ATLAS Forward Proton Detectors

Michael Rijssenbeek for the ATLAS Collaboration

- Physics summary:
 - Physics withSingle and Double proton tags
 - Benchmark study: DPEjj with AFP
- Installation & Run plans
- Roman pots
 - Pots, Stations, Services
- Detectors
 - Silicon Tracker, Timing Detector
- Run 2 and beyond

Summary of Single p-Tag Processes

Single Diffractive Production

$$t \equiv (p'-p)^{2}$$

$$\xi \equiv 1 - E'/E$$

$$\beta \equiv x_{\mathbb{P}}$$

			FORWARD PHYSICS
Analysis	Motivation	$\int Ldt [pb^{-1}]$	Optimal µ
Soft Single Diffraction with AFP0+2			
$d\sigma/dt$, $d\sigma/d\xi$, t-Slope vs. ξ ,	Saturation, MC tuning, Cos-	1	$\mu \sim 0.01$
dN^{\pm}/dp_T vs. t and ξ	mic Ray physics		
Single Diffractive jet Production [21]			
σ , rapidity gap, Jet structure and	gap survival probability,	10 – 100	$\mu \sim 1$
p_T , event shape (MPI [21]); vs. t ,	Pomeron structure		
ξ , and β			
Single Diffractive jet-gap-jet Production [22, 23, 24]			
σ , central gap distribution, Jet	observation of a new process,	1 – 100	$\mu \sim 1$
p_T ; vs. t , ξ , and β	test of BFKL dynamics		
Single Diffractive Production of γ + jet [25]			
σ , rapidity gap, Jet structure	observation of a new process,	10 – 100	$\mu \sim 1$
and p_T , Photon p_T , event shape	mechanism of hard diffrac-		
(MPI); vs. t , ξ , and β	tion, gap survival probability,		
	Pomeron structure		
Single Diffractive Z Production			
σ , rapidity gap, charge-	gap survival probability,	10 – 100	$\mu \sim 1$
asymmetry; vs. t , ξ , and	Pomeron structure		
β			
Single Diffractive W Production			
σ , rapidity gap; vs. t , ξ , and β	gap survival probability,	10 – 100	$\mu \sim 1$
	Pomeron structure and flavor		
	composition		

AFP and ALFA: Complementarity

AFP – Horizontal Pots:

- large *t* acceptance
- ξ range shifts with optics
- high β^* and low β^* =0.5 m

ALFA – Vertical Pots:

- limited *t* acceptance
- ξ =0 acceptance for β *≥90, elastics
- only low-Luminosity,
 high β* runs

Summary of Double p-Tag Processes

	OPE je	_	
p_1	t_1	4	$p_1'(\xi,\phi)$
	P	2000	-
	.	A BOOK	€ ←
	/	ere good	<i>ک</i> ر
		Reee	
t	$r_i \equiv (p_i)$	'- p	$(i)^2$
ξ	$\frac{c}{i} \equiv 1 - $	E_i '/	$E_{\scriptscriptstyle B}$
β	$x_{\mathbb{P}} \equiv x_{\mathbb{P}}$	i	

			FORWARD PHYSICS	
Aı	nalysis	Motivation	$\int Ldt [pb^{-1}]$	Optimal µ
Sc	Soft Central Diffraction with AFP2+2			
de	$\sigma/dt_{1,2}, d\sigma/d\xi_{1,2}, t$ -Slope	general understanding of	1	$\mu \sim 0.1$
vs	. ξ , Mass M and y of the	DPE processes		
ce	ntral diffractive system, ϕ_1			
vs	. ϕ_2 , dN^{\pm}/dp_T ; vs. $t_{1,2}$, $\xi_{1,2}$,			
M	•			
_ Ce	Central Diffractive jet Production (DPEjj) [28]; see also Sect. A			
de	$\sigma/dt_{1,2}$, $d\sigma/d\xi_{1,2}$, t -Slope	gap survival probability for	10 - 100	$\mu \sim 1$
VS	. ξ , $d\sigma/dp_T^{jet}$, Mass M and y	DPE processes, Pomeron		
of	the central dijet system, ϕ_1	structure, general understand-		
vs	ϕ_2	ing of DPE processes		
Je	t-gap-jet Production [22, 24]			
de	$\sigma/dt_{1.2}, \ d\sigma/d\xi_{1.2}, \ d\sigma/dM_{jj},$	observation of a new process,	10 – 100	$\mu \sim 1$
ce	ntral gap distribution,	test of BFKL dynamics		
de	σ/dp_T^{jet} , ϕ_1 vs. ϕ_2			
γ + jet Production				
σ,	, rapidity gap(s), Jet structure	observation of a new process,	10 – 100	$\mu \sim 1$
an	ad p_T , Photon p_T ; vs. $t_{1,2}$, $\xi_{1,2}$,	mechanism of hard diffrac-		
an	$\operatorname{id} M_{jj}$	tion, gap survival probability,		
		Pomeron structure		

