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CLIC-UKZ2 programme

ASTeC: Permanent magnets +

Dundee EO longitudinal profile monitor
Cl/Lancaster: crab cavities + RF efficiency
JAI/Oxford: beam FB+FF, stripline BPMs
JAI/RHUL.: transverse beam size, cavity BPMs
Cl/Manchester: main beam RF

- See also talks of Thibaut and Michele
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Permanent Magnets (ASTeC)

STFC staff:

Jim Clarke

Ben Shepherd
Norbert Collomb
Graham Stokes



Drive Beam PM Quadrupoles
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Basic Engineering Concept
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Drive Beam PM Quadrupoles

BJA Shepherd et al,
Tunable high-gradient
permanent magnet
guadrupoles, 2014
JINST 9 T11006
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Team now focussed on
PM Dipoles




PM dipoles

Investigate PM dipoles for:
— Drive Beam Turn Around Loop (DB TAL)
— Main Beam Ring to Main Linac (MB RTML)

Total power consumed by both types: 15 MW
Several possible designs considered:

Type Quantity Length Strength Pole Good Field |Field Range
Region Quality (%)
nnn) (mm)

20 x 20 1x 104 +1
RTML
DB TAL 576 15 1.6 53 40 x 40 1x104 50-100




Current Favourite: “Python”

Sliding PM in backleg

— Small forces
— Similar to low strength quad
— Rectangular PMs . -
— PM manufacturer on board T e e
— Cshaped (good for handling SR)
— Wide
— Large stroke

Field needs to be fine-tuned in 3D

Engineering to be detailed and
cost estimate for prototype
generated

Jim Clarke (STFC), Ben Shepherd (STFC),
Norbert Collomb (STFC), Neil Marks
(STFC), Michele Modena (CERN)




Phase feed-forward (Oxford)

Faculty: Phil Burrows, Glenn Christian
Staff: Colin Perry

Students: Jack Roberts, Davide Gamba



Drive-beam phase feed-forward

Gun

250MeV
-= 250Me -= 2400MeV  1mm

Schulte



CTF3 phase FF prototype

H
CT

R OO e
Y -Control:
_® @ gL

gl e '-- e

-

11



CTF3 phase FF prototype

Phase monitor (Frascati)
Signal down-mixer (CERN)
~eedback processor + firmware (JAl Oxford)

Drive amplifier (JAI Oxford)

<| k I Fr | Piotr Skowronski, Stephane Rey, Alexandra Andersson (CERN)
CKErsS ( ascat ) Andrea Ghigo, Fabio Marcellini (INFN/LNF Frascati)

Philip Burrows, Glenn Christian, Colin Perry (JAI/Oxford U.)
Alexander Gerbershagen, Jack Roberts (JAI/Oxford U./CERN)

9 1 mrad k|Ck Emmanouil Ikarios (NTU Athens/CERN)
-2 1.2 mm path length change

= 17 degrees at 12 GHz

- 0.2 degree resolution
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Amplifier (JAI, Oxford)

Major challenge: >50 MHz bandwidth (slew
rate limited) and 65kW peak power

Designed for operation over full 1.2 us
uncombined pulse, full performance
over ~400 ns portion

First module available for feedforward
tests 2014: 16kW, 345 V output.

Double-up output FETs = 600 V: modules
available for beam July 2015

Full 1.2 kV by combining modules: later
2015




FF controller (JA1 Oxford)

Based around Xilinx Virtex-5 FPGA
(XCEVLXTS0)

—  Max speed 550 MHz
— 2160 Kbit integrated block memory

FONTS5 board

9 ADC channels (3 groups of 3) 5 new boards

- TIADS5474 (‘FONTSA)

— 14 bits (only upper 13 connected)

— Max sampling speed 400 MHz

— 3.5 clock cycles latency 2> 2@CTF3

— One commeon clock per ADC group 2> 2@ATF2
4 DAC channels (2 brought out to front Digial faput A Digital input B

ring clock 2.16 MHz gt

panel by default)
— Analog Devices AD9744
— 14 bit (upper 13 connected) s s
— Max conversion speed: 210 MHz ek
—  ~0.5 cycle latency

Fast clock input
W7 MH

DAC outputs
o kicker amplifiens

JTAG input/output
1o Xikinx phatforus cable

- LEDs
UART for serial data TX/RX over RS- oy e Awons
232 (3 ot clck b gy
— Upto 460.5 kbps e
rm— S i
Fast comparator for external system Power loput
clock and on-board 40 MHz oscillator fol “ Dt imputs outpus

ancillary functions



Initial tests: phase correction
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Initial tests: close FF loop

Scan FF gain to minimise jitter
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System works!

