Identified particle spectra in single diffractive dissociation

 process in pp at $\sqrt{s}=200 \mathrm{GeV}$ measured with the STAR detectorŁukasz Fulek
(on behalf of the STAR Collaboration)
AGH University of Science and Technology, Cracow

Low-x Meeting
Sandomierz, Poland, 1-5 September 2015

Outline

(1) Motivation
(2) Experimental setup in 2009
(3) Selection of diffractive events
(9) Particle identification
(5) Protons from secondary interactions
(0 2015 data sample
(Summary

Motivation

- Single Diffractive Dissociation:

$$
a+b \rightarrow a+X
$$

where a and b denote hadrons, whereas X is a multi-particle state of the same quantum numbers as particle b.

- Regge Theory \rightarrow colorless exchange mediated by the Pomeron.
- Experiments:

$p p(p \bar{p})$	ISR, SPS, TEVATRON, LHC, RHIC
$e p$	HERA
$p A$	LHC, RHIC

- Study of particle spectra in diffractive dissociation and compare it with non-diffractive dissociation.
- Measurement of baryon number transfer from forward to mid rapidity in SDD.
- Compare measurement with PYTHIA8 expectation.

Antiparticle-to-particle ratios in non-diffractive dissociation

- Antiparticle/particle $\left(\pi^{-} / \pi^{+}, K^{/} K^{+}, \bar{p} / p\right)$ ratios as a function of the charged particle multiplicity in $p p, \mathrm{~d}+\mathrm{Au}$ at 200 GeV and $\mathrm{Au}+\mathrm{Au}$ collisions at $62.4 \mathrm{GeV}, 130 \mathrm{GeV}$, and 200 GeV measured at STAR[1].
- The π^{-} / π^{+}ratio ~ 1 for all measured collision systems and collision energies.
- The K^{-} / K^{+}ratios close to 1 in $p p, \mathrm{~d}+\mathrm{Au}$ and $\mathrm{Au}+\mathrm{Au}$ collisions at 200 GeV .
- The \bar{p} / p ratio in peripheral $\mathrm{Au}+\mathrm{Au}$ at 200 GeV similar to that in pp and $\mathrm{d}+\mathrm{Au}$ collisions at the same energy and varies between $0.75-0.9$.
- A sizeable baryon-antibaryon asymmetry in photon-proton interaction observed by the H 1 Collaboration[2] for p / \bar{p} with small momentum: $A=2 \cdot\left(\frac{N_{p}-N_{\bar{p}}}{N_{p}+N_{\bar{p}}}\right)=(8.0 \pm 1.0 \pm 2.5) \%$ \rightarrow net baryon number transported through phase space.
- Study particle/antiparticle ratios as a function of p_{T} in SDD process in $p p$ collision at $\sqrt{s}=200 \mathrm{GeV}$.

RHIC

- polarized proton-proton (transversely and longitudinally)
- polarized proton-A and AA : p-AI, p-Au, d-Au, h-Au, Cu-Cu, Cu-Au, Au-Au, U-U
- center-of-mass energy up to $\sqrt{s}=510 \mathrm{GeV}$ for pp and $\sqrt{s_{N N}}=200 \mathrm{GeV}$ for AA

Measuring SDD at STAR

- Need detectors to tag forward protons and detector with good acceptance and particle ID to measure diffractive system
- 4 Roman Pot stations: $3 \cdot 10^{-3}<-t<3 \cdot 10^{-2} \mathrm{GeV}^{2}, 0<\phi<2 \pi$
- TPC tracking and particle identifiaction (dE/dx): $-1<\eta<1$
- BBCs and ZDCs used for triggering and luminosity determination.
- TPC track matched with TOF hit - primary tracks and proton come from the same bunch crossing;

Selection of SDD events and kinematic range of the measurement

- Select events using trigger conditions:
- one reconstructed proton in the Roman Pot (RP) station on west or east;
- signal in BBC or ZDC on opposite side;
- no signal in BBC and ZDC on the proton side;
- Diffractive system X registered in TPC:
- $|\eta|<1.0$;
- $\mathrm{p}_{T}>0.15 \mathrm{GeV} / \mathrm{c}$;
- primary TPC tracks ≥ 2 and one of them matched with TOF hit;
- \mid z-vertex $\mid<100 \mathrm{~cm}$;
- Particle spectra analysis - $|\eta|<0.5$;
- Acceptance limits kinematic range to:
- diffractive system X :
- $15<M_{X}<110 \mathrm{GeV}$
- proton kinematics:
- $4 \cdot 10^{-3}<-t<3 \cdot 10^{-2} \mathrm{GeV}^{2}$
- $0.002<\xi=\frac{\Delta p}{p}<0.25$

Comparison with simulations

- Background rejection by additional position cuts;
- Compare data with PYTHIA8 (Single Diffraction, Double Diffraction, Central Diffraction and Minimum Bias)
- PYTHIA8 normalized to the luminosity in data;
- Selected sample dominated by SD process.

Compare data with MC: TPC primary tracks

- PYTHIA8 normalized to data - compare shape of the distributions;
- PYTHIA8 weighted with z-vertex;
- PYTHIA8 describes data well but small discrepancies in pseudorapidity

Particle identification

- Measure mass and momentum dependent energy loss ($d E / d x$);
- Convert $d E / d x$ into momentum independent Gaussian variable z_{i} ($i=\pi, K, p)[1]$;
- $z_{i}=\ln \left(\frac{d E / d x}{(d E / d x)_{i}^{B B}}\right)$

- $(d E / d x)_{i}^{B B}$ - the Bethe-Bloch inspired parameterization of $d E / d x$ for the given particle type;
- $(d E / d x)_{i}^{B B}=A_{i}^{B B}\left(1+\frac{m_{i}^{2}}{p^{2}}\right)$
- $A_{i}^{B B}$ factor determined from data;
- The expected value of z_{i} for the particle in study around 0 .

