Use of MC Tools in LHCb

The LHCb Experiment

- Single arm spectrometer with acceptance from 10 to 300 mrad ($2 < \eta < 5$).
- Located at IP8 of LHC: study of **B** physics with **pp** collisions at $\sqrt{s} = 14$ TeV.

B production in pp collisions at $\sqrt{s} = 14$ TeV

- Production of **all** *B* **hadron species**: B^0 , B^+ , B_s^0 , and *b*-baryons $(\Lambda_b, \Xi_b, ...)$.
- Production of B_c^+ , $(b\overline{b})$ states and also large production of charm hadrons (J/ψ) for example).
- Presence of *fragmentation tracks*: precise determination of primary vertex.
- Presence of *proton remnants*: possible B/B production asymmetries.

$$\frac{\sigma_{b\bar{b}}}{\sigma_{inel}} = \frac{0.5mb}{80mb} \sim 0.006$$

B production in pp collisions at $\sqrt{s} = 14$ TeV

- Both *b* in acceptance: possibility of *B* production *flavour tagging*.
- 15 % of σ_{bb} with both b in LHCb acceptance (bb correlation).

Physics Program of LHCb

- **Measurement and study of CP violation** in the B meson sector:
 - Properties of B_s^0/B_s^0 oscillations,
 - CP Asymmetries for example in $B^0 \rightarrow \pi^+ \pi^- \pi^0$ (CKM α angle), $B^0 \rightarrow J/\psi K_s^0$ (CKM β angle), $B_s^0 \rightarrow h^+ h^-$ (CKM γ angle)
- Study of rare *B* decays (search for New Physics, eg $B^0 \rightarrow K^* \mu \mu$)
- Precise determination of B physics parameters (Λ_b initial polarizations and asymmetries, B_c^+ mass, width and branching fractions, ...)
- Charm physics, top and Higgs physics.
- ~20000 B^0 and ~5000 B_s^0 per second in LHCb: need for an efficient trigger:
 - <u>Level 0</u>: high p_T objects in calorimeters and muon detectors,
 - <u>High Level Trigger</u>: displaced vertices, dimuon mass and exclusive reconstruction of interesting final states.
 - Reduce rate from 40 MHz to 2 kHz.

Typical B event in LHCb

Proper time reconstruction (t=mL/pc) needed for time dependant CP violation measurements: need to measure L(~9mm) and p (~1-100 GeV/c) , resolution ~ 40 fs (B_s \rightarrow D_s- π +)

Tag the B production state:

- use the other B
 - charge of lepton
 - charge of kaon (from D decay)
 - inclusive vertex charge
- use same side fragmentation tracks (K for B_s) or excited B states.

Generator Properties for LHCb

- Description of pp collisions at LHC energy:
 - Assess trigger rates,
 - Assess reconstruction efficiencies of both signal and tag B.
- Description of B and D decays:
 - Compute *reconstruction efficiencies*,
 - Compute tagging efficiencies: content of B and D decays to K and leptons,
 - Composition of *background* (CP measurement dilutions, rare decays)
 - Mode specific features (angular distributions, asymmetries)
- Description of background in LHCb: beam bas interactions, ...

Generation Software Structure

- Software is based on Gaudi and LHCb common software:
 - General functionalities provided (*persistency*, *histograms*, ...)
- All generators are "wrapped" into **Gaudi algorithms or tools** to make them "callable and controllable" from the framework:
 - Job options to control what to generate and how to generate it
- All generators interfaced with **HepMC**
 - IO Exchange format between generators themselves and with detector simulation
 - "Encapsulated" in LHCb Event model (HepMCEvent)
 - Transient store access
 - Persistency
 - → Access of generator information in analysis applications.

Generation Software Structure (2)

- Structure is flexible enough to adapt a large variety of generators.
- <u>Production</u> and <u>decay</u> *steps are separated*. Different generators can be used for both phases. (For example Pythia + EvtGen).
- Pile-up and beam properties are generated separately.
- Particle properties (masses, widths, ...) and random number generator are common between all generators used for consistency and for reproducibility of events.