 $M_{jj} \le M_{pp} = \sqrt{s\xi_1\xi_2}$

Benchmark: DPEjj Processes

- Fast & Full simulation of AFP + ATLAS, including pile-up
 - generator: Pythia 8.165 with PomFlux = 1, 5(MBR)
 - 100 h (1 wk); 2808 bunches, μ=1
- Event Selections:
 - p_T(jet)> 20, 50, 100 GeV
 - double proton tag in AFP
 - *matching* with AFP vertex from timing (σ_f = 30 ps)
 - single vertex in ATLAS

LHCC 3MAR2015 mean pile-up, $<\mu>$ mean pile-up, $<\mu>$

Installation: AFP 0+2 -> AFP 2+2

Single Arm, 2 Roman Pot Stations (204 m, 212 m)

- Earliest opportunity to install: Winter 2015-16 SSD
 - AFP Beam Pipe section ~9 m
 - RP Stations + BPM
 - Cables
 - Vacuum, Cooling

a VERY large job in VERY little time!

- Tracking detectors (SiT)
 - 4 planes of 3-D Silicon Pixels; edgeless (150 um)
 - provide L1 Trigger from FE-I4 HitOR outputs (e.g. 3 planes out of 4)
 - SiT can be installed during a short (6 hr) access
- NO Time-of-Flight (ToF) for AFP0+2
 - ToF not needed/useful for 1-arm physics …
 - only for study of time structure of backgrounds ...
 - install only if the rest is done!

Two-Arm AFP2+2: in Winter 2016-2017 (19 wks)

Closing in to the Beam: Roman Pot

AFP pot very similar to TOTEM pot

— cylindrical: good RF behavior (≤1% of LHC impedance)

AFP detectors require a *flat inside bottom* in the pot

- thin window machined on the *beam* side –different from TOTEM pot
- design & simulations done
- prototype in 5-6 weeks

Roman Pot station

AFP Roman Pot station:

- Replicate TOTEM horizontal station
 - reliable and proven design
 - external manufacturer
- Interface to ALFA pedestal
- minimal extra design needed

Infrastructure

AFP Beam Pipe:

- beam pipe RP station placeholder sections
- BPM at 212 m station, beam Loss Monitors

Services:

- Cooling for pots and detectors
- Secondary vacuum
- Cables:

fast foam-core cables for Trigger, Reference Clock

- Optical fibers TDAQ
- HV and LV cables
- DCS CanBus cables

DCS:

- Secondary pressure
- cooling air pressure
- Temperatures
 - pots, detectors, air, crates, regulators
- Voltages and currents

ITLET

INLET

200

Vortex tube tunning

3-D Silicon Pixel Tracker

Requirements:

- Resolution: σ_x =10 µm, σ_v =30 µm
- Radiation hard: 5×10¹⁵ p/cm²/100 fb⁻¹
- edgeless ≤200 μm
- must handle very non-uniform irradiation

Use the ATLAS IBL technology:

- 3-D pixel sensors:
 - 336 × 80 of 50 μ m (x) × 250 μ m (y)
 - after cut: efficient to 100-150 μm
- FE-I4b readout ASIC
 - rad hard tested up to 2.5 MGy and 5×10¹⁵ 1 MeV-eq *n*/cm²
- non-uniform irradiation tests few×10¹⁵ p/cm² successful

3-D CNM Pixel Sensor and Cut

CERN-PS Focussed Beam

KIT Slit Hole

3-D Silicon Pixel Tracker

Trigger:

AND of 3 planes (FE-I4 HitOR)

DAQ:

- RCE-based (AdvancedTCA)
- used for IBL stave testing
- worked VERY well in test beam!

