mass with tuned KT
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Clearly, we improve the top mass peak reconstruction with a

18 reasonable D
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Reconstructed top mass [Gel]

value of the Kr algorithm.
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Midpoint first comparison
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- Excess of low-pT jets (20 GeV<pT< 50 GeV) for Cone and Kt
- MidPaint tends to merge low-pT jets
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Choosing and tuning

Various methods to tune the favorite algorithm

Proliferation of jet collections, we need to find a well
defined path to make the choice and to define the
parameter tuning

Calibration and UE, pileup subtraction will have to be
understood in detail and it will not be straightforward
to generalize it to any clustering algorithm

So a deciding on benchmark jet clustering would help a
lot since

Now we go to calibration ...
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Ereco/Etruth

DM energy/beam

| Uncalibrated reconstructed Jets:detector effects at work...
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Detector effects are
clearly seen on
E reconstructed/E_ truth:

Cracks, e/h, B field
(tracks with pT< 350
MeV do not reach the
calorimeter)
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I Phase 2: calibrating to the particle jet

Phase 2 : the detector effects are
corrected calibrating the
reconstructed jet to the particle jet

Truth:

* Particle Jets are reconstructed applying
jet algorithm to stable particles (excluding
neutrinos and muons) and are matched
to Calorimeter Jet (ATLAS)

* All particle falling in the angular region
of calorimeter jet (only for cone) (ATLAS)

“calorimeter jet”

. “particle jet”

“parton jet”

Both truths contain the particles swept off
from B field:

ATLAS p,<350 MeV
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Calibrating to Particle Jet

2 step procedure
1. Calibrated energy is calculated as:

E.., = Z Ecell, Cell
X “weighting

Exe. = W(Ecell,CellPosition) Ecell

J

the w(Ecell,CellPosition) coefficients are obtained by
minimizing the energy resolution to the MC truth with the
linearity constraint. Same weights are used for different
algorithms.

2. A factor R(E+,m) = E;rec/E-MC is applied to correct for
residual non linearities and for algorithm effects.
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From the Calorimeter jet to the Particle Jet
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Jet Energy (GeV)
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However changing the jet
algorithms requires new
tuning of calibration....what
we are trying to do to
generalize the calibration
approach




| Local hadron calibration

The aim is to Calibrate the TopoClusters ; W,
before reconstructing the jets. The calibration 3 b _uﬁ;‘o
is based on MC information: for each cell EM S Vi 7 9
energy, Escaped energy, Invisible energy, S \ /) e %
s N’ g =
Non EM energy. gv AN El 1 i
This information are used to: T [T Ijjf
1 — Classify the calorimetric deposit: EM not s s

~ energy weighted cell density

weighted, NonEM to be weighted

3 — Dead Material Correction
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| Local Hadron Calibration

Example of how the three step works on single pions: TopoCluster
classification (EM or not); weighting to correct e/h; dead material
correction

400

350

F.Spano talk at Overview week
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40

L o hEE e

1OGeVsiJnglen—_ni=O.3

& .._ n -_ll
90 100 110 120 130
Reconstructed Energy (MeV)

60 70 80

EM scale

Classified + Weighted
Classified +Weighted +Dead
Material corr.

Linearity is recovered and
resolution is comparable to what
we obtain with different methods
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Local calibration

|l ocal calibration would allow to:

* better understand the contribution of each factor to
calibration, it relies on a deep understanding of our data

 Start jet reconstruction at a calibrated scale

 Obtain reconstructed and calibrated jets with any
algorithm. Calibration would include the corrections for
e/h and dead material

 Corrections for B swept tracks, out of cone ... would
be added on top of this calibration

Local calibration is being developed and it still needs
testing and validation before being used for physics
analysis.
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| Phase 3: back to the parton energy

Phase 3: absolute energy
measurement of parton energy. Goal
precision 1%....

“calorimeter jet”

» correct for energy losses out of jet
clustering

. “particle jet”

» correct for energy physics effect such as:
underlying event, ISR, FSR

“parton jet”
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| Back to the parton energy

From data sample (in-situ):

» W —jj:imposing W mass. Maximum Energy = 200 GeV,
jet overlapping. Events from ttbar with 1 lepton used to
trigger.

