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Jet algorithms

® References el

¢ Www.pa.msu.edu/~huston/
Les Houches 2005/Les
Houches SM.html and
references therein

¢ Www.pa.msu.edu/~huston/
seminars/Main.pdf

+ my talk during plenary
session
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Jet algorithms

® For some events, the jet structure
is very clear and there’s little
ambiguity about the assignment
of towers to the jet

® But for other events, there is
ambiguity and the jet algorithm
must make decisions that impact
precision measurements

® |f comparison is to hadron-level

Monte Carlo, then hope is that R e Reg y)
the Monte Carlo will reproduce all — MidPoint R=0.7

of the physics present in the data 5K
and influence of jet algorithms
can be understood

+ Dbut needs to be studied for »
precision physics topics, such 150

as top mass determination ol

+ more difficulty when
comparing to parton level
(HO) calculations

Only towers with E > 0.5 GeV are shown




Algorithms: some statements

® Jet algorithms should be able
to operate on parton, particle
and calorimeter levels

+ and corrections from one
level to another should be
clearly specified/determined

+ Wwhere possible, data should
be presented at the hadron
level

+ Wwhere possible, results
should be presented with
both cone and k; algorithms

a other algorithms: Cambridge,
JEF?

+ where possible, ATLAS and
CMS should use jet
algorithms with as many
elements in common as
possible

A same algorithms for
QCD/non-QCD analyses?
A an LHC accord?

______, themes for
workshop
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Dictionary of Hadron Collider Terminology

EVENT

HADRON-HADRON COLLISION

Primary (Hard) Parton-Parton Scattering

Initial-State Radiation (ISR) = Spacelike Showers
associated with Hard Scattering

Underlying Event

Multiple Parton-Parton Interactions: Additional
parton-parton collisions (in principle with
showers etc) in the same hadron-hadron
collision.

= Multiple Perturbative Interactions (MPI)

= Spectator Interactions

Fragmentation

Perturbative:
Final-State Radiation

(FSR)
= Timelike Showers

= Jet Broadening and
Hard Final-State
Bremsstrahlung

Corrections

Beam Remnants: Left over hadron remnants from the incoming beams
Coloured and hence correllated with the rest of the event >

Non-perturbative:

String / Cluster
Hadronisation

(Colour Reconnections?)
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So what's the problem(s) with cone algorithms

® Matching a cone algorithm at

(NLO) parton level and at
detector level

® To illustrate, construct a
Snowmass potential which

indicates where stable cone

solutions can be found

terms of the 2-dimensional vector 7 = (y,¢) via

-

r = 1
V(7)) = 9 Zp]—"j (Rgone - (?
=g

~ 7)) 0 (Rie — (77 = T)°)

*z=p*?/p,*!!; d=AR between partons
-At NLO; two partons within region I or II will be called one jet

sep

parameter was introduced into the theory because

experiment reconstructs separate jets if AR>Rsep*Rcone
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Figure 15. The parameter space (d,Z) for which two partens will be merged into a single

jet
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midpoint seed was
intended to remove
need for R,

stable solution
at position of
left parton, at

w right parton
and at midpoint,
but there’s no
parton seed at
midpoint

q1-01

-0z

Figure 18. A schematic depiction of a specific parton configuration and the results of
applying the midpoint cone jet clustering algorithm. The potential discussed in the text
and the resulting energy in the jet are plotted.
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® Matching a cone algorithm at

So what's the problem(s)

(NLO) parton level and at
detector level

Parton configurations that will be
included in a jet at NLO will not

be at hadron level due to

stochastic smearing because of |
parton showering/hadronization PR PR
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Figure 18. A schematic depiction of a specific parton configuration and the results of
applying the midpoint cone jet clustering algorithm. The potential discussed in the text
and the resulting energy in the jet are plotted.

*z=p*?/p,*!!; d=AR between partons

*At NLO; two partons within region I or II will be called one jet
*R,., parameter was introduced into the theory because
experiment reconstructs separate jets if AR>R_*Rcone
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Figure 15. The parameter space (d,Z) for which two partens will be merged into a single

jet
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have lost central solution (both
partons) and right solution...

some energy ends up unclustered *°
in any jet
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Figure 19. A schematic depiction of the effects of smearing on the midpoint cane j
clustering algorithm.