Performance:

- Efficiency ≥98%/plane(will be higher with 13° tilt)
- 98% single track events,0.4% empty triggers
- Track CoG resolution: σ_x =7 µm, σ_y =36 µm

Setup in test beam Nov 2014 CERN SPS

Tracker: 4+1 3D FEI4 pixels

→ trigger: 0 & 3 & 4

Timing: Quartic 4 trains of 2 LQbars

Quartz+SiPM fast timing reference (not for final AFP detector

Production Status:

- Sensors cut, Under Bump Metallization done
- FE-I4 in house, to be sent for UBM
- Flexes to be designed ← critical path
- Sensor card and holder: to be designed ← critical path

Time-of-Flight Detector

Requirements:

- − high resolution: $\sigma_t \le 10$ ps
- high rate: ≤5 MHz
- radiation hard (100-300 fb⁻¹)
- long life PMT
- segmentation in $x(\sim \xi)$
- L1 Trigger capability
- low mass: $1.8\%\lambda_{int}/bar$

Long-life, high-rate MCP-PMT

Design: "LQbar"

- − each bar $\sigma_t \le 30$ ps
 - tests: 25-30 ps
- 4 independent bars:≤15 ps

Beam Test: Time-of-Flight Detector

— Sit-ToF correllation: excellent (but some X-talk) ToF efficiency: >99% Track position - y [mm] 1800 0.9 position 0 99.39^{+0.17}_{-0.22} % 1600 0.8 1400 1A **1B** 0.7 99.18^{+0.13} 1200 ≻ 0.6 1000 0.5 2B 99.25^{+0.13} % 800 0.4 600 0.3 -5000 4A 4B 400 99.30^{+0.26}_{-0.36} % 0.2 -6 3B 3A 200 0.1 -10000 -10000 -5000 5000 10000 Resolution: ~30 ps (Oscilloscope) X position [µm] B (6 mm) LQ1A -SiPM1 fit $\sigma(LQ1A)=31$ ps 350 LQ1B -SiPM1 3 mm Train 1 fit $\sigma(LQ1B)=30$ ps 300 5 mm Train 2 250 5 mm Train 3 200 counts 5 mm Train 4 150 100

50

LHCC 3N

50

0

 Δt [ps]

100

150

250

Run 2 and Beyond

Plans for Run 2:

- AFP0+2 in 2015/16 SSD (?); AFP2+2 in 2016/17
- Special high β^* runs in 2016-2017
- Standard optics runs to measure environment

Participate in Run 3 if:

- standard optics works for AFP (review)
- High LumiAFP programis approved(review)

Backup Material

Backup – ToF MCP-PMT

MCP-PMT Life Time and Rate

Summary of Single p-Tag Processes

Analysis	Motivation	$\int Ldt [pb^{-1}]$	Optimal µ
Soft Single Diffraction with AFP0+2			
$d\sigma/dt$, $d\sigma/d\xi$, t-Slope vs. ξ ,	Saturation, MC tuning, Cos-	1	$\mu \sim 0.01$
dN^{\pm}/dp_T vs. t and ξ	mic Ray physics		
Single Diffractive jet Production [21]			
σ , rapidity gap, Jet structure and	gap survival probability,	10 – 100	$\mu \sim 1$
p_T , event shape (MPI [21]); vs. t ,	Pomeron structure		
ξ , and β			
Single Diffractive jet-gap-jet Prod	uction [22, 23, 24]		
σ , central gap distribution, Jet	observation of a new process,	1 – 100	$\mu \sim 1$
p_T ; vs. t , ξ , and β	test of BFKL dynamics		
Single Diffractive Production of γ + jet [25]			
σ , rapidity gap, Jet structure	observation of a new process,	10 – 100	$\mu \sim 1$
and p_T , Photon p_T , event shape	mechanism of hard diffrac-		
(MPI); vs. t , ξ , and β	tion, gap survival probability,		
	Pomeron structure		
Single Diffractive Z Production			
σ , rapidity gap, charge-	gap survival probability,	10 – 100	$\mu \sim 1$
asymmetry; vs. t , ξ , and	Pomeron structure		
β			
Single Diffractive W Production			
σ , rapidity gap; vs. t , ξ , and β	gap survival probability,	10 – 100	$\mu \sim 1$
	Pomeron structure and flavor		
	composition		

