

ALICE ITS Upgrade Pixel Chip Status

LHCC Detector Upgrade Review

CERN, 03 March 2015

L. Musa - CERN

ALICE ITS Upgrade – Pixel Chip Status

OUTLINE

- Pixel Chip Requirements
- Two alternative architectures: ALPIDE and MISTRAL
- ALPIDE
 - Design roadmap
 - p-ALPIDE-1 (full-scale prototype) results
- MISTRAL-O
 - Design roadmap
 - MISTRAL FSBB (full-scale building block) results
- Conclusions

New ITS Layout

7-layer barrel geometry based on MAPS

r coverage: 23 – 400 mm

 η coverage: $|\eta| \le 1.22$

for tracks from 90% most luminous region

3 Inner Barrel layers (IB)

4 Outer Barrel layers (OB)

Material /layer : $0.3\% X_0$ (IB), $1\% X_0$ (OB)

Integration of chip into detector stave

Inner Barrel Stave

PIXEL Chip – General Requirements

Parameter	Inner Barrel	Outer Barrel		
Max silicon thickness	50 μm			
spatial resolution	5 μm	10 μm		
chip dimensions	15 mm x 30 mm			
Max power density	300 mW/cm ²	100 mW/cm ²		
Max event time resolution	< 30 μs			
Min detection efficiency	> 99%			
Max fake hit rate	< 10 ⁻⁵ per readout frame			
TID radiation hardness (*)	700 krad (TDR) 2700 krad (rev Dec 14)	10 krad (TDR) 100 krad (rev Dec 14)		
NIEL radiation hardness (*)	$10^{13} 1 \text{MeV n}_{\text{eq}} / \text{cm}^2 (\text{TDR})$ $1.7 \times 10^{13} 1 \text{MeV n}_{\text{eq}} / \text{cm}^2 (\text{rev})$	$3x10^{11} 1 MeV n_{eq}/cm^2 (TDR)$ $10^{12} 1 MeV n_{eq} / cm^2 (rev)$		

 $^{^{(*)}}$ 10 x radiation load integrated over approved programme (~ 6 years of operation)

ITS Pixel Chip – technology choice

Genesis

- Owing to the intensive R&D work on CMOS pixel sensors carried out by IPHC
 (... and the vision and support of STAR) over the last 15 years
- First monolithic pixel detector in a HEP experiment (STAR HFT detector)
- Based on AMS 0.35µm twin-well CMOS process
- Readout speed and radiation hardness not adequate for ALICE ITS upgrade

The industrial development of CMOS imaging sensors (e.g. TowerJazz CIS) + R&D work from RAL and IPHC

- development of first exploratory pixel chips based on a quadruple-well 0.18mm CMOS Imaging Sensor (CIS) process
- based on the R&D work of IPHC in 2011 and 2012, ALICE decided to adopt MAPS as baseline technology for the ITS upgrade (LoI)

ITS Pixel Chip – technology choice

CMOS Pixel Sensor using TowerJazz 0.18µm CMOS Imaging Process

Tower Jazz 0.18 μm CMOS

- feature size 180 nm
- metal layers 6
- → Suited for high-density, low-power
- Gate oxide 3nm
- → Circuit rad-tolerant
- High-resistivity (> 1k Ω cm) p-type epitaxial layer (20μm 40μm thick) on p-type substrate
- ► Small n-well diode (2-3 μ m diameter), ~100 times smaller than pixel => low capacitance
- ► Application of (moderate) reverse bias voltage to substrate can be used to increase depletion zone around NWELL collection diode
- Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area

ITS Pixel Chip – two architectures

Pixel pitch

Event time resolution

Power consumption

Dead area

28μm x 28μm

~2µs

39mW/cm²

1.1 mm x 30mm

Pixel pitch

Event time resolution

Power consumption^(*)

Dead area

36μm x 64μm

~20µs

97mW/cm²

1.7 mm x 30mm

ALPIDE and MISTRAL-O have same dimensions (15mm x 30mm), identical physical and electrical interfaces: position of interface pads, electrical signaling, protocol

