How to measure MB and UE in ATLAS – some issues

Craig Buttar
Glasgow University

Outline

- Why measure minimum bias events
- Detector elements
 - Triggering
 - Tracking
- Reconstructing underlying event
- Nothing on tuning
 - covered in Borut Kersevan's talk in Monday session

Why measure min bias?

Not exactly what the LHC was built for! But.....

- Physics: measure dN/dη|η=0
 - Compare to NSD data from SppS and Tevatron
- MB samples for pile-up studies
 - Calorimeter
 - Physics analyses
- Overlap with underlying events
 - analyses eg VBF, Jets...
- Demonstrate that ATLAS is operational
- Inter-calibration of detector elements
 - Uniform events
- Alignment
- Baseline for heavy ions

Detector elements required

Tracking

- Start with barrel ID and move forward
- Full tracking
 - has p_T cut-off → bias of min bias and large extrapolation back to p_T=0
 ~x2
- Pixels
 - pixel tracklets have lower pt cut-off
 - requires pixels on day-zero or at least early running feasible beam backgrounds?
 - What are pixel running conditions?

Triggers

- L1: Minimum Bias Trigger Scintillators (MBTS) low gain, random
- L2: Rol for MBTS high gain(?)
- EF: Tracking and pixel tracklet reconstruction

Calorimeters

- Look at correlation of MB events in tracker and calorimeter
- What trigger information can we use?

Event characteristics

Event characteristics

- Non-single diffractive~nondiffractive inelastic
- Soft tracks p_T^{peak}~250MeV
- Approx flat distribution in η to $|\eta|$ ~3 and in ϕ
- $-N_{ch}\sim30; |\eta|<2.5$
- Trigger rates
 - σ ~70mb (NSD!)
 - R~700kHz @ L=10³¹cm⁻²s⁻¹

M. Leyton

How many events do we want?

- For dN/dη require ~10k
- For UE need ~20M MB events to get some with leading jets P_{τ} ~30GeV
- Need to overlap with jet triggers
 - − Prescaled P_T>25GeV
- CMS quote ~18M to intercalibrate their calorimeter with MB
- Commission tracker: 10 tracks/strip in SCT barrel → ~2.5M events

Low Luminosity Prescales

Threshold Prescale
25 GeV 2,000,000
50 GeV 200,000
90 GeV 5,000
170 GeV 200
300 GeV 20
400 GeV 1

2 x 10³³ Prescales

1 x 10³¹ Prescales

T.LeCompte

- This holds the rate constant at ~22 Hz
- Lowest threshold moves from ~400 GeV to ~ 170 GeV

MBTS

- Trigger scintillation counters mounted on end of LAr calorimeter covering same radii as ID
 - Cover $2 < |\eta| < 4$
- At S/N at L1 is 'modest'
 - Now in simulation can be tuned to pit measurements in the summer
- Can do better at L2 with precision readou
 - Not clear how to implement this
- Trigger logic not defined
 - Likely to be coincidence between hits in forward and backward hemisphere
- Can check operation with random trigger?
 - Difficult for L <10³¹
 - Use lepton trigger to at least get some check of operation at very low lumi
- Can be used for first data BUT!
 - Not rad-hard, lifetime not known
 - → cannot use in 2008 running?

jure 1: The inelastic charged particle density as a function of pseudorapidity from Pythia v6.31 standard ATLAS settings.

Forward-backward trigger in ATLAS

	FB>=1	FB>=2	FB>=5
All	0.78	0.66	0.47
NSD	0.87	0.75	0.55
Nd-Inel	0.96	0.86	0.65
SD	0.36	0.18	0.04

How are we biassing our events? Need good simulation of DD, SD and inelastic events

Generate two samples?

- •Zero bias with random trigger (L~10³¹)
- •NSD with MBTS

Tracking in MB events

- Acceptance limited in rapidity and pt
- Rapidity coverage
 - Tracking covers $|\eta|$ <2.5
- p_T problem
 - Need to extrapolate by ~x2
 - →Need to understand low pt charge track reconstruction

Where is the Momentum Limit?

