

High Throughput Computing Collaboration A CERN openIab / Intel collaboration

Niko Neufeld, CERN/PH-Department niko.neufeld@cern.ch

HTCC in a nutshell

- Apply upcoming Intel technologies in an Online / Trigger & DAQ context
- Application domains: L1-trigger, data acquisition and event-building, accelerator-assisted processing for high-level trigger

40 million collisions / second: the raw data challenge at the LHC

- 15 million sensors
- Giving a new value 40.000.000 / second
- =>15 * 1,000,000 * 40 * 1,000,000 ytes

Defeating the odds

- 1. Thresholding and tight encoding
- 2. Real-time selection based on partial information
- 3. Final selection using full information of the collisions

Selection systems are called "Triggers" in high energy physics

Challenge #1 First Level Triggering

Selection based on partial information

Use prompt data (calorimetry **MUON System** and muons) to identify: Segment and track finding High p, electron, muon, jets, missing E. n р CALORIMETERs Cluster finding and energy deposition evaluation New data every 25 ns

New data every 25 ns Decision latency ~ μs A combination of (radiation hard) ASICs and FPGAs process data of "simple" sub-systems with "few" O(10000) channels in real-time

> Other channels need to buffer data on the detector

this works only well for "simple" selection criteria

elong-term

maintenance issues with custom hardware and low-level firmware

crude algorithms miss a lot of interesting collisions

FPGA/Xeon Concept

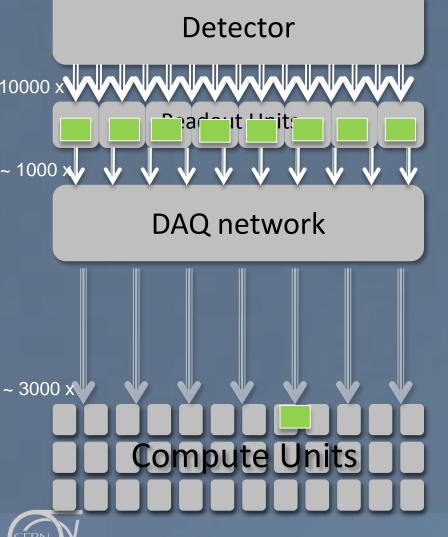
- Intel has announced plans for the first Xeon with coherent FPGA concept providing new capabilities
- We want to explore this to:
 - Move from firmware to software
 - Custom hardware \rightarrow commodity
- Rationale: HEP has a long tradition of using FPGAs for fast, online, processing
- Need real-time characteristics:
 - algorithms must decide in O(10) microseconds or force default decisions
 - (even detectors without real-time constraints will profit)

HTCC and the Xeon/FPGA concept

Port existing (Altera [©]) FPGA based LHCb Muon trigger to Xeon/FPGA

- Study ultra-fast track reconstruction techniques for 40 MHz tracking ("track-trigger")

Collaboration with Intel DCG IPAG -EU


Data Center Group, Innovation Pathfinding Architecture Group-EU

Challenge #2 Data Acquisition

Working with full collision data event-building

 Pieces of collision data spread out over 10000 links received by O(100) readout-units

 All pieces must be brought together into one of thousands compute units
 → requires very fast, large switching network

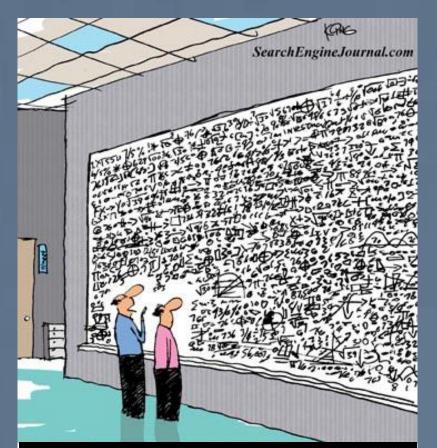
• Compute units running complex filter algorithms

Future LHC DAQs in numbers

		Rate of			
		collisions			
	Data-size	requiring full	Required # of		
	/ collision	processing	100 Gbit/s	Aggregated	
	[kB]	[kHz]	links	bandwidth	From
ALICE	20000	50	120	10 Tbit/s	2019
ATLAS	4000	500	300	20 Tbit/s	2022
CMS	4000	1000	500	40 Tbit/s	2022
LHCb	100	40000	500	40 Tbit/s	2019