> Z(e*e,utw) + jet: pr balance or Etmiss projection method.
Useable for light and b jets, about 5% of the total event
rate. p; range ~ 40-400 GeV.

» vt : pr balance or Etmiss projection method. Higher
statistics but high QCD background. More on next slides...
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| Calibration using data: Gamma + jet

Direct photon production: gg — qy (90%) qgbar — g v (10%)
Ptdet = PtGamma — kjet = prJet/p; vy

Pt of quark vs pt of the generated gamma
x10°

mma.
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o o

||8|/||| TT

p"l:l truth ga
o
T I L

||a¢,?|||

Gamma selection isolation & E>30 GeV
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| Calibration with Gamma+jet events

Pt Balance between the hard scattered quark and photon | h_ptBalQk

MC4LHC CERN July 20 2006

Entries 18384

0.‘7:
0.03:
0.06:
0.04:

0.02

Mean  0.07983
RMS 0.42

pT balance parton level

— with phi balance cut

— without phi balance cut

I1|l Illlil J—‘IJJ_ILIII

2] 0 1 2 3 4
pT balance = (pT parton — pT photon)/ pT photon

5 [sslarEe= p, Jet — p,. Photon
2

p; Photon

Fit peak region iterating a
gaussian fit

between +o around the
most probable value
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Calibration using data: Gamma + jet

Comparing balance at reconstruction, MC
jet and parton level gives indication on:

1.calibration biases

2.contribution of UE event, contribution of
Out of cone energy, 3. effect of ISR
contribution.

More work needed to disentagle UE from
Out of cone. Work is in progress.
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I Estimating the UE event contribution

To find the mean Et for UE, we consider
the transverse region of the event:
avoiding 60 degrees on both sides of

photon and jet

Protojet recon Ivl

Et per protojet UE region |

10° -

Protojet particle Ivl

| Et per Mc protojet UE region |

10° g ::E\L‘I
2N
E 1 105 L‘er
m_ ‘JLIILH e .H.Imwnnlunr.n.n. L
e ILJ]JJ] [ 5000 10000 1501
5000 10000 Et 1cmeV)DOW

Mean transverse energy
Recon protojet 15.8 £ 0.2 MeV
Particle protojet 19.1 £ 0.4 MeV
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Transverse
region

Considering the number of
jet components we estimate
UE contribution to reco jets:

Cone 0.4 - 2.7 GeV
Cone 0.7 — 1.2 GeV
KT (D=1) - 5.1 GeV

Very preliminar results ...
work in progress.
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| A candle for jet energy: top mass

Top at detector commissioning: no b tagging, only calibration for
detector effects. Realistic scenario for first data taking phase.
Search for ttbar — Inubbijj.

Selection cut:;

Etmiss > 20 GeV } of 300 pb1m(t) _ o m(w)
1 lepton P; > 20 GeV Swf &3 s/B=045 |3 i‘“‘ g [/ = 027
) 7 o LEVER
4 jet P; > 40 GeV " S oo } _____ )t Ry
Reconstruction: £ £ 250 : ) /
3 | 2 200 { + -
W — jj selection: 2 highest % |- L5 150f
pT jet in CM of jjj 8 | " 2 100 : :
c g W+jets and E if . W+jets and
Third jet giving highest pT top 3 _ | MC@NLO signal 2 : 2 MC@NLO signal
To0 50" 200250300 30 Aog Ase w0kl dl ool
W+4j background Top mass (GeV) W mass (GeV)
increased by three Peak and width can be used to understand
times to consider MC/data agreement and calibration
W+3/5j and uncertainty performance
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Summary

« Cone, KT and midpoint algorithms have been implemented

« They can take as input MC particles, CaloTowers, TopoClusters

* Tuning of various algorithm to various analysis needs is under
going

« Calibration to correct for detector effects has been developed
and possible alternatives are being studied

« Study on UE and pileup subtraction are just starting (re-starting)

* My personal opinion is that we should at the beginning
concentrate on a well defined and justified jet algorithm in order
to understand all the issuse about jet reconstruction and energy
scale and than we can move to more general scheme.