- Tracker is in principle sensitive to soft tracks
 - Pt = 400 MeV tracks reach end of TRT
 - Pt = 150 MeV tracks reach last SCT layer
 - Pt = 50 MeV tracks reach all Pixel layers
 - → Do not need to run with low field

Pixels

Pixels+SCT

ID=Pixels+SCT+TRT

Tracking Strategy for soft Particles

- Step 1: Primary track reconstruction (= current NewTracking)
 - Track candidates in Pixels+SCT ambiguity solution TRT extension similar in xKalman and iPatRec
- Step 2: Secondary track reconstruction (release 13)
 - TRT leftover segments extension to SCT and Pixels global ambiguity
- Step 3 (New): Soft particle reconstruction after primary vertexing
 - Select soft track candidates pointing directly to established primary vertex
 - this would mostly reuse reconstruction tools from the common tracking framework
 - dedicated search tuned specifically for very soft tracks (maybe even for pixel only tracks)
 - direct control of soft tracking, no interference with default reconstruction
 - Michael Leyton interested in this...

Low-pT track reconstruction

- Extending reconstruction to lower pT:
 - Not clear what limit is?
 - Need to investigate inefficiences and fake rates in this new pT regime – lots of testin

A

Progress so far

Reconstructed

(CSC11.005001.pythia_minbias.digit.RDO.v11000401)

 Problem getting good efficiencies below pT ~ 300MeV – under investigation.

Pixel tracklets

To avoid pt-cut-off use pixel layers 0 and 1

Minimise for layer 1 hits relative to layer 0

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

How to get efficiencies?

Reconstructing the underlying event

A.Moraes ATL-PUB-2005-015

How to trigger at low pt, Overlap with jet trigger? Njets > 1, | ηjet | < 2.5, ETjet >10 GeV,

| ηtrack | < 2.5, pTtrack > 1.0 GeV/c

CDF Run 1 underlying event analysis

Phys. Rev. D, 65 092002 (2002)

ATLAS DC2 Simulated data

MC issues

- Need to understand NSD
 - Ie what is fraction of SD and DD?
- Current MCs
 - PYTHIA non-diffractive inelastic scattering described by multiparton model, also used for UE
 SD and DD described
 - PHOJET
 - One MC or mix ?
 - V.different xsect mix for diff and nd inel in PHOJET+PYTHIA
- How to compare to previous NSD data?
 - Use multiplicity distributions in data and MB
- How to tune triggers?

Underlying event

- How to describe UE in complex process
 - Multipartons and radiation
 - $-M_t, m_W, m_b$
- Can we extrapolate from 'simple' UE measurements in dijets to more complex states?

Summary

- A lot of work on tuning PYTHIA and JIMMY (see Borut Kersavan's talk for details)
- Main focus now: how to measure MB and UE
- MB studies in ATLAS
 - Triggering
 - Reconstructing low P_t tracks
 - Aim to get dN/dη and other event properties
- UE studies in ATLAS
 - Reconstructing UE a la CDF
 - How does it afffect jets properties?
 - Dependence of UE on process?

Extra slides

Random trigger

- 75ns @ L= 10^{31} cm⁻²s⁻¹ gives $< n_x > \sim 0.05$
 - → Probability of 1 event/xing =0.05
 - → Assume 1 month of running with eff=50%
 - → For 20M events to tape from HLT
 - → 1kHz L1 random trigger
 - → Process in EF to remove empty events
 - →eg track reconstruction
 - → 20Hz output from HLT
 - →Assumes 100% efficiency in identifying MB and rejecting backgrounds
 - → How to identify MB in EF ← Later
 - → Probably need x2 safety factors at L1 and EF
 - → There is a built in safety factor empty events are small
 - → For lower luminosity ÷10 need to increase L1 random rate by x10 to maintain 20Hz HLT rate

Tracking: Startup-Initial Alignment

- Very first alignment will be based on:
 - Mechanical precision
 - Detailed survey data
 - Cosmics data (SR1/Pit)
 - Minimum bias events and inclusive bb

- Studies indicate good efficiencies after initial alignment
 - Example taken from T.Golling
 - Precision will need Zs and resonances to fix energy scales, constrain twists, etc...

M.Elsing Talk in SM meeting₁

Interactions of minbias particles with inner detector material

(CSC11.005001.pythia_minbias.digit.RDO.v11000401)