^(*) might further reduce to 73mW/cm²

ALPIDE Development

- 20μm x 20μm and 30μm x 30μm pixels with analogue readout
- pixel geometry, starting material, sensitivity to radiation
- Matrix with 64 columns x 512 rows
- 22μm x 22μm pixels with in-pixel discrimination and buffering
- zero suppression within pixel matrix (standard cells)
- Different flavours of front-end circuit
- **Full-scale prototype:** 1024 x 512, 4 sectors with different pixels
- Final pixel pitch: 28μm x 28μm
- Interface pads over matrix
- 1 register/pixel, zero-suppression (full-custom), no final interface
- Optimization of some circuit blocks
- | Final interface: allows integration into ITS and MFT modules
- NO high-speed output link (1.2 Gbit/sec replaced by a 40Mb/s)
- All final features
- 3 registers/pixel, standard-cell based priority encoder
- Final interface, including high-speed output link

pALPIDE-1 – Main Design Features

ALPIDE Full Scale prototype

Dimensions: 30mm x 15 mm

Pixel Matrix: 1024 cols x 512 rows

• Pixel pitch: 28μm x 28μm

Peaking time: 2μs

• Pulse length: 10-20μs

• In-pixel discriminator + 1 register

• Power consumption: < 40mW/cm²

4 sectors with different pixels

Figure: picture of pALPIDE-1

Sector	nwell diameter	spacing	pwell opening	reset
0	2μm	1μm	4μm	PMOS
1	2μm	2μm	6μm	PMOS
2	2μm	2μm	6μm	Diode
3	2μm	4μm	10μm	PMOS

pALPIDE-1 Characterization

Intensive test beam campaign

- PS: 5-7 Gev π^-

- SPS: 120 Gev π^-

- PAL (Korea): 60 MeV e

- BTF (Frascati): 450 MeV e

- DESY: 5.8 Gev e+

Scan of main parameters → ~ 200 settings

7-plane telescope based on pALPIDE-1 chip

pALPIDE-1 – PS test beam (Sep 2014)

Efficiency and fake hit rate

 λ_{fake} < < 10⁻⁵ / event/pixel @ ϵ_{det} > 99% \rightarrow very large margin over design requirements

- Measurements at PS: 5-7 GeV π^- September 2014
- Results refer to 50 μm thick chips: non irradiated and irradiated with neutrons 0.25 x 10^{13} and 10^{13} 1MeV n_{eq} / cm²

~80 e

~180 e

pALPIDE-1 – PS test beam (Sep 2014)

Spatial resolution

Cluster size vs. position within pixel

MFT TDR, CERN-LHCC-2015-001

σ_{det} < 5 μm is achieved with sufficient margin of operation

- Measurements at PS: 5-7 GeV π^- September 2014
- Results refer to 50 μm thick chips: non irradiated and irradiated with neutrons 0.25 x 10^{13} and 10^{13} 1MeV n_{eq} / cm²

pALPIDE-1 – PS test beam (Dec 2014)

Efficiency and fake hit rate

Improved test-beam data analysis

- Measurements at PS: 5-7 GeV π^{-1} December 2014
- Results refer to 50 μm thick chips: 3 non irradiated and 3 irradiated with neutrons

ALPIDE finalization

p-ALPIDE-2: 2nd full-scale prototype

- Optimization of some circuit blocks
- NO high-speed output link (1.2 Gbit/sec replaced by a 40Mb/s)
- Full Integration in IB and OB Module: main focus in 2015
- Delivery: mid March

p-ALPIDE-3: 3rd full-scale prototype

- Contains all final elements
- Submission: April '15 Delivery: July '15

p-ALPIDE-4: pre-series production

वा वा हा होता हो। हो। हो। हो। हो। हि। हि

- Submission Dec '15

MISTRAL Development

Study of diode and in-pixel amplification

- MIMOSA-32, MIMOSA-32ter
- MIMOSA-32FEE, MIMOSA-32N
- MIMOSA-34 (study of large pixels, up to 22 x 66 μm²)

MISTRAL Readout Architecture

MIMOSA-22THRa, MIMOSA-22THRb

MISTRAL FSBB-M0

- About 1/3 of final sensor based on small pixels (22x33μm²)
- No pads over matrix
- Power consumption too high for Outer Barrel

MISTRAL Readout Architecture + large pixels (small matrix)

• MIMOSA-22THR(5-9)

MISTRAL-O

- 4 FSBB units with 208 x 208 large pixels of 36 x 64μm²
- Power consumption ~ 100mW/cm2
- Event time resolution (integration time) 20μs
- Pin-to-pin compatible with ALPIDE + common interface

MISTRAL FSBB-MO

FSBB Main Features

- About 1/3 of complete sensor (approx. 9mm x 17mm)
- Pixel Matrix: 416 Columns x 416 Rows
- Staggered Pixel: 22μm x 33μm (final chip 36μm x 64μm)
- In-pixel pre-amplification and clamping (6 metals)
- Double row-readout at 160MHz
- Integration time: 40μs (final chip 20μs)
- 2 versions (FSBB-M0 a & b): only results for M0-a will be shown

NB: the FSBB is not opimized in some respects (pixel dimensions, speed, power consumption, pads over matrix, ...)

