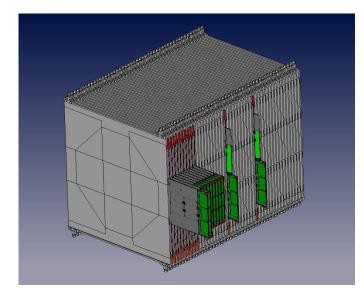
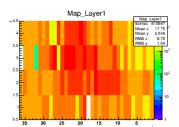
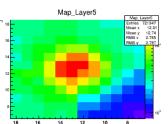
CALICE AHCAL in H6@SPS

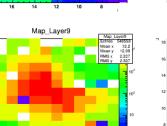
Katja Krüger PS/SPS User Meeting 27 August 2015

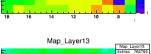


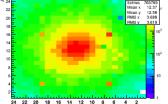
Comparison of steel and tungsten absorber

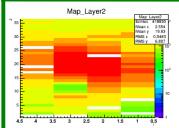


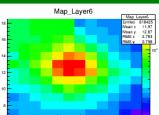

- (nearly) identical layer configuration
 - 11 (10) small layers (18*18 or 36*36 cm²): shower start finder
 - 4 big layers (72*72 cm²): shower profile, correlation of hit times
- active layers: scintillator strips (5*45 mm²) or tiles (30*30 mm²)
- steel absorber structure
 - as planned for ILC detector barrel
 - tested for 2 weeks in July in H2@SPS
- tungsten absorber structure
 - as already used in previous AHCAL prototype
 - tested for 2 weeks in August in H6@SPS
- expect more late hits in hadron showers in tungsten than in iron
 - comparison with steel data
 - Influence on particle flow reconstruction

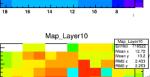


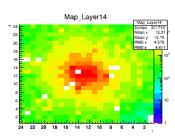

Hitmap: tungsten

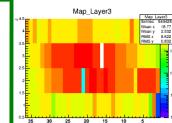

additional small layer with opposite strip orientation



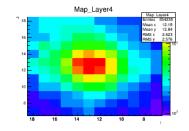


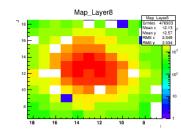


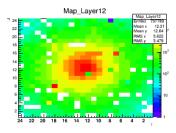




Map_Layer7


Map_Layer11


Map_Layer15


24 22 20 18 16 14 12 10 8 6 4 2

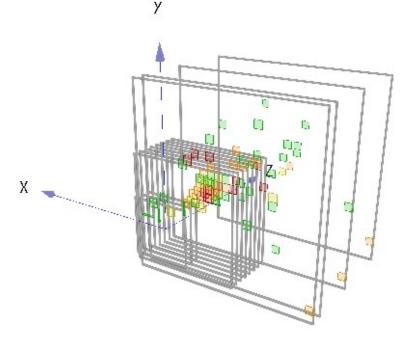
Map_La Entries Mean x Mean y RMS x

12.05 12.65 4.924

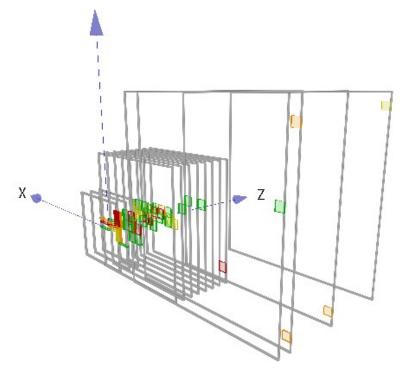
same inefficiency observed in 2 layers as in steel data

Data Taking

first beamtime: 8. – 22. July 2015


- 2 very successful weeks, running continuously and smoothly
- we got all the data samples we hoped for!

second beam time: 12.–26. August 2015


- detector running fine, but 5 days no beam from SPS many thanks to CLICpix for letting us stay one day longer!
- data taking:
 - muons for calibration
 - positive pions/protons: energy scan 10 90 GeV
 - positrons: skipped except for 20 GeV
 - high statistics pion/proton sample at 50 GeV
 - second muon calibration run
- we got what we need, would have hoped for more positron energies

Data samples: hadrons and positrons in tungsten

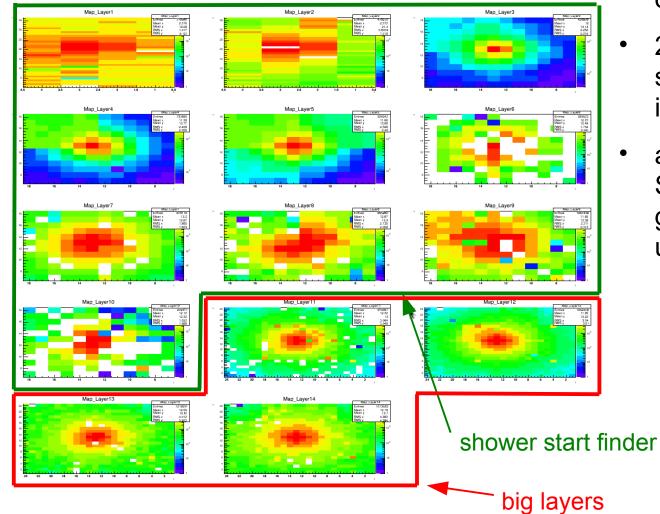
- positive pions/protons: energy scan 10, 30, 50, 70, 90 GeV
 - Cerenkov detector to separate pions and protons
 - ~500k pion events per energy

- positrons at 20 GeV
 - cross check of detector simulation
 - ~500k events

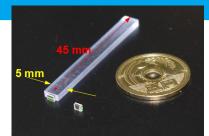
Summary

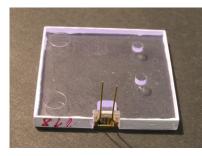
- ~7 weeks (including preparation, installation and de-installation) successful weeks of AHCAL@SPS
- would be impossible without support from many people at CERN, including Henric, Bastien, Adrian, Laza, Nikos, Edda, Michael, the CERN LCD group and the SPS crew

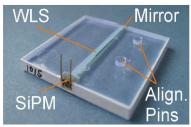
Flying Calos :-)



BACKUP


Hit map: steel




- one pion run
- 2 layers in shower start finder rather inefficient
- all layers with new
 SiPMs and tiles show
 good efficiency and
 uniformity
 - strips
 - tiles without WLS
 - surface-mount
 SiPMs
 - 4 big layers

Tiles/Strips and SiPMs

- > 2 (3) layers with strips
 - Hamamatsu MPPCs with 1600 pixels
 - Hamamatsu MPPC with 10000 pixels
- > 5 layers with tiles with wavelength shifting fibre
 - CPTA SiPMs with 800 pixels
- 2 layers with tiles without WLS
 Ketek SiPMs with 12000 pixels
- 1 layer with surface mount SiPMs with individually wrapped tiles
 Hamamatsu MPPCs with 1600 pixels
- > 4 big layers with individually wrapped tiles
 - Ketek SiPMs with 2300 pixels
 - sensl SiPMs with 1300 pixels

we want to build a fully equipped prototype (40 layers) in the coming years experience from this testbeam is important input to chose one option