- improve phase propagation
- improve system performance
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ATF2 | Feedback (Oxford)

Faculty: Phil Burrows, Glenn Christian
Staff: Colin Perry
Postdoc: Ryan Bodenstein

Students: Neven Blaskovic Kraljevic,
Talitha Bromwich
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ATF2/KEK: prototype final focus

Goals:

1) 37 nm beam spot (44 nm achieved 2014 — reproducible!)
2) Beam spot stabilisation at few nm level
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ATF2/KEK: prototype final focus

Beam feedback + feed-forward systems
Precision cavity + stripline BPMs
Beam size diagnostics

Beam tuning technlques (Marcm Doug, Juergen )_ ﬁ%nﬁﬂgﬁel"?gﬁ_
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Beam feedback + feed-forward
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IP Region ¥ Quadrupole B Sextupole

Feedforward Cable

¥ Dipole J Skew quadrupole [I Corrector Upstream Region
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IP QDOFF) !

<«— Final Focus ——> <«— Matching— < Extraction Line ————>

Aim to stabilise beam in IP region using 2-bunch spill:

1. Upstream FB monitor beam at IP
2. Feed-forward  from upstream BPMs = IP kicker
3. Local IP FB usingdPBPM signal and IP kicker



Upstream FONTS System

Analogue Front-end

BPM processor

Stripline BPM with
mover system

FPGA-based digital
processor

Strip-line ickr
BPM Resolution

Dynamic range of the BPM system
System Latency

21 Amplifier Bandwidth

< 300nm
+/-500um
<150 ns

~30 MHz



PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 18, 032803 (2015)

Design and performance of a high resolution, low latency stripline beam
position monitor system

R. 1. Apsimonf D.R. Bcll,';" N. Blaskovic Kraljevic, P. N. Burrows, G. B. Chri:ﬁ.lian,i
C.1. Clarkrc,§ B.D. Constance, H. Dabir1 Khah, M. R. Davis, C. Perry,
J. Resta L(’)pcz,” and C.J. Swinson®
John Adams Institute for Accelerator Science at University of Oxford, Denys Wilkinson Building,
Keble Road, Oxford OX1 3RH, United Kingdom
(Received 1 October 2014; published 19 March 2015)

A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in
particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as
low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers.
The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the
High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs
instrumented with analogue signal-processing electronics and a custom digitizer for logging the data.
The design of the analogue processor units 1s presented in detail, along with measurements of the
system performance. The processor latency is 15.6 £ 0.1 ns. A single-pass beam position resolution of
291 4 10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.
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Interaction Point FONT System

4 Ak ~ r‘ wd oy "
\‘5”(« A ¥

Analogue Front-end FPGA-based digital
processor

BPM processor

Designed in house

12.5 cm stripline kicker

Cavity BPM * Based on ATF stripline BPMs




Best IPFB results (2014)

Bunch 1:
not corrected,
jitter ~400nm

Bunch 2:
corrected,
jitter ~67nm

IPB () bunch 1

I Off: 0.4 um ||
B On: 0.37 um

1 2 3

Position (um)

IPB (Y) bunch 2

B Off: 0.41 um ||
B On: 0.067 um

0 5

Position {um)

Corrected limited by
BPM resolution of
~ 50nm



Best IPFB results (2014)

Bunch 1:
not corrected,
jitter ~400nm

Bunch 2:
corrected,
jitter ~67nm
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IP FB In CLIC IR

( Kicker on incoming beam )

Working with
CLIC MDI team

(L. Gatignon et al)
on extension of

poro L* from 3.5m to 6m
Lumical

Ideally IPFB
hardware should
stay closeto IP

- minimises latency
-2 maximises lumi

YOKE
BPM on outgoing beam ) recovery

Will need some

HCAL engineering thought

ENDCAP .
once new L* design

Is solid
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Instrumentation/beam dynamics
(RHUL)

Faculty: Stewart Boogert, Pavel Karataev
Postdocs: Alexey Lyapin, Jochem Snuverink