What to generate

- Need different types of "events"
 - Particle guns (calibration, test beams, single beam in IP8)
 - Single pp-collisions and bunch crossing at different luminosities (*pile-up*)
 - Minimum bias
 - "Signal" events: B^0 , B_s^0 and B^+ forced to decay in many decay modes to study physics performances of LHCb for important CP or mixing analysis, but also baryons, open charm, heavy quarkonia, Higgs, Z^0 , etc. etc. etc.
 - Beam gas in the VELO and beam pipe
 - LHC machine background (survivors of beam gas in accelerator)

Generator Packages Used (1)

• PYTHIA:

- Main generator used in LHCb for the production part.
- We currently use version **6.3**
- We would like to start studying the use of the C++ Pythia versions.

• HERWIG:

- Recently introduced in LHCb simulation software.
- Used to generate Minimum Bias events, we will also use it to generate inclusive *B* and signal *B* events (simple exchange with Pythia).

• EvtGen:

- Main generator used in LHCb for the production part.
- **PHOTOS**: used in EvtGen as a universal tool to generate radiative corrections to hadron decays.
- **LHAPDF**: PDF repository called from Pythia.

Generator Packages Used (2)

- **SHERPA**: under investigation for use in LHCb as a production and also as a decay generator.
- **BcVegPy**: B_c⁺ generator implemented as a user process in Pythia.
- **HIJING**: used to generate beam-gas events in the Velo.
- **AcerMC**: study of background processes with heavy quarks in the final state (Wbb, Zbb, ttbb)
- Charybdis: black hole generator.

Pythia (Main Production Generator)

- LHCb *Minimum Bias* definition in Pythia consists in usual *flavour excitation*, *gluon splitting* and *pair creation* processes, *elastic* and *diffractive* processes, and *prompt charmonium* production.
- Pythia p_t^{min} parameter is tuned to reproduce the mean charged track multiplicity observed at different lower energies (UA5 and CDF data), and then extrapolated at LHC energies.
- Parameters are also adjusted to reproduce *B* hadron fractions and excited states proportions observed at other experiments:

Hadron type	<u>Fraction</u>
B^{0}	40.5 %
B^+	40.5 %
$B_s^{\ \theta}$	9.9 %
b-Baryon	9.1 %

<u>State</u>	Fraction
B	21 %
B^*	63 %
B **	16 %

EvtGen (Main Decay Generator)

- Use of BaBar EvtGen version as decay generator to decay all hadrons produced by Pythia.
- Implementation of specificities of hadronic environment:
 - *Incoherent production* of B hadrons (B0 and Bs0 oscillations)
 - CP violation
- Add *decay models* for modes under study at LHCb: $B \to D \ K, \ \Lambda_b \to \Lambda \ V, \dots$
- Use of most recent versions of *BaBar decay table* which is very detailed for B^0/B^+ decays and tuned to reproduce multiplicity measurements.
- Used in LHCb simulation for large data challenge.
- LHCb EvtGen version is the starting point of the LHC EvtGen version.
- EvtGen is interfaced with PHOTOS: important for efficiency and background computations to know the effect of *radiative corrections* in a large variety of *B* decay channels.

Signal Samples with Pythia + EvtGen

- Events containing a B hadron are extracted from Minimum Bias, all hadrons are declared as stable in Pythia.
- Then all hadrons are decayed using EvtGen.
- One of the *B* hadron is *forced to decay* into a "signal decay mode" to obtain a sample with only this mode.
- *Generator level cuts* are applied to this *B* hadron (momentum cut, angular acceptance cut, ...): even if *B* hadron production is not so rare, event generation can take longer because of these cuts.
- <u>Interface issues</u>:
 - Particles are transferred from Pythia to EvtGen using the *HepMC* classes.
 - Particle masses, widths, and lifetimes are *identical* in Pythia and EvtGen: tuning needed to be sure that all decay modes are compatible with them.
 - Both generators use the same random number generator.

Heavy Quarkonia Production Models

- **Prompt J/\psi signals** are important for the physics at LHCb:
 - Main channels to study *B* physics contain a J/ψ in the final state. Prompt J/ψ can be a *background* to these analysis.
 - They can be used as *calibration* signals to estimate the proper time resolution of the detector.
 - LHCb will contain a *di-muon trigger*.
- Studying *heavy quarkonia* (J/ ψ but also Y) is in itself an important subject:
 - improved knowledge of QCD
 - study of the production mechanisms and comparison with NRQCD, Color Singlet Model (CSM)
- LHCb will allow to record a *large sample* of heavy quarkonia and then is participating in the development and the test of production model inside Pythia 6.3.