Summary of Double p-Tag Processes

DPE jet-jet
p_1 $p_1'(\xi, \phi)$
P Cococo
December 1
$t_i \equiv (p_i - p_i)^2$
$\xi_i \equiv 1 - E_i ' / E_B$
$\beta_i \equiv x_{\mathbb{P},i}$

 $M_{ii} \leq M_{pp} = \sqrt{s\xi_1\xi_2}$

				FORWAR PHYSICS
	Analysis	Motivation	$\int Ldt [pb^{-1}]$	Optimal µ
	Soft Central Diffraction with AFP2+2			
)	$d\sigma/dt_{1,2}$, $d\sigma/d\xi_{1,2}$, t -Slope	general understanding of	1	$\mu \sim 0.1$
	vs. ξ , Mass M and y of the	DPE processes		
	central diffractive system, ϕ_1			
	vs. ϕ_2 , dN^{\pm}/dp_T ; vs. $t_{1,2}$, $\xi_{1,2}$,			
	M.			
_[Central Diffractive jet Production (DPEjj) [28]; see also Sect. A			
	$d\sigma/dt_{1.2}$, $d\sigma/d\xi_{1.2}$, t -Slope	gap survival probability for	10 - 100	$\mu\sim 1$
	vs. ξ , $d\sigma/dp_T^{Jet}$, Mass M and y	DPE processes, Pomeron		
	of the central dijet system, ϕ_1	structure, general understand-		
	vs. ϕ_2	ing of DPE processes		
\setminus	Jet-gap-jet Production [22, 24]			
	$d\sigma/dt_{1.2}$, $d\sigma/d\xi_{1.2}$, $d\sigma/dM_{jj}$,	observation of a new process,	10 - 100	$\mu\sim 1$
	central gap distribution,	test of BFKL dynamics		
	$d\sigma/dp_T^{jet}$, ϕ_1 vs. ϕ_2			
\backslash	γ + jet Production			
	σ , rapidity gap(s), Jet structure	observation of a new process,	10 - 100	$\mu\sim 1$
	and p_T , Photon p_T ; vs. $t_{1,2}$, $\xi_{1,2}$,	mechanism of hard diffrac-		
	and M_{jj}	tion, gap survival probability,		
		Pomeron structure		

Backup – Radiation Levels

Radiation levels for 100 fb⁻¹

- inputs: ALFA and TOTEM measurements
- AFP Full simulations in minbias events (below)
- early FLUKA calculations (A Mereghetti, 2009)

Backup - Simulations

GEANT4 model of Roman pot with Si Tracker and Timing detectors

Backup - 3-D Silicon Sensor Cut

Edge cut by diamond saw (IFAE Barcelona)

Backup - Test Beam - SiT

Technical Manpower Needs 2015

- Urgent:
 - 1 FTE of onsite TC (+ 1 FTE PL + 0.3 FTE RC)
 - probably OK
 - 0.5 FTE of onsite Project/Mechanical Engineer: assistance with oversight of RP Station assembly, Detector integration, LHC integration, installation. To work closely also with ATLAS TC.
 - in the works ...
 - 1.0 FTE of a good onsite Technician with experience in UHV work and electrical work: RP Station assembly, Detector integration, installation (~50% from FD M&O B)
 - combination of 2 technicians?
 - 0.2 FTE of offsite Mechanical Engineer/Designer for the Silicon Tracker
 - Oslo/Bergen!
- Not Urgent:
 - 0.2 FTE for 0.3 year of Mechanical Engineer/Designer for the Time-of-Flight (detector holder)
 - ??
- It would be advantageous to have a local (technical) contact in Prague to follow the RP Station production and Vortex Cooling at Vakuum Praha AS and at CTU ...