Students: Lorraine Bobb, Michele Bergamaschi,
Konstantin Kruchinin, Jack Towler

For ODR system + CLIC cavity BPMs - Thibaut
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Cavity BPM system at ATF2 (1)

IP region S-band BPMs C-band BPMs BPMtestarea  Strip line/Cavity BPMs
(4 BPMs) (movers) (on movers) (mounted rigidly)
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Wakefield source setup (1)

Extraction and diagnostics line >
Scale 5m MREF1X
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QDOFF . .
Final focus > Matching——

= 570069 1.0

= > reference cavities on mover at high beta location ; of $4 * sz ng
("MREF3FF"), later replaced by a collimator and . K. Kubo
unshielded bellows on independent movers !

®  Study and measure wakefield effects i ‘

®  Partially compensate wakefields from other sources n :
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Wakefield simulations

® Simulations done with a time domain FDTD solver (part of GdfidL software)

= gdfidl.de

" Geometries are meshed using a cubic mesh with diagonal fillings

" The beam is represented by a line charge travelling parallel to z-axis
" Most simulations are done for the nominal 7 mm bunch length (RMS)

= Typical mesh size 0.25 mm, 0.1 mm for more complex structures, such as bellows

( =3.3156-02, 3.315€-02) i 09/07/2014, 11:22211
( =1.780E-02, 2.540€-02) GdfidL
(-5

Material Boundaries

v34 Fri Apr 18 2014 w0270

3 1 - -3

Torget hole rodius 2 = 6.35e~3
3

3

Torget hole length 3 = 7.10-3
Torget hole ongle = 1.22173048
Horizentel ¢finder rodiva = 11.05e-3
Horizontel cyfinder length 1 = 17.
Horizontel cyfinder length 2 = 285.4e—
Morizontel cyfinder offset X = 7.5e+3

Morizontel cyfinder offpet Z = 500.0e-8 Yy
Microscope port rodis 1 = ks
Microscope port rodia 2 =




Wakefield simulations — component summary

Element Peak Wake Dipole kick factor | Approximate Total
(V/pC/mm) (V/pC/mm) quantity

Bellows (unshielded) 0.10 0.06 100 6.00
Vacuum flange+step 0.06 0.04 100 4.00
C-band position 0.11 0.06 40 2.40
Vacuum flange 0.04 0.02 100 2.00
C-band reference 0.15 0.09 1 0.09
Vacuum ports(X) 0.07 0.05 6 0.30

= Offsets and beta function are important (not taken into account here)
" Most bellows and adjacent flanges are now shielded
® Position cavities are likely to be much better aligned compared to other elements

" Not all components have been analysed, exact geometries are rarely known!



Measurements (3)

= Measured orbit shape agrees well, about a
factor 1.2 between measurement and simulation 500f

: : E
® Bunch length uncertainty: about half a mm in DR (not measured £
-

in EXT), effect on wakefield 5-10% |
® Bunch charge uncertainty: ICT calibration error 5-10% 2 s00k
" PRSTAB paper about to be submitted 100
[
& ¢ q C & A « 00 01 02z 03 04 05 06 07
ICT Charge [10'©
Q,S?‘ch%(cbé quf( ‘58 Qé{(( Qéﬁé&%ﬁ Qrég{ Q‘g}( qu;s e
¥ GG & ¢ ¢ SGo0 S o C 4 : :
__ —— Measurement, 0.75 x 101 3‘_ ln. fit: 1.19
o —— Simulation, 0.75 x 101

74 I|-- n—,l a—.l,u y Ir /] 1 I 1 1 1 !
32 65 70 75 80 85 47 3 =5 1 0 1 5 3
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emittance [um]

Recap on Dispersion-Free and
Wakefield-Free Steering algorithms

* DFS: measure and correct the system response to a change in energy

 WHFS: measure and correct the system response to a change in the bunch charge

Recap of the equations

Y—%Yo R (91

WDFS - (77—770) _ wprs - D
WWFS  *  Yw WWFS \%4 :
B - I O

2 2
bpm resolution + prm position

2_O'

W =
2
2prm resolution

Application of BBA consists of two steps
e Response matrix(-ces) measurement
e Correction and parameters scan

10, 1 5 3 4 5 6 €« H and V emittance reduction thanks to DFS at SLAC

iteration



Step 2: DFS tests, h-axis

* Energy difference for DFS: +2 kHz in DR
dE/E=-0.13% (4 MeV)