NRQCD In Pythia (1)

- Production of charm and beauty hidden flavor states in PYTHIA was incomplete:
 - Only color singlet processes (Color Singlet Model).
 - CSM largely fails in shape and normalization.
- Not too flexible
 - Cannot allow simultaneous production of ψ 's and Y's, nor Y(1S) and Y(2S), etc.
- Collaboration between Pythia authors, GENSER team and LHCb to introduce, test and validate NRQCD for heavy quarkonia production in PYTHIA.
- Since Pythia 6.324 code is integrated and Pythia can deal with charmonia and bottomonia sectors:
 - Possibility to produce simultaneously $J/\psi \,$ and Y (introduced as different processes)
 - Still not possible to generate Y' and ψ ' simultaneously, but can be implemented in near future

NRQCD In Pythia (2)

- New processes available:
 - $c\overline{c}$ S-wave with color-singlet and color-octet contributions.
 - New modes for χ_c production (not only gluon fusion).
 - Altarelli-Parisi evolution equations: allows the final- state shower evolution both for color-octet charmonia and for bottomonia.
 - Polarization implementation for quarkonia.
 - Production of in P wave charmonia and S and P wave bottomonia.
- See for more details:

http://indico.cern.ch/materialDisplay.py?contribId=3&materi alId=slides&confId=3722

NRQCD In Pythia (3)

• After tuning of parameters, comparison of prompt J/ψ (not from B) and Y production with Tevatron data.

J/ψ production at LHC

- **→** Two rapidity regions of interest at LHC:
 - -2.5 2.5 (ATLAS, CMS)
 - 1.8 4.9 (LHCb)
- Total cross section ranging from
 5.5 μb to 15 μb

ϑ	p _{T0} [GeV]	$rac{\mathbf{BR}_{\mu\mu}\cdot\mathbf{\sigma}_{\mathrm{tot}}}{[\mu\mathbf{b}]}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{BR}_{\mu\mu}\cdot\sigma_{\mathrm{LHCb}}$
0	2.85	14.8	7.5	3.6
0.1	3.47	9.3	4.8	2.3
0.15	3.83	7.2	3.7	1.7
0.2	4.22	5.5	2.8	1.4

B_c Generator

• B_c⁺ production is smaller than other B:

 B_c Production mechanisms: $\mathcal{O}(\alpha_s^4)$

- Need for a specific generator for this process. We use the generator BcVegPy (Comp. Phys. Comm **159**, 192 (2004)) for this purpose.
- \bullet Allows to generate specific samples of B_c decays and to study more accurately reconstruction efficiencies, within a low CPU time.

Luminosity Measurements

• Formula for two counter-rotating bunches:

- Set
$$v_1=v_2=c$$
 and crossing angle ϕ
$$L=f\underbrace{N_1\,N_2\,2c\,\cos^2(\phi/2)}_{\text{4-fold}} \underbrace{\int_{\text{4-fold}} \rho_1(\mathbf{x},t)\,\rho_2(\mathbf{x},t)\,d^3x\,dt}_{\text{4-fold}}$$
 Measured by the experiments by AB-BI

Proposed method:

- Inject a tiny bit of gas (if needed at all!) into the vertex detector region
- Reconstruct bunch-gas interaction vertices
 - \Rightarrow get beam angles, profiles & relative positions
 - ⇒ overlap integral
- Simultaneously reconstruct bunch-bunch interaction vertices
 - ⇒ calibrate 'reference' cross-section

Use Pythia and HIJING generators to simulate beam gas events.

Conclusions

- LHCb Simulation Software is interfaced with a variety of Monte Carlo generators and is flexible enough to use other generators.
- Main requirements for external generators are:
 - Possibility to modify particle properties,
 - Possibility to use an external random number generator,
 - Possibility to interface with HepMC classes.
- Adaptation of EvtGen and implementation of heavy quarkonia production in Pythia could be interesting for other LHC experiments.
- Look forward at C++ generators: expect more possibilities and simpler interface with C++ simulation software.