Currently MISTRAL-O is being optimized for use in the outer layers:

- less need for spatial resolution: ~10μm
- more stringent power consumption limit: < 100mW/cm²

MISTRAL FSBB-M0 – SPS test beam (Oct 2014)

Beam conditions

- SPS H6A area, 120 Gev π^-
- Particle flux: trigger rate in the range 2.5 to 100 kHz / 5x10 mm²

Device and operational conditions

- 6 FSBB-M0a thinned to 50μm
- All measurements performed at $T_{op} = 30$ °C

MISTRAL FSBB-M0 – detection performance

Diode size (μm²)	$\varepsilon_{\text{det}} \ge 99.8\%$	$\varepsilon_{\text{det}} \ge 99.5\%$	$\varepsilon_{\text{det}} \ge 99.0\%$	$\lambda_{\text{fake}}^{(*)} \le 10^{-5}$
11	Thr ≤ 6.0 mV	Thr ≤ 6.5 mV	Thr ≤ 8.0 mV	Thr ≥ 6.0 mV
9	Thr ≤ 6.0 mV	Thr ≤ 7.0 mV	Thr ≤ 8.0 mV	Thr ≥ 5.0 mV

- Fake rate drops by O(10) masking 20 noisiest pixels.
 - Final chip includes masking feature

Conclusions

ALPIDE

- Full-scale prototype (p-ALPIDE-1) includes most of final features
- Extensive characterization shows large margin over design requirements
- Integration of chip into detector modules starts in Apr '15 till Dec '15
- Pre-series production starts Dec '15
- Project baseline ... however full validation will take till end of 2015

MISTRAL-O

- Opimized for Outer Barrel layers
- MISTRAL FSBB-M0 (small pixel pitch) shows also very good performance
- Submission of full-scale prototype with all final features: July '15
- Integration into detector modules starts Oct '15

The full pin-to-pin compatibility allows switching from ALPIDE to MISTRAL-O with minimum overhead on production and test plans ...

... implication of reduced spatial resolution for the IB need to be studied but expected to be small

SPARES

MISTRAL FSBB-M0 – other measurements

Spatial resolution

- Track reconstruction using all telescope planes but the device under test (DUT)
- Residual (DUT): $\sigma_{res} \approx (4.7 \pm 0.1) \, \mu m$ (U) & $(4.9 \pm 0.1) \, \mu m$ (V) at 6mV for both diodes
- Expected Resolution (removing telescope tracking error): $\sigma_{sp} \approx 4.5 \ \mu m$

NOTE: FSBB pitch <u>22μm x 33μm</u> MISTRAL-O pitch <u>36μm x 64μm</u>

Sensitivity to trigger rate

• ϵ_{det} , λ_{fake} , σ_{sp} are not sensitive to trigger rate (measured in the range 25-100 kHz)

Detection performance at high incidence angles

ALPIDE - Timing (1/3)

Bottom line: whichever signal high enough to trigger the comparator during the strobe windows is saved. Due to the analog shaping time, this means <u>signals</u> generated up to a <u>certain time</u> before the strobe window will be saved as well.

ALPIDE – Timing (2/3)

ALPIDE – Timing (3/3)

pALPIDE-1 – transient response

Schematic:

Principle:

pALPIDE-1 – PS test beam (Dec 2014)

Measurement of threshold current versus pulse length and detection efficiency

MIMOSA 34 – study of pixel size

ITS Upgrade TDR, CERN-LHCC-2013-24

- (a) Seed SNR (MPV) for various pixel geometries, for the HR-18 and HR-20 epitaxial layers
- (b) Detection efficiency for the $22 \,\mu\text{m} \times 66 \,\mu\text{m}$ pixel

Figure 2.12: MIMOSA-34 results.

Single Event Latch-up (SEL)

- SEL refers to a short of the supply planes induce by ionizing particles
 - Sensor needs to be protected (switched off quickly) to avoid damage
 - Power cycle needed to recover (impact on operation)
- SEL is a threshold effect depending on the linear energy transfer (LET)
 - Only recoils from nuclear reactions of primary particles with silicon have LETs that can cause SELs
 - So far, the effect is studied in the lab with heavy ions from a cyclotron to obtain the LET threshold and to identify weak parts of the circuits
 - Tests with high flux protons are foreseen
- Two structures were characterized for SEL
 - Memory chip: dense structures like memories are typically most susceptible to SEL
 - pALPIDE-1
- Collimators were used to identify weak spots:
 - Single-port memories will not be used
 - The analogue biasing of pALPIDE-2 will be improved wrt pALPIDE-1

Single Event Latch-up (SEL)

Measurements done at Louvain-la-Neuve