* Matched-dispersion steering Added 1 FF bpm
in dispersive region

NEHS | ARODEL- |G| 06| D

500 T T T T File Edit ¥iew Insert Tools Desktop MWindow Help N
DEde | M|RAROVDEL- |S|0E | aD
400l a00
> 200 600 | i
e
% of 400 F -
()] (
-200 200+ //‘ -
-400 - o .
-600 - -200 F -
-g00 1 1 1 1 -400 | _
0 9 10 15 20 i
-600 -
Before the correction | | | |
-800
0 10 15 20 25 30

After the correction 34



2 beam tuning

e So far only “1 beam tuning” for CLIC has been
simulated

— Optimise one BDS beamline from static errors
— Collide beam with “itself” to measure luminosity
— CPU-less intensive

e 2 beam tuning will be at least twice as long (except for
BBA)

— How much longer?
— Luminosity measurement less precise for lower luminosity

— Additional luminosity loss is expected as self-collision is
often optimal



EO bunch length monitor
(ASTeC/Dundee)

Faculty: Allan Gillespie
Staff: Steven Jamison, Edward Snedden
Postdoc: Mateusz Tyrk, David Walsh

Students: Rul Pan, Matt Cliffe
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EO principle

Spectral Decoding

GaP ar grating H H H
e E— o Chirped optical input
fs laser 1 S%P;!EﬁLrLH-H-H% o Spectral readout

______________ *‘_)___________ o Use time-wavelength relationship
: o time resolution limited to > 1 ps

Spectral upconversion _ o
o monochomatic optical input

(long pulse)

grating =5 P
. CH “ !\:\ ™, Spectral readout

ps laser

_U
I::I
o

o monochomatic optical input

EO Transposition
grating (long pulse)
ZnTe | CCD |
p“a;e,_‘ il ) i b o self-refernced FROG
= temporal readout

_____________ I—) --------- o0 high time resoluation

S

Installed on
Califes

Developed for CLIC
as robust, high time
Resolution system



EO Transposition

Being developed for CLIC Iongitudinall profile diagnostics

Spectral upconversion, followed by self-referenced temporal measurement

Generation f&oulomb fiold See talk of David Walsh, Thursday, FEL session
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Electro-optic diagnostics for 20fs resolution

Progress in last year

Laser system procurement completed

 Initial supplier failure on specification/competence

e complicated follow-up procurement to ensure spec delivery
‘EOT’ Frequency Resolved Optical Gating measurements of THz pulses

* Experimental proof of concept developed for CLIC

* Published in Applied Physics Letters (2015)
FROG measurements from metal surface

e Established measurement system for high-bandwidth non-linear materials
Nano-material testing

* STFC & STFC/Dundee experiments (STFC lasers, Dundee samples)

 FROG working for second harmonic, with enhanced efficiency
* THz induced FROG with intense THz sources — insufficient signal-noise

New understanding on taking FROG to femtosecond level

 Method for unambiguous femtosecond level electric field retrieval
* Surpasses established ultrafast laser measurement limitations
* Published Optics Express (2015)



EOT System Build Status

* Primary laser systems finally delivered end of Nov 2014— Characterisation largely
complete

* All other components being constructed, integrated, characterised, and made robust
* Dye laser not proposed for the final design — possibility of building a seeded OPO
Full system now being integrated

Sirah Cobra Dye laser THz Source & Optical Probe mixing
6 ns, 3 mJ, linewidth < 2 GHz ! _ R

Continuum Surelite YAG

*4,5 ns, 150 mJ
\ 4 [H

seeded . e EOT pulse diagnostics —

'y A . N ” TDS & FROG set ups

Jitter < 0.3 ns r.m.s.

Centroid Y (microns)

(<22 pyrad r.m.s.)