« Which is the best way to define the jet algorithm to become the
benchmark has to be understood.
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Charged particle density atm =0

(Only need central inner tracker and a few thousand pp events)

LHC predictions

NSD dota

® CDF{1.8TeV)
O UAS (200 GeV)

———  Pythio6.214 (CTEQSL,tuned)
---  Phojet1.12 (GRVI4L)

Multiple interaction model in PHOJET predicts a In(s) rise in

=0

PYTHIAB.214 (tuned) //
PHOJET1.12 {default) /A/ L
ya
_______________ /. LH C?
A UAS 53, 200, 546 ond 900 GeV
O CDF 630 and 1800 GeV |
- - 0.023In°(s) - 0.25In{s) + 2.5
ceer 0.27I0(8) — 3.2
10% 10° 10
Vs (GeV)

energy dependence. PYTHIA suggests a rise dominated by the
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The Underlying Event in jet pnysics

The underlying event in charged jet evolution: Phys. Rev. D, 65 092002 (2002)

) | ‘ Leading
CDF analysis: e

. charged particles: Toward .
p>0.5 GeVand |q]<1 & / s /7/

« cone jet finder: Transierse ™. .

' o 0 ~ - \
1 60°<1 A0l < 120° ="~ ¢ = i

R=y(anf +(agf =07 4\

»The underlying event is defined as
everything in the collision except
the hard process .

Away

1A01>120°
Adp=¢ - ¢|jet ‘*ﬁ\m

> It is not a minimum bias event!

» The underlying event has hard (multiple “semi-hard” parton scatterings) and soft
components (beam-beam remnants).
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p>0.5GeVand [n <1 .
I A.‘-AA;AAA—A b, —': s
6; A_A m—aq--‘r“%“:;‘;: A x3
Cone jet finder: [ A
2 2 I *
R:\/(Aﬂ) +(A¢) =0.7 4 dN,, /dn ~ 15 .:'

. : -.-:" e "'- 4 *r" 3‘
UE_partches come from S [ e + #*#*#M“#' ,f%& .H,é; \ ‘ x1.5
region transverse to the .8 ‘"

- - ‘
leading jet. [
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Systematic on m,

{ 10%om?sec’

m
1 : q o
Single lepton =]
y . (@]
‘ w, channelyy, 1year |  3x108 01GeV | 5
(@)
©
3
b, tt t b, 1 week 1.9x10 0.4 GeV §
w
z
.
Systematic error on top mass from light and bjet energy scale =
uncertainty
1% 0.9 GeV 0.7 GeV
5% 11 GeV 3.5 GeV
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|% Gamma + jet and Underlying event

Try to measure the mean ET of UE from the
event sample

Select the “transverse region” of the event:
avoiding 60 degrees in Phi arround both
photon and the jet.

Transverse
region

Mean transverse energy pernx @ =0.1 x 0.1

Tower (RMS of el.noise ~140 MeV) 15.1+0.2 MeVv | Average UE level
~10% RMS of el.noise

(very sensitive to noise
3 GeV in cone 0.7 suppression)

Particle protojet ( particles per tower) 19.1 £ 0.4 MeV

Subtraction algorithm and biases introduced are under
study.
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| Compensation

L 0O &h~1 350 i34

B gommee | CMS eh=14 }Had. Cal.
* ATLAS e/h =1.36/1.5

AS = 15%-12% per Ert 20-300 GeV

e/r elettromagnetit
scale (ATLAS)

1
10

Ebeam (GeV) » benchmark

HB

Erec = Eem + (a0 x H1 + H2 + H3) E,.. =2 Wg,(Ecell,Epart)Ecell +

A high signal H1 indicates
hadronic signal thus the EM scale
is too low and o > 1 corrects for
e/h < 1. The correction may or not
depend on energy.

» H1 (nim-at809(1981)429

2 W p(Ecell,Epart)Ecell
W obtained by minimizing resolution

CMS
ATLAS
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Noise suppression performance

Zero suppression
................... 2 sigma symmetric

------------------- CaIOTOpOCIUSter

Plots show how much
negative enegy is left in jets
after noise
cancellation/subtraction
algorithm is applied in each
calorimeter region.

Topological Cluster < 2
sigma symmetric < Zero
suppresion
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