Some major silliness

00

® Matching a cone algorithm at (NLO)
parton level and at detector level

® Parton configurations that will be
included in a jet at NLO will not be at
hadron level due to stochastic

0.1

Vir

smearing because of parton
showering/hadronization

® Modified midpoint algorithm use
smaller initial search cone
reduces unclustered ene

+ recovers right solution, but in most Pythia 400 GeV/e, Hadrﬂn—levell

cases not central £ 1o
a ie. R still needed e
SR L : wor _—
a consider this an interim solution oL Hideaint (pangeV: 28
+ default midpoint algorithm has ~2% of F I ——— SsarchCans Ri2(>00GeV: 0.0%)

400 GeV/c dijet events with >50

GeV/c of unclustered energy "”;‘
® All cone algorithms with seeds are
IR-sensitive 10
+ DO version of midpoint algorithm has
IR-sensitivity <1% ]" L
+ CDF version has IR-sensitivity of ~1% 0 50 1m0 1s0 200 250 a0

a but essentially no unclustered Unclustered Pt (GeVic)

energy

Figure 20. A schematic depiction of the effects of smearing on the midpeint cone jet
clustering algorithm and the result of using a smaller initial search cone.
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towards ncarby larg
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Solution(s)

Mlissed Towers (mot in any stable cone| — Haw can that happen®

® Experimental level
+ run standard (out-of-box)
midpoint algorithm
+ after first pass, remove
towers clustered into jets

+ run algorithm again on
remaining towers

+ merge jet pairs in Region |l
on left...or

® Theoretical level
+ use appropriate Ry, (~1.3) ' . clusterof coerey |

1.0 1.0

In theory calculation
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Seeds and sensibility

® To save on computer time,

experiments require seeds for
initiation of jet cone searches

+ impact on experimental cross
section compared to seedless
algorithm is small

Seeds have also been used in
the theoretical calculations, but
here the number of potential
seeds is small

+ the requirement for seeds
introduces a dependence on
soft gluon emission

+ the midpoint algorithm
removes this (logarithmic)
dependence to NNLO, but not
for higher orders

Steve’s suggestion: if you must
use seeds in your experimental
algorithm, correct to seedless

level before comparison to data

o see Steve’s talk

S EBS:
SENSIBILITY
| .

-5 1l

emuch larger corrections already
performed by experiments
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So what's the problem(s) with k; algorithms

® Lack of experience at hadron-hadron
colliders

o little study of what the problems might be
® Underlying event and multiple interaction
subtractions

o little work has been done to date for dealing
with a high luminosity environment

® Can we try to put the use of the k;
algorithm on a more robust basis?

11



Charge

® From discussions here, can we formulate
a document/working group to carry these
Ideas forward?
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Benchmark studies for LHC

® Goal: produce predictions/event samples corresponding to 1 and
10 fb-

® Cross sections will serve as

+ benchmarks/guidebook for SM expectations in the early
running

A are systems performing nominally? are our calorimeters
calibrated?

A are we seeing signs of “unexpected” SM physics in our data?

A how many of the signs of new physics that we undoubtedly will
see do we really believe?

+ feedback for impact of ATLAS data on reducing uncertainty on
relevant pdf's and theoretical predictions

+ venue for understanding some of the subtleties of physics
Issues

® Has gone (partially) into Les Houches proceedings

® Companion review article on hard scattering physics at the LHC
by John Campbell, James Stirling and myself

+ “Hard Interactions at the LHC: a primer for LHC physics”
¢ www.pa.msu.edu/~huston/seminars/Main.pdf



SM benchmarks for the LHC

See www.pa.msu.edu/~huston/
Les_Houches_2005/Les_Houches_SM.html

centre de physigue

® pdf luminosities and uncertainties
® expected cross sections for useful processes

+ inclusive jet production
A Simulated jet events at the LHC

A jet production at the Tevatron
— alink to a CDF thesis on inclusive jet production in Run 2
— CDF results from Run Il using the KT algorithm

photon/diphoton
Drell-Yan cross sections
W/Z/Drell Yan rapidity distributions
W/Z as luminosity benchmarks
W/Z+jets, especially the Zeppenfeld plots
top pairs
A onanina work_ list of tonics (ndf file)

® & 6 6 o o



More...

® technical benchmarks
+ jet algorithm comparisons
A midpoint vs simple iterative cone vs kT
— top studies at the LHC

— an interesting data event at the Tevatron that examines
different algorithms

A Building Better Cone Jet Algorithms

— one of the key aspects for a jet algorithm is how well it can
match to perturbative calculations; here is a 2-D plot for
example that shows some results for the midpoint algorithm
and the CDF Run 1 algorithm (JetClu)

— here is a link to Fortran/C++ versions of the CDF jet code
+ fits to underlying event for 200 540, 630, 1800, 1960 GeV data
a interplay with ISR in Pythia 6.3
A establish lower/upper variations
A extrapolate to LHC

A effect on target analyses (central jet veto, lepton/photon isolation,
top mass?)