40 4260 4280 4300

Centroid X (microns)




Principle Behind EOT tested & confirmed

Mimic electric field profile, independently measured
Retrieved Field profile, using EOT

1.0 - Experimental EOT Recovered EOT
0.8 - Pulse Spectrogram Pulse Spectrogram
0.6 1
0.4 1
0.2 |
0.0 1
-0.2 1
-2 -1 0 1 2 3
Time (ps)
— TDS - E-field
—  FROG - (Intensity)

Electric Field

Frequency

112 Delay

x cos(Phase)

0.55 ps pulse successfully measured with a 10 ps, transform limited, probe!
The core principle of mapping a Coulomb field into an optical pulse envelope now proven

Published in Applied Physics Letters

“The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe”
Walsh, D. A. and Snedden, E. W. and Jamison, S. P., Applied Physics Letters, 106, 181109 (2015)



Electro-optic diagnostics for 20fs resolution

Plans for next year

Optical system integration
* All sub-systems have been tested, now to be integrated into full prototype

* Preparing for accelerator testing
Further development of FROG retrieval, including single-fs methods

* Algorithm development / benchmarking for robustness
* Manchester University collaboration assisting with ‘CEP stabilised’ lasers

Nano-material testing

* Using new high field THz sources being developed by STFC, further
experimental testing for ‘TFISH’ (THz induced Second Harmonic) FROG with
Dundee materials

* Decision point on nano-material vs multi-crystal detector for enhanced bandwidth

Accelerator testing

* Advanced stages of preparation for testing at an accelerator facility
* Testing to be during 2016; CLARA at Daresbury now likely location.
[50MeV, <100fs, flexible access]



Crab cavity + RF (Lancaster)

Faculty: Graeme Burt, Amos Dexter,
Chris Lingwood

Postdocs: S. Karimian, D. Constable, M. Jenkins

Students: V. Hill, B. Woolley
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Objectives:

Design and fabricate a crab cavity appropriate
for high gradient testing at CERN

Feasibility studies and associated
measurements for the Crab RF distribution
system

New approaches towards high-efficiency
klystrons




®
) Lancaster E=3

CLIC crab Cavity

The Cockcroft Institute
of Accelerator Science and Technology

e Lancaster’s X-band

= 7 «“ ” .

S o _ e crab” cavity

vy | | currently running

| on XBOX2 to
measure the

el ) maximum possible
transverse

< .

gradient.
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>

The Cockcroft Institute

of Accelerator Science and Technology

High power test results

Lancaster
University

* Achieves up to 4.5 MV in a 100 mm structure with 40 MW, twice required

CLIC and LCLS gradient. Group velocity could be reduced in a shorter
structure.
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Revised Crab Synchronisation Scheme
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®
<> CLIC
synchronisation
scheme

Phase measurement board

e Calibration with this board mixes down
to 1.3 GHz then uses a linear phase
detector

* Pulsing signals allows offsets to be
removed

* Future boards may mix to 400 MHz and
calibrate by digital sampling of signal
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Required delivery timing for RF power
timing ~ 4.4 fs.
Waveguide phase velocity: ~ 3.514 x 108
ms1



4> Initial Arrangement for  tres®

The Cockcroft Institute
of Accelerator Science and Technolog)

~Calibration

Testing at 10 MW was regarded as unnecessary hence standard flanges can be
used

Initial calibrations of the phase measurement board, the Magic Tee and the
directional couplers will be done in a small environmental chamber

Most components waveguide components needed for
the test have been procured

Movable
shorts

\

Magic-Tee

/ Waveguideto __—»
Directional couplers SMA adapter ~

\,

"~ H-bend E-bend



4> . . Uiy ®8
= High efficiency klystrons for
accelerators
* Using core oscillation method 90 % efficient
klystrons may be achievable Traditional bunching

* PIC analysis of high efficiency bunching
method, validation of approach

* Numerical noise currently an issue due to very
long tubes (4m)
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®
‘) Lancaster E=3

¢ University # %
[ ] [ ] [ ]
==z High efficiency klystrons for
of Accelerator Science and Technology
a C C e | e ra to rS Pitch circle, cathode and beams

* HEIKA international klystron
collaboration

* Invited talk at FCC Week — with
proposed 90 % efficient 1.5MW
40kV 16 beam MBK design |

* Uses same technique as CLIC —pncrck
klystron for further validation of
approach
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Main linac structure studies (Manchester)

Alternative designs including wakefield suppression
of HOMs

Faculty: Roger Jones
Postdocs: Alessandro D’Elia, Inna Nesmiyan

Students: Nick Shipman, Lee Carver
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DDS A Prototype —Measured at CERN
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Chosen design
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Summary

 CLIC-UK is delivering significant contributions

 Thanks to our CERN colleagues and CLIC
partners for outstanding collaboration!
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