Extraction of raw particle yields

- Plot z_{i} distributions for a given particle in a given p_{T} range;
- The z_{i} distributions/peaks simultaneously fitted by multiple Gaussians to extract the raw particle yields;
- Contribution of electrons and deuterons.

Particle identification: pion and kaon

- π^{+} / π^{-}and K^{+} / K^{-}ratios consistent with STAR non-diffractive measurements.
- PYTHIA8 particle production model describes data well.

Proton background subtraction

- Proton sample contains background protons knocked out from the beam pipe and the detector materials by interactions of produced hadrons in these materials - nearly flat DCA tail in the proton distribution (DCA - the closest distance from the collision vertex to a track helix).
- Antiprotons do not have knock-out background - the flat DCA tail absent from their DCA distribution.
- Based on MC simulation studies made for the other analysis, i.e. [1], it was found that the description of the background protons:

$$
p_{b k g d}(D C A) \propto\left[1-\exp \left(-D C A / d_{0}\right)\right]
$$

- Assuming that the shape of the background-subtracted proton DCA distribution is identical to that for the antiproton DCA distribution, the proton data can be fit by:

$$
p(D C A)=\bar{p}(D C A) / r_{\bar{p} / p}+A \cdot p_{b k g d}(D C A)
$$

where the parameters $d_{0}, r_{\bar{p} / p}$ and A are free parameters.

- Above assumption is not strictly valid because the weak decay contributions to the proton and antiproton samples are in principle different. However, the difference in DCA distributions between p and \bar{p} arising from weak decay contamination is small.

Proton background substraction

$0.4<\mathrm{P}_{\mathrm{T}}<0.5 \mathrm{GeV} / \mathrm{c}$, PYTHIA8

- \bar{p} / p ratio below 1 for data and PYTHIA8;
- Discrepancy between data and PYTHIA8;
- \bar{p} / p ratio about 0.8 and consistent with STAR non-diffractive measurements;
- Baryon number transport may be higher than expected by PYTHIA8 model but larger data sample needed.

Particle spectra in Run 15

Top view

- New RP setup (STAR Phase II configuration) to be able to take data without special conditions to acquire large data samples.
- $0.03 \leq-t \leq 0.3 \mathrm{GeV}^{2}$
- 35 mln SDD events collected \rightarrow analysis in progress.
- We are looking forward to more data in pp run 2017 at $\sqrt{s}=510 \mathrm{GeV}$.

Summary

- Measurement of particle production in SDD at $\sqrt{s}=200 \mathrm{GeV}$ has been shown;
- Preliminary results on π^{+} / π^{-}and K^{+} / K^{-}ratios are well reproduced by the PYTHIA 8 particle production model and agree with STAR previous non-diffractive measurements.
- Preliminary results on \bar{p} / p ratio equals to ~ 0.8 and is consistent with STAR non-diffractive measurements.
- Preliminary results on \bar{p} / p ratio may indicate that baryon number transport is higher than expected by PYTHIA 8 model but larger data sample is needed.
- Comparisons with different simulators, e.g. HIJING, are also planned to understand the dynamics of baryon number transport.
- We had a very successful data taking in just finished 2015 run in pp collisions.
- We are looking forward to more data in pp run 2017 at $\sqrt{s}=510 \mathrm{GeV}$.

Backup slide - Particle production in pp collision

- The String Models[3]:
- two protons create "excitations" in form of two strings, which consist of one quark on the one side and a diquark on the other side:
(1) Longitudial excitation - string consists only of one proton valence quarks;
(2) Color exchange - string created by joining a quark of one proton and a diquark from the other proton;
- hadronization - break the string and form a pair of $q-\bar{q}$;
- Quark-Gluon Strings Model QGSM[4]:
- based on nonperturbative notions, combining QCD with Regge theory and using parton structure of hadrons;
- the baryon number cannot be transported over large rapidity space.
- The Multisource thermal model[5] - particles divided into sources described by Erlang distribution. The source is considered as a thermodynamic system of quantum ideal gas.

String formation mechanisms for pp collisions

The $q-\bar{q}$ fragments into hadrons

particle/antiparticle ratio in pp non-diffractive collision at 200 GeV

Literature

[1] B.I. Abelev et al., Systematic measurements of identified particle spectra in pp,d+Au, and $A u+A u$ collisions at the STAR detector, PHYSICAL REVIEW C79, 2009.
[2] B.Z. Kopeliovich, B. Povh, Baryon Stopping at HERA: Evidence for Gluonic Mechanism, arXiv:hep-ph/9810530 [hep-ph].
[3] F.M. Liu et al., Constraints on Models for Proton-Proton Scattering from Multi-strange Baryon Data, arXiv:hep-ph/0202008 [hep-ph].
[4] A.B. Kaidalov, M.G. Poghosyan, Spectra of particles produced in high-mass diffraction dissociation in the Model of Quark-Gluon Strings, arXiv:0910.1558 [hep-ph].
[5] Fu-Hu Liu et al., Transverse Momentum Distributions of Final-State Particles Produced in Soft Excitation Process in High Energy Collisions, Advances in High Energy Physics, 2013.