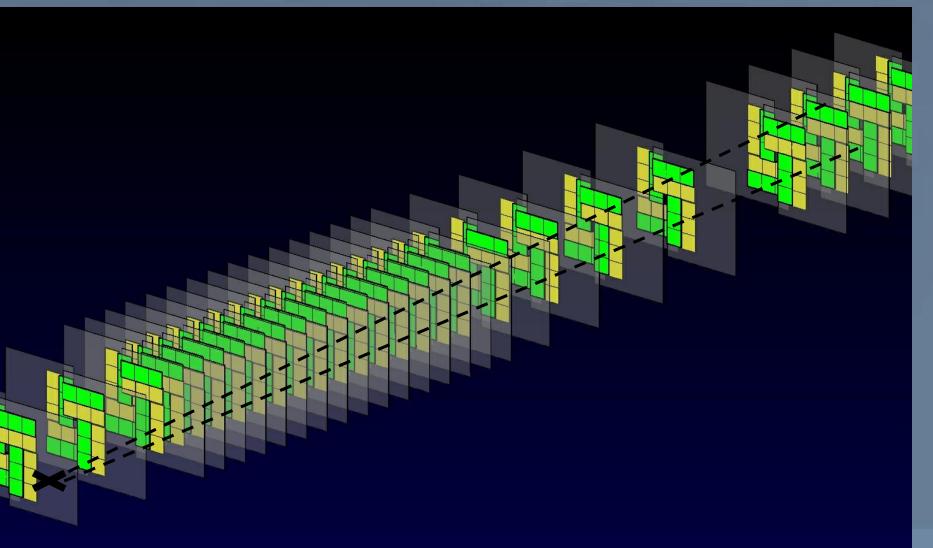
HTCC and data acquisition

- Explore Intel's new OmniPath interconnect to build the next generation data acquisition systems
 - Build small demonstrator DAQ
- Use CPU-fabric integration to minimise transport overheads
- Use OmniPath to integrate Xeon, Xeon/Phi and Xeon/FPGA concept in optimal proportions as compute units
 - Work out flexible concept
- Study smooth integration with Ethernet ("the right link for the right task")



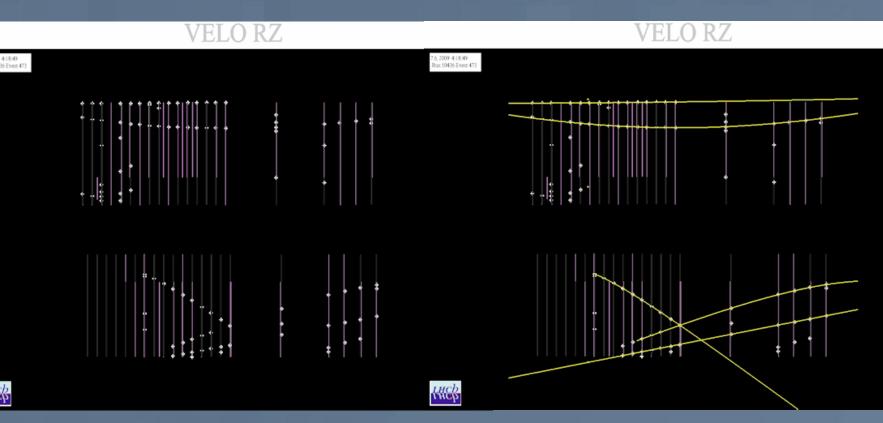
Challenge #3 High Level Trigger

High Level Trigger



"And this, in simple terms, is how we find the Higgs Boson" Pack the knowledge of tens of thousands of physicists and decades of research into a huge sophisticated algorithm

Several 100.000 lines of code


 Takes (only!) a few 10 -100 milliseconds per collision

Pattern finding - tracks

Same in 2 dimensions

Can be much more complicated: lots of tracks / rings, curved / spiral trajectories, spurious measurements and various other imperfections

CERN

HTCC and the High Level Trigger

Complex algorithms

- Hot spots difficult to identify optimising 2 -3 kernels alone
- Classical algorithms very "sequential", parallel versions need to be developed and their correctness (same physics!) needs to be demonstrated
- Lot of throughput necessary
 high memory bandwidth, strong I/O
- There is a lot of potential for parallelism, but the SIMT-kind (GPGPU-like) is challenging for many of our problems
- HTCC will use next generation Xeon/Phi (KNL) and port critical online applications as demonstrators:
 - LHCb track reconstruction ("Hough Transformation & Kalman Filtering")
 - Particle identification using RICH detectors

Summary

- The LHC experiments need to reduce 100 TB/s to ~ 25 PB/ year
- Today this is achieved with massive use of custom ASICs and in-house built FPGA-boards and x86 computing power
- Finding new physics requires massive increase of processing power, much more flexible algorithms in software and much faster interconnects
- The CERN/Intel HTC Collaboration will explore Intel's Xeon/FPGA concept, Xeon/Phi and OmniPath technologies for building future LHC TDAQ systems

